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Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows
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A phase-field-based hybrid model that combines the lattice Boltzmann method with the finite difference method
is proposed for simulating immiscible thermocapillary flows with variable fluid-property ratios. Using a phase
field methodology, an interfacial force formula is analytically derived to model the interfacial tension force and
the Marangoni stress. We present an improved lattice Boltzmann equation (LBE) method to capture the interface
between different phases and solve the pressure and velocity fields, which can recover the correct Cahn-Hilliard
equation (CHE) and Navier-Stokes equations. The LBE method allows not only use of variable mobility in the
CHE, but also simulation of multiphase flows with high density ratio because a stable discretization scheme is
used for calculating the derivative terms in forcing terms. An additional convection-diffusion equation is solved
by the finite difference method for spatial discretization and the Runge-Kutta method for time marching to obtain
the temperature field, which is coupled to the interfacial tension through an equation of state. The model is
first validated against analytical solutions for the thermocapillary driven convection in two superimposed fluids
at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration
of a three-dimensional deformable droplet and bubble at various Marangoni numbers and density ratios, and
satisfactory agreement is obtained between numerical results and theoretical predictions.
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I. INTRODUCTION

Thermocapillary convection is a phenomenon of fluid
movement that arises as a consequence of the variation of
interfacial tension at a fluid-fluid interface caused by tempera-
ture differences. It can be employed as a mechanism for driving
the motion of droplets and bubbles immersed in a second fluid.
For most fluids the interfacial tension is a decreasing function
of the temperature, and the induced thermcapillary stresses
(also called Marangoni stresses [1]) lead to the movement of
droplets or bubbles from the regions of low temperature, where
the interfacial tension is high, to the warmer regions, where
the interfacial tension is low. The thermocapillary motion of
droplets and bubbles plays an important role in many natural
physical processes as well as numerous industrial activities,
particularly in space material processing and many other
engineering and scientific applications under microgravity
conditions where sedimentation and gravity-driven convection
are largely eliminated. Thus, it attracts an increasing amount
of research interest worldwide along with the progress of
human space technology. For example, Hadland et al. [2]
and Kang et al. [3] conducted experimental studies on the
thermocapillary migration of air bubbles in silicone oil aboard
a NASA space shuttle and the 22nd Chinese recoverable
satellite RS-22, respectively, and both experiments covered
a wide range of flow and thermal conditions. In recent years,
optically actuated thermocapillary forces have been used for
manipulating the dynamic behavior of droplets or bubbles in
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microfluidic devices [4–10], where bulk phenomena can be
negligible in comparison with interfacial effects due to large
surface-to-volume ratio and low Reynolds number. Such op-
tically controlled actuation is advantageous over convectional
hydrodynamic stress [11–14], electrohydrodynamic force
[15–17], and resistive heating [18–20] methods for droplet and
bubble manipulations, as it is easier to address a large array
of droplets/bubbles using optical patterns [7]. Furthermore,
optically controlled actuation is contactless and dynamically
reconfigurable, without any additional requirement on mi-
crochip fabrication [21]. For a comprehensive review of these
topics, interested readers are referred to the excellent book by
Subramanian and Balasubramanian [22] as well as the book
chapter by Robert de Saint Vincent and Delville [23].

Numerical modeling and simulations can be very instru-
mental in enhancing understanding of thermocapillary flows
because one can obtain detailed information about flow
field such as temperature and velocity distribution. However,
numerical simulation of thermocapillary flows is a challenging
task, where the capillary effect usually plays a dominant role.
Discretization errors in calculation of interfacial forces may
generate unphysical spurious velocities which can cripple the
velocity field in the whole computational domain. Minimizing
the spurious velocities at the interface still remains a major
challenge for numerical models and algorithms. Due to the
strong dependence of interfacial tension on temperature,
the temperature fluctuations result in nonuniform interfacial
tension forces and Marangoni stresses that affect the flow
field at the interface, which in turn alter the interfacial
temperature distribution through the induced interfacial flows.
While the front-tracking method is not suitable for simulating
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interface breaking and coalescing because the interface must
be manually ruptured based upon some ad hoc criteria [24],
interface capturing methods such as volume-of-fluid and
level set methods will suffer from numerical instability at
the interface region when the interfacial tension becomes a
dominant factor in microdroplet or -bubble behavior [25].
Microscopically, the phase segregation and the interfacial
dynamics between different phases are due to interparticle
forces or interactions [26,27]. Thus, mesoscopic level models
are expected to describe accurately the complex dynamic
behavior of multiphase flows.

The lattice Boltzmann method (LBM) is known to be ca-
pable of modeling interfacial interactions while incorporating
fluid flow as a system feature [28]. It is a pseudo-molecular
method that tracks evolution of the distribution function of an
assembly of molecules and is built upon microscopic models
and mesoscopic kinetic equations [29]. Its mesoscopic nature
can provide many of the advantages of molecular dynamics,
making the LBM especially effective for simulation of com-
plex interfacial flows. However, the currently available LBMs
mainly focus on simulating multiphase flows with a constant
interfacial tension [26,30–34], so they are unable to simulate
thermocapillary flows around moving and stationary interfaces
except our recently improved color-fluid model [35], in which
a concept of continuum surface force (CSF) is used to model
the interfacial tension force and Marangoni stress, and the
phase segregation is achieved through the recoloring algorithm
proposed by Latva-Kokko and Rothman [36]. However, this
model can only simulate thermocapillary flows with equal
density. In addition, it is restricted to using the same specific
heat for both fluids because a simplified temperature equation
is solved in the framework of LBM. These deficiencies largely
limit its prospect for practical applications.

In this work a phase-field-based hybrid model combining
the LBM and the finite difference method (FDM) is presented
to simulate immiscible thermocapillary flows with variable
fluid-property ratios. Based on the free energy theory, an
interfacial force formula is derived analytically to model the
interfacial tension force and the Marangoni stress. An im-
proved lattice Boltzmann equation (LBE) method is employed
to capture the interface between different phases and solve
the pressure and velocity fields, which can recover the correct
Cahn-Hilliard equation (CHE) and Navier-Stokes equations
(NSEs). The LBE method allows not only use of variable
mobility, but also simulation of immiscible binary fluids with
high density ratio because a stable discretization scheme
[33,34] is used for calculating derivative terms appeared in
forcing terms. In addition, a convection-diffusion equation is
solved by the FDM for spatial discretization and the Runge-
Kutta (RK) method for time marching to obtain temperature,
which is coupled to the interfacial tension by an equation
of state. A series of numerical simulations are carried out to
examine the capability and accuracy of the hybrid model.

