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The formalisms of Wyld [Ann. Phys. 14, 143 (1961)] and Martin, Siggia, and Rose (MSR) [Phys. Rev. A 8,
423 (1973)] address the closure problem of a statistical treatment of homogeneous isotropic turbulence (HIT)
based on techniques primarily developed for quantum field theory. In the Wyld formalism, there is a well-known
double-counting problem, for which an ad hoc solution was suggested by Lee [Ann. Phys. 32, 292 (1965)].
We show how to implement this correction in a more natural way from the basic equations of the formalism.
This leads to what we call the Improved Wyld-Lee Renormalized Perturbation Theory. MSR had noted that
their formalism had more vertex functions than Wyld’s formalism and based on this felt Wyld’s formalism was
incorrect. However a careful comparison of both formalisms here shows that the Wyld formalism follows a
different procedure to that of the MSR formalism and so the treatment of vertex corrections appears in different
ways in the two formalisms. Taking that into account, along with clarifications made to both formalisms, we find
that they are equivalent and we demonstrate this up to fourth order.
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I. INTRODUCTION

A. Closure theories and formalisms in turbulence

In turbulence, statistical closures are techniques employed
to close the moment-hierarchy established in a statistical
treatment of the Navier-Stokes equation (NSE). Such theories
postulate a relationship between high- and low-order moments
by way of physical arguments. The goal is to accurately
describe and predict the statistics of a turbulent system while
maintaining a strong connection to the underlying dynamics
of the NSE. Closure theories can, in principle, allow efficient
computation of turbulent statistics without the computationally
intensive demands of Direct Numerical Simulation (DNS) [1].
This feature makes closure theories particularly attractive
when computational power is limited. Although the ability
to compute the full Navier-Stokes equations using DNS
is currently and increasingly more tractable, closure-based
computations are still able to provide useful insights into
turbulent systems at a much smaller computational cost.

The analytic study of turbulence can be classified into
different formalisms from which specific closure theories can
be constructed. Two key formalisms which have developed,
and are the focus of this paper, are the Wyld [2] and Martin,
Siggia, and Rose (MSR) [3] formalisms. The closure theories
themselves that can be obtained from these formalisms can
be further classified into two main groups, Eulerian and
Lagrangian, distinguished by the reference frame from which
the dynamics is described. The former describes a fluid from
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a “lab,” where the fluid moves relative to a fixed frame of
reference outside the fluid. In particular this is the frame of
the Navier-Stokes equations. The Lagrangian description is in
fact a reformulation of fluid dynamics that calculates statistics
by following fluid particles. The work presented here does not
consider the Lagrangian closures but instead focuses on those
of the standard Eulerian formulation.

One of the earliest closures for homogeneous isotropic
turbulence was the quasi-normal approximation. In this
approximation the fourth-order correlation is written in terms
of products of second-order correlations [4,5]. However turbu-
lence has highly non-Gaussian correlations and so the resultant
predictions from this simple approximation were inadequate,
in fact leading to total kinetic energy having negative values
[6]. The failure of quasinormality triggered research that made
improvements upon it, resulting in the EDQNM methods
(see, for example, Ref. [7]), which are a subset of the more
general class of Renormalized Perturbation Theories (RPTs).
The RPT approach resums certain selected infinite terms from
the conventional perturbation expansion. The underlying idea
is these resummations can capture essential nonperturbative
physics of turbulence. There is a body of literature that
has grown up around this work and some principle sources
elaborating these directions are the books by Leslie [8] and
McComb [9].

B. Equations and quantities

The main focus of the theories described above is
to compute the two-point, two-time correlation function,
〈uα(x,t)uβ(x′,t ′)〉, of a homogeneous and isotropic field of
incompressible fluid turbulence. Although this quantity is
defined in real space, we will find it easier to start with the
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spectral Navier-Stokes equation (NSE),

(∂t + νk2)ũα(k,t) = f̃α(k,t) + M
(0)

αβγ (k)

×
∫

j+l=k
d3j d3l ũβ(j,t)ũγ (l,t), (1)

defined using the following Fourier convention:

aα(x,t) =
∫

dk ãα(k,t)eik·x,
(2)

ãα(k,t) = 1

(2π )3

∫
dx aα(x,t)e−ik·x,

where for the velocity field a = u and for the forcing a = f .
The notation j + l = k under the integral signs indicates that
the integration variables are constrained under convolution.
Note that the pressure term has been removed using the
continuity equation, k · ũ(k,t) = 0, and that this results in
the introduction of the tensor M

(0)

αβγ (k). Formally, it is called
the “momentum transfer operator” (see Ref. [9]) and is
defined as

M
(0)
αβγ (k) ≡ 1

2i

(
kβδαγ − kαkβkγ

k2
+ kγ δαβ − kαkβkγ

k2

)
(3)

≡ 1

2i
[kβPαγ (k) + kγ Pαβ (k)]. (4)

The tensors in the last line are a result of the isotropy and are
defined to be

Pαβ(k) = δαβ − kαkβ

k2
. (5)

We use this formulation of the NSE to then derive an expression
for the spectral correlation function,

Cαα′ (k; t,t ′)δ(k + k′) ≡ 〈ũα (k,t)ũα′ (k′,t ′)〉, (6)

which we can later inverse transform to real space. However,
it is well known that the nonlinear term prevents a statistical
treatment of the NSE from giving a closed set of equations;
an equation for the (two-point) correlation function requires
knowledge of the three-point correlation function, and so
on. The formalisms described in this paper are attempts to
circumvent this problem in a systematic way. We first turn to
a famous example of a Renormalized Perturbation Theory.

C. Example: The Direct Interaction Approximation

Kraichnan’s Direct Interaction Approximation (DIA)
[10–12] pioneered the renormalized perturbation theory ap-
proach to homogeneous isotropic turbulence. The basic idea
of this approach was to focus on two quantities, the velocity
correlation function and the response propagator function, and
obtain approximate equations to calculate them.

The main hypothesis of the DIA was that the wave-vector
interactions in the nonlinear term would be dominated by
a single triad satisfying k = j + l. Kraichnan exploited this
concept and used it to create a unique perturbation expansion
that could be used to bring about a closure to the statistical
hierarchy. Ultimately, he derived a closed set of equations that
use only these so-called directly interacting wave vectors. In
the final form, the set includes an equation of motion for the
exact correlation function of velocity-field coefficients,

(∂t + νk2)Cαα′ (k; t,t ′) = M
(0)
αβγ (k)

∫
j+l=k

d3j d3l

{
2
∫ t

−∞
ds Rββ ′(j; t,s)M (0)

β ′δε(j)Cγδ(l; t,s)Cεα′(−k; s,t ′)

−
∫ t ′

−∞
ds Rα′ᾱ(−k; t ′,s)M (0)

ᾱβ ′γ ′(k)Cγγ ′(l; t,s)Cββ ′(j; t,s)

}
, (7)

along with an evolution equation for a quantity known as the renormalized propagator function, Rαα′ (k; t,t ′),

(∂t + νk2)Rαα′ (k; t,t ′) − 4M
(0)
αβγ (k)

∫
j+l=k

d3j d3l

{∫ t

t ′
ds Rββ ′(j; t,s)M (0)

β ′γ ′ᾱ(j)Cγγ ′(l; t,s)Rᾱα′ (−k; s,t ′)
}

= Pαα′ (k)δ(t − t ′).

(8)

We give these equations without derivation so that comparisons
can be made later in the following sections; more information
can be found in his original papers as well as in Beran [13],
McComb [9,14], Kida and Gotoh [15], and Krommes [16].
Leslie’s book [8] is largely dedicated to Kraichnan’s works
from this period and provides many insights.

The DIA, although successful in low- to moderate-
Reynolds numbers, fails to produce a Kolmogorov inertial
range. Kraichnan himself showed that the DIA gives an inertial
range with k−3/2 [11] and suggested that the DIA does not
properly deal with the indirect interactions [17,18], manifest by
the DIA’s inability to decouple the large scales from the viscous
scales [7,9,14]. As will later be seen the momentum transfer
terms are in effect vertex functions. The indirect interactions
are intrinsically associated with these vertex functions leading

to the notion that “the whole problem of strong turbulence is
contained in a proper treatment of vertex renormalization” [3].