II. THEORY AND MATHEMATICAL MODEL

Phase field methods are a particular class of diffuse-
interface models that are becoming increasingly popular for
modeling multiphase flows. A unifying feature of all the phase
field methods is the existence of a free energy functional,

which not only determines the equilibrium properties, but also
strongly influences the dynamics of a multiphase system. The
free energy is described by a conserved order parameter, e.g.,
the relative concentration of the two phases in a binary fluid,
which varies continuously over a thin interfacial layer and is
mostly uniform in the bulk phases. In phase field methods,
sharp interfaces are replaced by thin but nonzero thickness
transition regions where the interfacial forces are smoothly
distributed [37], so that the numerical computation of interface
movement and deformation can be carried out on fixed grids.

A. Phase field theory and governing equations
for hydrodynamics

We consider here an incompressible system of two nom-
inally immiscible Newtonian fluids. The order parameter φ

is introduced to identify the regions where two fluid flows
occur: φ = −1 is occupied by fluid 1 and φ = 1 by fluid 2.
The interface is represented by φ = 0 with an interfacial layer
of thickness ε. Denoting the fluid domain by �, one can write
the free energy of the system as [38]

F (φ,∇φ) =
∫

�

(
�(φ) + ε2

2
|∇φ|2

)
d�, (1)

where �(φ) is the bulk free energy density and takes a double-
well form �(φ) = 1

4 (φ2 − 1)2. The term ε2

2 |∇φ|2 accounts for
the excess free energy in the interfacial region.

The chemical potential μ is defined as the variational
derivative of the free energy with respect to the order
parameter, i.e.,

μ = δF

δφ
= d�(φ)

dφ
− ε2∇2φ = φ3 − φ − ε2∇2φ. (2)

The equilibrium interface profile can be obtained from Eq. (2)
at μ = 0. The one-dimensional solution of this equation is

φ(z) = tanh

(
z√
2ε

)
, (3)

where z is the spatial location normal to the interface (z = 0).
The scalar field of the order parameter is advected by the

fluid velocity u, while being diffused due to the gradient of
chemical potential. The time evolution of the order parameter
is governed by the convective CHE

∂φ

∂t
+ u · ∇φ = ∇ · (M∇μ) , (4)

where M > 0 is the mobility or Onsager coefficient. In the
classical CHE [39], the mobility is a constant, whereas in
this study it depends on the order parameter through M =
Mc

√
(1 − φ2)2, where Mc is a constant. Compared with a con-

stant mobility, the variable mobility can significantly reduce
the numerical dissipation around small droplets or bubbles to
yield physically acceptable results [40]. At the solid walls, we
impose the following no-flux boundary conditions [41]:

nw · ∇φ = 0 and nw · M∇μ = 0, (5)

where nw is the unit vector normal to the solid wall.
It is well known that the expression for the stress jump

across the interface � is given by Ref. [35]

[T · n]� = T · n|�,2 − T · n|�,1 = σκn − ∇Sσ, (6)
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where T = −pI + η(∇u + ∇uT ) is the stress tensor, p is the
pressure, η is the dynamic viscosity, I is the second-order iden-
tity tensor, σ is the local interfacial tension parameter, n is the
unit vector normal to � and directed towards fluid 2, κ = ∇ · n
is the local interface curvature, and ∇S = (I − n ⊗ n) · ∇ is
the surface gradient operator. The first term on the right-hand
side of Eq. (6) is the interfacial tension force and the second
term is the Marangoni stress. In order to induce the local stress
jump across the interface, a volume-distributed interfacial
force FS , should be added in the momentum equation as an
additional body force. The interfacial force is

FS = (−σκn + ∇Sσ )δ�, (7)

where δ� is the Dirac δ function used to localize the force
explicitly at the interface, which should satisfy∫ ∞

−∞
δ� dz = 1 (8)

in order to recover properly the stress jump condition, Eq. (6),
in the sharp-interface limit.

Based on the order parameter, the interface normal can be
expressed as �n = ∇φ

|∇φ| . In addition, we choose the Dirac δ

function as δ� = 3
√

2
4 ε|∇φ|2, which leads to

FS = 3
√

2

4
ε|∇φ|2(−σκn + ∇Sσ ). (9)

After some vector calculus and algebraic manipulations,
Eq. (9) can be further simplified as (see Appendix for the
derivation)

FS = 3
√

2

4
ε∇ · [σ (T )(|∇φ|2I − ∇φ ⊗ ∇φ)]. (10)

Note that the expression of interfacial force, i.e., Eq. (10),
is derived based on the free energy of double-well form,
in which the interface profile is given exactly by Eq. (3).
Other forms of free energy (or equation of state) can give
such a profile approximately only in the vicinity of the critical
point.

In a thermocapillary flow, an equation of state is required
to relate the interfacial tension to the temperature, which may
be linear or nonlinear. For the sake of simplicity, we consider
only a linear relation between the interfacial tension and the
temperature in this study [35,42], i.e.,

σ (T ) = σref + σT (T − Tref), (11)

where Tref is the reference temperature, σref is the interfacial
tension at Tref, and σT is the rate of change of interfacial tension
with temperature, defined as σT = ∂σ/∂T .

With the interfacial force FS given by Eq. (10), the
governing equations for the incompressible fluid flows can

be written as [41,43]

∇ · u = 0, (12)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [η(∇u + ∇uT )] + FS,

(13)

where ρ is the fluid density, which is taken as a function of the
order parameter:

ρ = 1 − φ

2
ρ1 + 1 + φ

2
ρ2, (14)

where ρ1 and ρ2 are the densities of fluid 1 and fluid 2 at
saturation, respectively.

B. Lattice Boltzmann method for solution
of hydrodynamic equations

The NSEs, Eqs. (12) and (13), and the CHE, Eq. (4), are
solved using the LBE model proposed by Lee and Liu [34].
In this model, two distribution functions are employed: one
is the order parameter distribution function, which is used to
capture the interface between different phases, and the other is
the pressure distribution function for solving the pressure and
fluid momentum. Following a similar argument as pointed out
recently by Li et al. [44], this model cannot recover the correct
momentum equation, i.e., Eq. (13), using the Chapman-Enskog
multiscale expansion. In addition, we will demonstrate that the
target CHE, i.e., Eq. (4) cannot be recovered exactly in the
model of Lee and Liu [34], which also stems from the error
term appeared in the momentum equation. In this section, we
will present an improved LBE model, in which some additional
terms are introduced to obtain the correct NSEs and CHE.

In this model, the pressure and fluid momentum are solved
through a pressure distribution function, which is defined
by gα = fαc2

s + (p − ρc2
s )�α(0), where cs is the speed of

sound which is given by cs = c/
√

3 with c = δx/δt being the
lattice speed and δx being the lattice length, fα is the density
distribution function in the α direction, and �α(u) = �α =
wα(1 + eα ·u

c2
s

+ (eα ·u)2

2c4
s

− |u|2
2c2

s
). For D2Q9 and D3Q19 models

used in this study, the lattice velocity eα and the weight
coefficient wα are given as follows:

D2Q9:

ei =
⎧⎨
⎩

(0,0), i = 0;
(±1,0)c, (0,±1)c, i = 1,2,3,4;
(±1,±1)c, i = 5,6,7,8.

(15)

wi =
⎧⎨
⎩

4/9, i = 0;
1/9, i = 1,2,3,4;
1/36, i = 5,6,7,8;

(16)

D3Q19:

ei =
{

(0,0,0), i = 0;
(±1,0,0)c, (0,±1,0)c, (0,0,±1)c, i = 1,2, . . . ,6;
(±1,±,0)c, (±1,0,±1)c, (0,±1,±1)c, i = 7,8, . . . ,18.

(17)

wi =
{

1/3, i = 0;
1/18, i = 1,2, . . . ,6;
1/36, i = 7,8, . . . ,18.

(18)
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The time evolution equation for fα , using the standard
BGK (Bhatnagar-Gross-Krook) approximation, is written as
[26,33,34]

Dfα

Dt
= ∂fα

∂t
+ eα · ∇fα

= −1

λ

(
fα − f eq

α

) + (eα − u) · F
c2
s

�α, (19)

where λ is the relaxation time, f
eq
α = ρ�α is the equilibrium

distribution function, and F is the intermolecular force, which
is defined as

F = ∇ρc2
s − ∇p + FS + Fa, (20)

in which Fa = ρ2−ρ1

2 ∇ · (M∇μ)u is an additional force term
[44], which is absent in the original model of Lee and Liu
[34]. Based on the original model of Lee and Liu, it can be
shown using the Chapman-Enskog multiscale expansion that
the following momentum equation can be recovered in the low
Mach number limit

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · [η(∇u + ∇uT )] + FS,

(21)

which is different from the target momentum equation, i.e.,
Eq. (13), and the error term is u( ∂ρ

∂t
+ u · ∇ρ). From Eqs. (4)

and (14), we can rewrite the error term as u( ∂ρ

∂t
+ u · ∇ρ) =

ρ2−ρ1

2 ∇ · (M∇μ)u. Clearly, the error term is nonzero when
there is density difference between two fluids. Thus, the
additional force term Fa is introduced in Eq. (20) in order
to eliminate the error term. According to Eqs. (19) and (20),
the evolution equation for gα can be written as

∂gα

∂t
+ eα · ∇gα = −1

λ

(
gα − geq

α

) + (eα − u)

· {∇ρc2
s [�α − �α(0)] + FS + Fa

}
,

(22)

where g
eq
α = f

eq
α c2

s + (p − ρc2
s )�α(0). Note that the pressure

gradient ∇p is dropped in Eq. (22) considering it is the order of
O(Ma2) for incompressible flows [33,34], where Ma = U/cs

is the Mach number with U being the characteristic velocity
of the system.

The fluid interfaces are captured by the order parameter
distribution function hα , which is related to fα by hα = φ

ρ
fα

and h
eq
α = φ

ρ
f

eq
α . Following the work of Lee and his coworker

[34,45], the evolution equation for hα is given by

∂hα

∂t
+ eα · ∇hα = −1

λ

(
hα − heq

α

) + ∇ · (M∇μ)�α

+ (eα − u) ·
[
∇φ − φ

ρc2
s

(∇p − FS)

]
.

(23)

The macrodynamic behavior arising from the LBE,
Eq. (23), can be found from a multi-scale analysis using a
small expansion parameter ε, which is proportional to the
Knudsen number (ratio of the molecular mean free path to
the characteristic length scale). To do this, we introduce the
following expansions:

hα = heq
α + εh(1)

α + ε2h(2)
α + · · · , (24)

∂t = ε∂t0 + ε2∂t1 , ∇ = ε∇1, (25)

FS = εFS1. (26)

Substituting Eqs. (24)–(26) into Eq. (23), the equations for
the first- and second-order expansions in ε become

O(ε1) :
(
∂t0 + eα · ∇1

)
heq

α

= −h(1)
α

λ
+ ∇1 · (M∇μ)�α + (eα − u)

·
[
∇1φ − φ

ρc2
s

(∇1p − FS1)

]
�α

(27)

and

O(ε2) : ∂t1h
eq
α + (

∂t0 + eα · ∇1
)
h(1)

α = −h(2)
α

λ
. (28)

The zeroth-order moment of Eq. (27) leads to

∂t0φ + ∇1 · (uφ) = ∇1 · (M∇μ). (29)

Substituting h(1)
α from Eq. (27) into Eq. (28) and taking zeroth-

order moment of Eq. (28), we obtain that

∂t1φ − λ∇1 ·
{

φ

ρ

[
ρ
(
∂t0 u + u · ∇1u

) + ∇1p − FS1
]} = 0,

(30)

which can be written as

∂t1φ = 0, (31)

when Eq. (22) is applied. Hence, the target CHE can be
recovered correctly by adding ε times Eq. (29) and ε2 times
Eq. (31). However, the correct CHE cannot be recovered in
the original model of Lee and Liu [34], where Eq. (30) cannot
lead to Eq. (31) because one can only obtain the following
equality:

∂t0 (ρu) + ∇1 · (ρu ⊗ u) + ∇1p − FS1 = 0. (32)

The LBEs for Eqs. (22) and (23) can be obtained by
employing the Crank-Nicolson integration in time along
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characteristics [34]:

gα(x + eαδt ,t + δt )=gα(x,t) − gα − g
eq
α

2τ

∣∣∣∣
(x,t)

− gα − g
eq
α

2τ

∣∣∣∣
(x+eαδt ,t + δt )

+ δt

2
(eα − u) · {∇BDρc2

s [�α − �α(0)] + (FS + Fa)�α

}∣∣∣∣
(x,t)

+ δt

2
(eα − u) · {∇CDρc2

s [�α − �α(0)] + (FS + Fa)�α

}∣∣∣∣
(x+eαδt ,t+δt )