The success and failings of the DIA led to further closures
based on renormalized perturbation theories. Notable ones are
those of Nakano [19], and the Local Energy Transfer (LET)
theory of McComb [9,20–30], the latter being the only purely
Eulerian theory which is compatible with the Kolmogorov
inertial range. Convinced of the perceived intrinsic failings
of the DIA based on an Eulerian framework, Kraichnan
reformulated fluid dynamics to use Lagrangian variables and
produced the Lagrangian-DIA [31]. This also led to many
off-shoots notably those of Kraichnan [8,9,32] and the LRA
of Kaneda [33,34] and Kida and Goto [15]. The Eulerian-DIA
still enjoys some use notably in the regularized-DIA (RDIA)
of Frederiksen [35–38]. For completeness, we should mention
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the separate line of development, the functional formalism of
Hopf [39], leading to the self-consistent theories of Edwards
[40] and Herring [41,42].

The sections to follow detail the two formalisms of Wyld
and MSR that aim to achieve a statistical closure which
properly deals with both the direct and indirect interactions.
Both formalisms can be applied more generally to classical
dynamics systems, but in their original papers were applied to
turbulence. It will be argued that both formalisms, although
having different methodology, are equivalent; it will be
explicitly shown that both formalisms obtain at lowest order
the DIA and also agree up to, and including, fourth order in
the perturbative expansion.

II. THE WYLD FORMALISM

The Wyld formalism [2] is a perturbative analysis of the
statistical turbulence. It represents one of the earlier attempts
[19,43] to extend the methods of quantum field theory (QFT),
specifically those of diagrammatic representation, to the
problem of classical turbulence.

In the approach used by Wyld, the velocity field is expanded
in a perturbation series, with an associated diagrammatic rep-
resentation, which then is used in a statistical average to obtain
the two-point velocity correlation function. As the perturbation
series are in fact infinite, a systematic renormalization method
is employed to reduce the series into a more manageable
form. This results in integral equations, which at lowest
nontrivial order, reproduce the Kraichnan DIA result. We show
in Sec. II C that Wyld’s original renormalization procedure
suffered double-counting issues as noted by Lee [44] and offer
a formal procedure that can remedy this problem.

A. Wyld’s perturbation method

The main focus in examining Wyld’s method is the
renormalization procedure. However, the fundamental or
“bare” equations must be established prior to renormalization.
The following briefly explains Wyld’s construction of the
velocity correlation function via a perturbation expansion of
the velocity field. There are a few places in which the following
summary of Wyld’s method deviates from his original work
and this will be pointed out below. However, these differences
do not change in any essential way his original analysis.

1. Wyld’s perturbation expansion

Once again, we start with the NSE in Fourier space:

(∂t + νk2)ũα(k,t)

= f̃α(k,t) + M
(0)
αβγ (k)

∫
d3j ũβ(j,t)ũγ (k − j,t). (9)

It must be pointed out that our approach already differs
somewhat from Wyld’s in that he also Fourier transformed
the time variable. As such, in the Wyld analysis the wave
vector k and wave frequency ω are then lumped together into
a four vector k ≡ (k,−ω), and the tensorial NSE is abandoned
in favor of a simpler one-dimensional “model” equation. We
will not make any of these changes, and rather work directly
with the three-dimensional NSE. However, we will follow the
basic formalism set up by Wyld.

Inverting the linear differential operator on the left-hand
side of (9) to the right-hand side results in the following form
of the NSE:

ũα(k,t) =
∫ t

−∞
dt ′R(0)

αα′ (k; t,t ′)f̃α′ (k,t ′)

+ λ

∫ t

−∞
dt ′R(0)

αα′ (k; t,t ′)M (0)
α′βγ (k)

×
∫

d3j ũβ(j,t ′)ũγ (k − j,t ′). (10)

A bookkeeping parameter λ has been multiplied to the
nonlinear term for the purposes of the perturbation expansion;
it will later be set equal to unity. The next step is to consider a
perturbation expansion of the NSE:

ũα(k,t) = ũ(0)
α (k,t) + λũ(1)

α (k,t) + λ2ũ(2)
α (k,t) + · · · . (11)

This can be substituted for each velocity field in Eq. (10), and
then expressions can be matched by powers of λ. At the lowest
order,