, (33)

hα(x + eαδt ,t + δt ) = hα(x,t) −hα − h
eq
α

2τ

∣∣∣∣
(x,t)

−hα − h
eq
α

2τ

∣∣∣∣
(x+eαδt ,t+δt )

+ δt

2
∇ · (M∇μ)�α

∣∣∣∣
(x,t)

+ δt

2
∇ · (M∇μ)�α

∣∣∣∣
(x+eαδt ,t+δt )

+ δt

2
(eα − u) ·

[
∇BDφ − φ

ρc2
s

(∇BDp − FS)

]
�α

∣∣∣∣
(x,t)

+ δt

2
(eα − u) ·

[
∇CDφ − φ

ρc2
s

(∇BDp − FS)

]
�α

∣∣∣∣
(x+eαδt ,t+δt )

, (34)

where the dimensionless relaxation time τ = λ/δt and is re-
lated to the kinematic viscosity by ν = τc2

s δt . The superscripts
“BD” and “CD” denote the second-order biased difference
and the second-order central difference, respectively, which
are introduced to enhance numerical stability in simulating
high-density ratio flows. As suggested by Lee and Liu [34],
the directional derivatives (of a variable ϕ) are evaluated by

δteα · ∇CDϕ|(x) = 1
2 [ϕ(x + eαδt ) − ϕ(x − eαδt )] , (35)

δteα · ∇BDϕ|(x) = 1
2 [4ϕ(x + eαδt ) − ϕ(x + 2eαδt ) − 3ϕ(x)] ,

(36)

and derivatives other than the directional derivatives can be
obtained by taking moments of the directional derivatives with
appropriate weights. The first- and second-order derivatives are
calculated as

∇CDϕ|(x) = 1

2c2
s δt

∑
α

wαeα[ϕ(x + eαδt ) − ϕ(x − eαδt )],

(37)

∇BDϕ|(x) = 1

2c2
s δt

∑
α

wαeα[4ϕ(x + eαδt )

−ϕ(x + 2eαδt ) − 3ϕ(x)], (38)

∇2ϕ|(x) = 1

c2
s δ

2
t

∑
α

wα[ϕ(x + eαδt ) − 2ϕ(x)

+ϕ(x − eαδt )]. (39)

By introducing a modified distribution functions ḡα and its
equilibrium distribution ḡ

eq
α ,

ḡα = gα + 1

2τ

(
gα − geq

α

) − δt

2
(eα − u)

· {∇CDρc2
s [�α − �α(0)] + (FS + Fa)�α

}
, (40)

ḡeq
α = geq

α − δt

2
(eα − u) · {∇CDρc2

s [�α − �α(0)]

+ (FS + Fa)�α

}
, (41)

Eq. (33) can be written in a simpler form as

ḡα(x + eαδt ,t + δt ) = ḡα(x,t) − 1

τ + 1/2

(
ḡα − ḡeq

α

)∣∣∣∣
(x,t)

+ δt (eα − u) · {∇MDρc2
s [�α − �α(0)]

+ (FS + Fa)�α

}∣∣
(x,t), (42)

where the superscript “MD” denotes the second-order mixed
difference defined as

δteα · ∇MDϕ = 1
2 (δteα · ∇CDϕ + δteα · ∇BDϕ), (43)

∇MDϕ = 1
2 (∇CDϕ + ∇BDϕ). (44)

Similarly, Eq. (34) is recast as

h̄α(x + eαδt ,t + δt )

= h̄α(x,t) + δt

2
∇ · (M∇μ)�α

∣∣∣∣
(x,t)

+ δt

2
∇ · (M∇μ)�α

∣∣∣∣
(x+eαδt ,t)

+ δt (eα − u)

·
[
∇MDφ − φ

ρc2
s

(∇MDp − FS)

]
�α

∣∣∣∣
(x,t)

,

(45)

where

h̄α = hα + 1

2τ

(
hα − heq

α

) − δt

2
(eα − u)

·
[
∇CDφ − φ

ρc2
s

(∇CDp − FS)

]
�α, (46)

h̄eq
α = heq

α − δt

2
(eα − u) ·

[
∇CDφ − φ

ρc2
s

(∇CDp − FS)

]
�α.

(47)

Note that the term δt

2 ∇ · (M∇μ)|(x+eαδt ,t+δt ) is replaced ex-
plicitly by its value at the previous time step t , as suggested
in Ref. [34]. In addition, τ = 1/2 is chosen in Eq. (45)
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considering the fact that the recovered CHE is independent
of the choice of τ as indicated by Eqs. (27) and (31).

The order parameter, the hydrodynamic pressure and the
fluid velocity are calculated by taking the zeroth- and the first-
order moments of the modified distribution functions:

φ =
∑

α

h̄α, (48)

u =
(

1

c2
s

∑
α

ḡαeα + δt

2
FS

)/[
ρ − δt

4
(ρ2 − ρ1)∇ · (M∇μ)

]
,

(49)

p =
∑

α

ḡα + δt

2
u · ∇CDρc2

s . (50)

C. Finite difference method for solution of temperature
equation

The solution of the flow problem requires information about
the temperature field, T . When the viscous dissipation and
compression work done by the pressure are negligible, the
temperature evolution can be governed by

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k∇T ), (51)

where cp and k are the specific heat and the thermal
conductivity of fluid mixture, respectively, and calculated as a
function of the order parameter, i.e.,

cp = 1 − φ

2
cp1 + 1 + φ

2
cp2 , (52)

k = 1 − φ

2
k1 + 1 + φ

2
k2, (53)

where the subscripts 1 and 2 denote the values of the physical
properties in fluid 1 and fluid 2, respectively. Note Eq. (51)
can be solved in the LBM framework if there are no jumps
in ρ and cp across the fluid interface [35]. However, to our
best knowledge, no LBM is currently available to recover the
correct temperature equation, i.e., Eq. (51), when the densities
and the specific heats in both fluids are unequal.

Equation (51) can be rewritten as

∂T

∂t
= −u · ∇T + 1

ρcp

(∇k · ∇T + k∇2T ) ≡ L(T ), (54)

where the finite difference method is used to discretize the
spatial derivatives. In order to ensure high accuracy and
consistency, Eqs. (37) and (39) are applied for calculating
the gradient and Laplacian terms, respectively. We employ the
explicit RK method for time stepping of Eq. (54). During the
time marching from tn to tn+1 (=tn + δt ), the fluid velocity
(u), density (ρ), specific heat (cp), and thermal conductivity (k)
are kept fixed. Similar treatments have been commonly used
in various LBM-FDM hybrid models [46–49]. In particular,
when the fourth-order RK method is chosen, the time stepping
follows the following steps:

h̄1 = δtL(tn,T n), h̄2 = δtL
(
tn + 1

2δt ,T
n + 1

2h̄1
)
,

h̄3 = δtL
(
tn + 1

2δt ,T
n + 1

2h̄2
)
,

(55)
h̄4 = δtL(tn + δt ,T

n + h̄3),

T n+1 = T n + 1
6 (h̄1 + 2h̄2 + 2h̄3 + h̄4) .

Note that the choice of the fourth-order RK method is not
imperative. We have found that use of the second-order RK
method produces equally accurate results.

III. NUMERICAL RESULTS

Thermocapillary motion of droplets or bubbles can be
characterized by several important dimensionless parameters,
including Reynolds number (Re), Marangoni number (Ma),
capillary number (Ca), fluid density ratio (ρ̃), viscosity ratio
(η̃), thermal conductivity ratio (k̃), and specific heat ratio
(c̃p). Without losing generality, we choose the fluid 2 as
the continuous phase in this study, so the dimensionless
parameters are defined as follows:

Re = LU

ν2
, Ma = ρ2cp2LU

k2
= Re · Pr, Ca = Uη2

σref
, (56)

ρ̃ = ρ1

ρ2
, η̃ = η1

η2
, k̃ = k1

k2
, c̃p = cp1

cp2

, (57)

where L and U are the characteristic length and velocity of
the system, respectively, and Pr is the Prandtl number.

A. Thermocapillary flows in a heated microchannel with two
superimposed planar fluids

The model is first used to investigate the thermocapillary
driven flow in a heated microchannel with two superimposed
planar fluids [50]. The setup of the problem is shown in Fig. 1.
The heights of the upper fluid 1 and the lower fluid 2 are a

and b, respectively, while the fluids extend to infinity in the
horizontal direction. We impose a uniform temperature to the
upper wall and a sinusoidal temperature (which is higher than
that of the upper wall) to the lower wall as

T (x,a) = Tc (58)

and

T (x,−b) = Th + T0 cos(ωx), (59)

respectively, where 0 < T0 < Tc < Th, and ω = 2π
l

is a wave
number with l being a length scale. The above temperature
boundary conditions establish a periodic temperature field in
the horizontal direction with a period length of l. Therefore,
one needs only to consider the solution in one period domain
with − l

2 � x < l
2 .

a

b

x

y fluid 1

fluid 2

-l/2 l/2

FIG. 1. The geometric setup depicting two immiscible fluids in
a microchannel. The temperatures of the lower and upper walls are
T (x,−b) = Th + T0 cos (ωx) and T (x,a) = Tc, respectively, where
Th > Tc > T0 and ω = 2π

l
is a wave number.
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With the characteristic length and velocity defined as
L = b and U = |σT |T0

l
b
η2

respectively, one can easily calcu-
late Re, Ma, and Ca through Eq. (56). Assuming Re � 1,
Ma � 1, and Ca � 1, the interface is thought to remain
flat, and the momentum and energy equations can be sim-
plified to be linear. By solving the simplified governing
equations with the stress boundary condition [Eq. (6)] at
the interface, analytical solutions for temperature and ve-
locity fields were obtained recently by Pendse and Esmaeeli
[50] as

T A(x,y) = (Tc − Th)y + k̃Tcb + Tha

a + k̃b

+ T0f (ã,b̃,k̃) sinh(ã − ωy) cos(ωx), (60)

uA
x (x,y) = Umax

{[
Ca

1 + ω
(
Ca

2 + Ca
3 y

)]
cosh(ωy)

+ (
Ca

3 + ωCa
1 y

)
sinh(ωy)

}
sin(ωx), (61)

uA
y (x,y) = −k̃Umax

[
Ca

1 y cosh(ωy) + (
Ca

2 + Ca
3 y

)
sinh(ωy)

]
× cos(ωx), (62)

in the upper fluid 1 and

T A(x,y) = k̃(Tc − Th)y + k̃Tcb + Tha

a + k̃b

+ T0f (ã,b̃,k̃)[sinh(ã) cosh(ωỹ)

− k̃ sinh(ωy) cosh(ã)] cos(ωx), (63)

uA
x (x,y) = Umax

{[
Cb

1 + ω
(
Cb

2 + Cb
3y

)]
cosh(ωy)

+ (
Cb

3 + ωCb
1y

)
sinh(ωy)

}
sin(ωx), (64)

uA
y (x,y) = −k̃Umax

[
Cb

1y cosh(ωy) + (
Cb

2 + Cb
3y

)
sinh(ωy)

]
× cos(ωx), (65)

in the lower fluid 2. In the above equations, the unknown
constants are determined by

ã = aω; b̃ = bω, (66)

f (ã,b̃,k̃) = [k̃ sinh(b̃) cosh(ã) + sinh(ã) cosh(b̃)]−1, (67)

Ca
1 = sinh2(ã)

sinh2(ã) − ã2
; Ca

2 = −aã

sinh2(ã) − ã2
;

Ca
3 = 2ã − sinh(2ã)

2[sinh2(ã) − ã2]
, Cb

1 = sinh2(b̃)

sinh2(b̃) − b̃2
; (68)

Cb
2 = −bb̃

sinh2(b̃) − b̃2
; Cb

3 = sinh(2b̃) − 2b̃

2[sinh2(b̃) − b̃2]
,

and

Umax = −
(

T0σT

η2

)
g(ã,b̃,k̃)h(ã,b̃,η̃), (69)

where

g(ã,b̃,k̃) = sinh f (ã,b̃,k̃) (70)

and

h(ã,b̃,η̃) = [sinh2(ã) − ã2][sinh2(b̃) − b̃2]

η̃[sinh2(b̃) − b̃2][sinh(2ã) − 2ã] + [sinh2(ã) − ã2][sinh(2b̃) − 2b̃]
. (71)

We carry out the numerical simulations in a two-
dimensional computational domain with the channel length
l = 160 lattice unit (lu), and the initial heights of fluid layer
a = b = 40 lu. Periodic boundary conditions are applied on
the left and right boundaries of the domain. On the upper and
lower walls, no-slip boundary conditions are imposed, and the
wall temperatures are specified through Eqs. (58) and (59),
where Th = 20, Tc = 10 and T0 = 4. In addition, the no-flux
boundary conditions, given by Eq. (5), are also enforced on
the solid walls. Specifically, we introduce two additional grid
layers (AGLs) outside the fluid domain. The values of the order
parameter in AGLs are taken as the mirror image of φ in the
fluid nodes. For example, for the lower wall (y = −b), the
order parameter in the AGLs are given by

φ(x,−b − δx) = φ(x,−b + δx),
(72)

φ(x,−b − 2δx) = φ(x,−b + 2δx),

which leads to

μ(x,−b − δx) = μ(x,−b + δx). (73)

Thus, the no-flux boundary conditions can be satisfied exactly.
The fluid properties and numerical parameters are chosen
as σT = −5 × 10−4, Tref = 10, σref = 2.5 × 10−2, η1,2 = 0.2,

k2 = 0.2, ε = √
2 and Mc = 5 × 10−2. These values result in

Re, Ma and Ca of typical value of O(0.01) or at most O(0.1).
To indicate the effect of the thermal conductivity ratio on
induced flow and temperature, both k̃ = 1 and k̃ = 1/5 are
simulated. In each case, the system reaches its steady state
after a number of iterations. The relative L2-norm errors for
the temperature and velocity fields are measured at the steady
state between our computed results and the analytical solutions
as given by Eqs. (60)–(65); the relative errors are defined as

ET =
∑

x ‖T (x) − T A(x)‖∑
x ‖T A(x)‖ (74)

for temperature and

Ev =
∑

x ‖u(x) − uA(x)‖∑
x ‖uA(x)‖ (75)

for velocity, respectively.
Figure 2 shows equispaced contours of temperature field

for two different thermal conductivity ratios: (a) k̃ = 1 and
(b) k̃ = 1/5. We can clearly observe that our computed results
(the solid-line contours) are in good agreement with the
analytical solutions (the dashed-line contours) with the relative
errors ET = 2.25 × 10−4 and 5.23 × 10−3 for k̃ = 1 and 1/5,
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FIG. 2. Temperature contours for fluid systems with thermal
conductivity ratios of (a) k̃ = 1 and (b) k̃ = 1/5. Simulation results
and the analytical solution are represented by the solid and dashed
lines, respectively, labeled with temperature values.

respectively. It should be noted that our computed isotherms
slightly deviate from the analytical ones for k̃ = 1/5, which is
due to the finite interface thickness of our phase field model and
the jump of thermal conductivity across the interface. At a low
thermal conductivity ratio, i.e., k̃ = 1/5, the isotherms become
denser in the upper fluid. Also, the isotherms approaching from
the lower fluid tend to be normal to the interface, implying that
heat transfer between the lower fluid and the interface in the
y direction is close to zero. Figure 3 shows the comparison
of velocity vectors between our computed results and the
analytical solutions for k̃ = 1 and 1/5, and the corresponding
relative errors are Ev = 5.71 × 10−2 and 8.41 × 10−2. The
computed velocity vectors agree well with the analytical
counterparts except those close to the interface at k̃ = 1/5,
consistent with the deviation in temperature contours. Finally,
it can be found by comparing Figs. 3(a) with 3(b) that the
thermocapillary-driven convection will be strengthened with
decreasing thermal conductivity ratio.

B. Thermocapillary migration of deformable
droplets and bubbles

In microgravity environment, the thermocapillary migra-
tion of droplets or bubbles in the ambient liquid is caused by
the nonuniform interfacial tension induced by the imposed
temperature gradient. Thermocapillary migration was first
analyzed by Young et al. [51] in the case of infinitesimal

(a) k̃= 1

(b) k̃ = 1/5

FIG. 3. (Color online) Velocity vectors for fluid systems with
thermal conductivity ratios of (a) k̃ = 1 and (b) k̃ = 1/5. Velocity
vectors are shown at every third grid point. Simulation results and the
analytical solutions are represented by the red and light green lines
with an arrow, respectively.

Reynolds and Marangoni numbers, in which convective
transport of momentum and energy can be neglected compared
to molecular transport of these quantities. They derived a
theoretical expression for the migration velocity (also known
as YGB velocity) of a spherical droplet or bubble (fluid 1) in
a constant temperature gradient, ∇T∞, within an unbounded
fluid medium (fluid 2):

UYGB = 2U

(2 + 3η̃)(2 + k̃)
. (76)

Here U is the characteristic velocity defined by the balance of
the thermocapillary force and the viscous force on the droplet
or bubble as follows:

U = −σT |∇T∞|R
η2

, (77)

where R is the radius of the droplet or bubble, which is chosen
as the characteristic length to define Reynolds and Marangoni
numbers.

A droplet of radius R = 20 lu is placed inside of a
three-dimensional box of size 8R × 8R × 16R. The center of
droplet is initially located at the center of the three-dimensional
computational box. No-slip boundary conditions are imposed
on the top and bottom walls, and periodic boundary conditions
are used in the x and y directions (the side faces). A linear
temperature field is imposed in the z direction, with T = 0
on the bottom wall and T = 32 on the top wall, resulting in
|∇T∞| = 0.1. In order to test the accuracy of the proposed

013010-8



PHASE-FIELD-BASED LATTICE BOLTZMANN FINITE- . . . PHYSICAL REVIEW E 87, 013010 (2013)

t*

u
r
/
U
Y
G
B

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

FIG. 4. Time evolution of normalized migration velocity of a 3D
spherical droplet at Ma = Re = 0.1. The dashed line represents the
analytical prediction of YGB theory in the limit of vanishing Reynolds
and Marangoni numbers, while the solid line with open circles is our
simulation result.

hybrid model, the numerical simulation is first carried out
with the fluid properties of ρ1,2 = cp1,2 = 1, η1,2 = k1,2 =
0.2, Tref = 16, σref = 2.5 × 10−3, and σT = −10−4. Using
these values, the theoretical value of the migration velocity
is UYGB = 1.333̄ × 10−4, and the Reynolds and Marangoni
numbers are 0.1. In the simulations, the migration velocity ur

of droplet or bubble is calculated by

ur (t) =
∫
V

φuz dV∫
V

φ dV
=

∑
x uz(x,t)φ(x,t)∑

x φ(x,t)
, where φ < 0.

(78)

Figure 4 shows the temporal evolution of the computed
migration velocity normalized by UYGB for the test case
of Ma = Re = 0.1. The dimensionless time is defined as
t∗ = Ut/R. Obviously, our simulation result is in excellent
quantitative agreement with the analytical prediction of Young
et al. [51] represented by the dashed line since the effects of
convective transport of momentum and energy are negligible
in this test case. Note that the relative error E is defined as
E = |ur−UYGB|

UYGB
× 100%, and here its value is around 0.8%.

Having established the accuracy of the proposed numer-
ical model, we carry out numerical simulations to study
thermocapillary migration of a deformable droplet at large
Marangoni numbers, for which analytical results are not
available. Figure 5 presents the evolutions of the normalized
migration velocity for three different Marangoni numbers, i.e.,
Ma = 1, 10, and 100, at a constant Reynolds number of 1. The
different Marangoni numbers are achieved by adjusting k1

and k2 while keeping k1 = k2. We also choose ν1,2 = 0.1,
σT = −2.5 × 10−4 and σref = 5 × 10−3, and keep all the
other physical properties the same as those in the above test
case. The early transient of droplet motion exhibits the same
characteristics as those reported by Oliver and De Witt [52] and
Welch [53], which is caused by the initial conditions used in our
numerical simulations, i.e., u|t=0 = 0 and T |t=0 = z|∇T∞|.
The thermocapillary migration can reach a steady state for

t*

u
r
/
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Y
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B
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0.4

0.6

0.8

1

1.2

Ma=1
Ma=10

Ma=100

FIG. 5. Time evolutions of droplet migration velocity at different
Marangoni numbers for Re = 1.

all Marangoni numbers under consideration. It is evidenced
that the terminal migration velocity decreases monotonically
with the Marangoni number, which is consistent with the
previous theoretical and numerical studies for the case of non-
deformable droplets or bubbles [52,54–56]. The dependence
of the terminal migration velocity on the Marangoni number
can be explained by the isotherms surrounding the droplet
in x-z meridian plane, which are shown in Fig. 6, where the
temperature value is labeled on each contour. Obviously, the
enhanced convective transport of energy with the increase of
the Marangoni number results in the wrapping of the isotherms
around the front of the droplet (also, the thermal boundary layer
in front of the droplet becomes increasingly thin), leading
to a substantial reduction of the temperature gradient at the
droplet interface. Small average temperature gradient at the
interface will reduce the driving force for the droplet migration.
Figure 6 also depicts the corresponding velocity vectors in a
coordinate system moving with the droplet centroid. Relative
to the migrating droplet, the flow pattern within the droplet
exhibits recirculation flow that is similar to the Hills spherical
vortex [57]. It can be clearly seen that the vortex intensity
weakens as the Marangoni number increases.

In order to show the capability of the present model for
multiphase flows with high liquid-to-gas density ratio, we
simulate thermocapillary migration of gas bubble (fluid 1)
in a liquid medium (fluid 2) for four different density ratios,
i.e., ρ̃ = 1:10, 1:50, 1:100 and 1:200. The initial radius of
bubble is fixed at R = 20 lu, and the geometric setup and
boundary conditions are kept the same as those in the cases of
droplet migration. The different density ratios are achieved by
varying the gas density while the liquid density is fixed at 1.
In these simulations, the constant fluid properties are taken as
ν1,2 = 0.2, σref = 2.5 × 10−4, σT = −10−5, k2 = 0.2, cp1 = 2
and cp2 = 5, leading to Re = 0.01 and Ma = 0.05. Note that
we also choose the Prandtl numbers of gas and liquid as
Pr1 = 1 and Pr2 = 5, and thus the thermal conductivity of
gas phase should be changed accordingly for different density
ratios. In simulations we have observed that the numerical
values of the order parameter may not exactly lie within the
range [−1,1]. The order parameter value may be slightly out
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FIG. 6. (Color online) Velocity vectors (the left figures) and
temperature fields (the right figures) around the rising droplet in the
x-z meridian plane at (a) Ma = 1, (b) Ma = 10, and (c) Ma = 100.
Note that the velocity vectors are plotted in a reference frame moving
with the droplet.

of bound at some lattice sites (e.g., by ∼10−3), which may
induce numerical instability if the density ratio of liquid to
gas is high. Similar to Ref. [34], for high liquid-to-gas density
ratios we introduce an artificial free energy that acts as an
“energy” obstacle to avoid φ < −1:

�A(φ) =
{

βA(φ + 1)2, if φ < −1,

0, otherwise.
(79)

Thus, the chemical potential needs to be replaced by μ +
∂�A/∂φ to carry the effect of the artificial energy obstacle. In
our simulations, the coefficient in �A is taken as βA = 20.0.

Figure 7 presents the evolution of bubble migration velocity
normalized by U for the four cases. All cases except the
lowest ρ̃ exhibit a similar evolution characteristic as the one
with equal density shown above, whereas for ρ̃ = 1:200 (the
uppermost line in Fig. 7) a slight overshoot in bubble migration
velocity is observed in the early stage. We can also see that
the terminal bubble velocity increases with decreasing ρ̃. For

t*

u
r
/
U

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

FIG. 7. Time evolutions of bubble migration velocity at different
density ratios for η̃ = ρ̃, c̃p = 0.4, Pr1

Pr2
= 0.2, Re = 0.01, and Ma =

0.05. The values of density ratio are ρ̃ = 1/10, 1/50, 1/100, and
1/200 for the lines from bottom to top.

ρ̃ = { 1
10 , 1

50 , 1
100 , 1

200 }, the calculated results of the terminal
bubble velocity (ur ) are 3.72 × 10−5, 4.62 × 10−5, 4.8 × 10−5

and 4.94 × 10−5, respectively, which can be comparable to the
theoretical YGB velocities (see Table I). This indicates that our
hybrid LBM-FDM model can provide satisfactory numerical
prediction of the thermocapillary flows with various density
ratios. In Fig. 7 we also notice some velocity oscillations in the
initial stages. As shown by Amaya-Bower and Lee [58], who
numerically studied a single bubble rising due to buoyancy,
grid resolution can affect the amplitude of velocity oscillation
during the rise of a bubble. This is also reflected in Fig. 8, which
gives the comparison of bubble migration velocity between
two different grid resolutions for ρ̃ = 1:100, where the lower
line is the result of coarse grid with R = 20 lattices while the
upper one is the result of fine grid with R = 30 lattices. It can
be clearly seen that, grid refinement can decrease the velocity
oscillation to some extent although velocity oscillations are
observed for both grid resolutions. It is therefore believed that
the oscillations observed in Fig. 7 are numerical artifacts rather
than physical phenomena. Note that the velocity oscillations
are also observed even for two-phase fluids with equal density
when the color-fluid model is applied for thermocapillary
migration [35]. In addition, Fig. 8 indicates that the grid
refinement can only slightly improve the simulation results,
so we compromise and use R = 20 lattices to avoid high
computational cost. Figure 9 shows the steady-state isotherms
around the moving bubble and the corresponding velocity

TABLE I. Comparison of terminal bubble velocity between YGB
theory and our LBM-FDM simulations for various density ratios.

ρ̃ UYGB ur Relative error (E)

1:10 3.95 × 10−5 3.72 × 10−5 5.82%
1:50 4.76 × 10−5 4.62 × 10−5 2.94%
1:100 4.88 × 10−5 4.80 × 10−5 1.64%
1:200 4.94 × 10−5 4.94 × 10−5 0
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FIG. 8. Time evolutions of bubble migration velocity at different
grid resolutions for ρ̃ = η̃ = 1

100 , c̃p = 0.4, Pr1
Pr2

= 0.2, Re = 0.01,
and Ma = 0.05. The upper line represents the simulation result of fine
grid with R = 30 lattices, and the lower line represents the simulation
result of coarse grid with R = 20 lattices.

fields plotted in a coordinate system moving with the bubble
centroid in the x-z meridian plane for (a) ρ̃ = 1:10, (b) ρ̃ =
1:50, (c) ρ̃ = 1:100, and (d) ρ̃ = 1:200. All four cases show
similar velocity and temperature fields, even though the bubble
migration velocities are different. The spacings between two
isotherms in the bubble and the external liquid are markedly
different, which is caused by the big difference in the thermal
conductivity.

In this model, we have used a stable discretization scheme
for estimating the gradient operators in forcing terms, which
is able to enhance the numerical stability for solving high
density ratio multiphase flows. However, several recent studies
showed that this scheme does not conserve the total mass of a
system and is non-Galilean invariant due to the discretization
errors [59–62]. This is also true for our model but we observe
less than 0.5% change in the total mass of the system from its
initial value for each case.

IV. CONCLUSIONS

A hybrid LBM-FDM numerical model based on phase field
theory is proposed to simulate immiscible thermocapillary
flows with variable density ratio and other fluid properties.
The interfacial forces, including the interfacial tension force
and the Marangoni stress, are modeled using a phase field
methodology. The diffuse interfaces are evolved through the
CHE. The NSEs and the CHE are solved by an improved LBE
method originally proposed by Lee and Liu [34], in which
an additional force term is introduced in order to recover the
correct momentum equation and CHE. This method uses a
stable discretization technique for derivative terms, enabling
it to handle high-density ratio multiphase flows. This method
also allows us to use variable mobility, which can suppress
effectively the dissolution of small droplets or bubbles. In
addition, a convection-diffusion equation is solved through
the FDM combining with four-order RK method for time
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FIG. 9. (Color online) Velocity vectors (the left figures) and
temperature fields (the right figures) around the migrating bubble
in the x-z meridian plane at (a) ρ̃ = 10, (b) ρ̃ = 50, (c) ρ̃ = 100, and
(d) ρ̃ = 200. Note that the velocity vectors are plotted in a reference
frame moving with the bubble.

marching to obtain temperature field, which is related to the
interfacial tension by the equation of state. The proposed
model is first validated against the analytical solutions for
the thermocapillary driven convection in two superimposed
fluids at negligibly small Reynolds and Marangoni numbers.
It is then used to simulate thermocapillary migration of
three-dimensional deformable droplet and bubble at various
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Marangoni numbers and density ratios, and its capability and
accuracy are further verified against the theoretical predictions.

We would like to point out that the current interest in
thermocapillary flows is primarily driven by applications to
digital microfluidics, such as the one investigated by Takeuchi
et al. [9], who demonstrated experimentally that thermal
gradients induced by localized laser heating could be used
for noncontact bubble manipulation in a microchannel with
the bubble diameter ranging from 40 to 140 μm. The effect
of bubble size, fluid viscosity, and optical power on the
bubble migration behavior was studied in detail. In future,
this experimental work will be simulated using our proposed
hybrid model, and the numerical results will be compared

qualitatively and quantitatively with their experimental obser-
vations.
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APPENDIX: DERIVATION OF INTERFACIAL FORCE

Here we demonstrate that Eq. (10) can lead to Eq. (9) and
vice versa. Eq. (10) can be written as

FS = 3
√

2

4
ε∇ · [σ |∇φ|2I − σ∇φ ⊗ ∇φ]

= 3
√

2

4
ε

[
|∇φ|2∇σ + 1

2
σ∇(|∇φ|2) − (∇σ · ∇φ)∇φ − σ∇2φ∇φ

]
. (A1)

By setting n = ∇φ

|∇φ| , κ = ∇ · n and q = |∇φ|, we can have [38]

∇2φ∇φ = q2κn + 1
2 (n · ∇q2)n. (A2)

Substitution of Eq. (A2) into Eq. (A1) yields

FS = 3
√

2

4
ε

[
q2∇σ + 1

2
σ∇q2 − q2(n · ∇σ )n − q2σκn − 1

2
σ (n · ∇q2)n

]
. (A3)

Based on the equilibrium interface profile Eq. (3), it can be easily justified the following equality

|∇φ|2 = q2 = 1

2ε2
(φ2 − 1)2. (A4)

A further computation shows that

FS = 3
√

2

4
ε

{
q2(I − n ⊗ n) · ∇σ + 1

2
σ∇q2 − q2σκn − 1

2
σn · ∇

[
1

2ε2
(φ2 − 1)2

]
n
}

= 3
√

2

4
ε

[
q2(I − n ⊗ n) · ∇σ + 1

2
σ∇q2 − q2σκn − σ

1

ε2
(φ2 − 1)φ(n · ∇φ)n

]

= 3
√

2

4
ε

[
q2(I − n ⊗ n) · ∇σ + 1

2
σ∇q2 − q2σκn − σ

1

ε2
(φ2 − 1)φqn

]

= 3
√

2

4
ε

[
q2(I − n ⊗ n) · ∇σ + 1

2
σ∇q2 − q2σκn − σ

1

ε2
(φ2 − 1)φ∇φ

]

= 3
√

2

4
ε

[
q2(I − n ⊗ n) · ∇σ + 1

2
σ∇q2 − q2σκn − 1

2
σ∇ 1

2ε2
(φ2 − 1)2

]

= 3
√

2

4
εq2[(I − n ⊗ n) · ∇σ − σκn]. (A5)

Therefore, we get Eq. (9). This indicates that Eqs. (9) and (10) are equivalent.
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