ũ(0)
α (k,t) =

∫ t

−∞
dt ′R(0)

αα′ (k; t,t ′)f̃α′ (k,t ′), (12)

and one can establish a response function R
(0)
αβ (k; t,t ′) such

that

(∂t + νk2)
[
R

(0)
αβ (k; t,t ′)

] = Pαβ(k)δ(t − t ′). (13)

Already, it may be seen that there are many variables,
arguments, and indices to keep track of; therefore it is useful
here to introduce a reduced notation:

ũ(0)
α (k,t) → ũ

(0)
k , (14a)

R
(0)
αβ (k; t,t ′) → R

(0)
k , (14b)

M
(0)
αβγ (k)

∫
d3j → M

(0)
k . (14c)

This notation will be less cumbersome for the reader to follow;
vector indices and time arguments can be determined later
where needed. The spectral NSE in the new notation becomes

(∂t + νk2)ũk = f̃k + λM
(0)
k ũjũk−j, (15)

and the equations [Eqs. (10) and (11)] used for the perturbative
treatment are now, respectively,

ũk = R
(0)
k f̃k + λR

(0)
k M

(0)
k ũjũk−j, (16)

ũk = ũ
(0)
k + λũ

(1)
k + λ2ũ

(2)
k + λ3ũ

(3)
k + · · · . (17)

In using this notation, the integral following the momentum
transfer operator is always a convolution, where the wave-
vector arguments of the convoluted functions must add up
to the wave vector of the momentum transfer operator
immediately preceding them. Some care may be initially
needed to keep track of these integrated wave vectors; a simple
rule that adjusts for this is that all non-k wave vectors are
integrated out.
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The perturbation terms by order in λ are

λ0 : ũ(0)
k = R

(0)
k f̃k, (18a)

λ1 : ũ(1)
k = λR

(0)
k M

(0)
k ũ

(0)
j ũ

(0)
k−j, (18b)

λ2 : ũ(2)
k = λ2R

(0)
k M

(0)
k

(
2ũ

(0)
j ũ

(1)
k−j

)
(18c)

... .

The term ũ
(1)
k−j in the integrand of the expression for ũ

(2)
k can

be replaced by its definition, leaving ũ
(2)
k written only in terms

of ũ(0). In fact, any order ũ(n) may be written as product of
(n + 1) ũ(0)’s. For example, the last term in the above equation
for the perturbation expansion of ũ

(2)
k can now be written as

λ2 : ũ
(2)
k = 2λ2R

(0)
k M

(0)
k R

(0)
k−jM

(0)
k−jũ

(0)
j ũ

(0)
l ũ

(0)
k−j−l. (19)

2. Wyld’s correlation

Wyld approaches the correlation of two velocity fields very
simply by considering the average of the product of two
velocity field expansions of u:

〈ũα(k,t)ũω(k′,t ′)〉 = 〈[
ũ(0)

α (k,t) + λũ(1)
α (k,t) + · · · ]

× [
ũ(0)

ω (k′,t ′) + λũ(1)
ω (k′,t ′) + · · · ]〉.

(20)

The zeroth-order and exact correlators are given, respectively,
by

C(0)
αω(k; t,t ′)δ(k′ + k) ≡ 〈

ũ(0)
α (k,t)ũ(0)

ω (k′,t ′)
〉 = 〈

ũ
(0)
k ũ

(0)
k′

〉
,

(21)

Cαω(k; t,t ′)δ(k′ + k) ≡ 〈ũα (k,t)ũω (k′,t ′)〉 = 〈ũkũk′ 〉, (22)

and their reduced-notation counterparts are

C(0)
αω(k; t,t ′)δk+k′ → C

(0)
k δk+k′ , (23)

Cαω(k; t,t ′)δk+k′ → Ckδk+k′ . (24)

The δ function on the left-hand side of these definitions is
a result of the construction of the Fourier transform of the
real-space correlation equation:

〈ũα(k,t)ũω(k′,t ′)〉
= 1

(2π )6

〈 ∫
d3x

∫
d3r ũα(x,t)ũω(x + r,t ′)e−ik′ ·xe−ik·(x+r)

〉
= 1

(2π )6

∫
d3x

∫
d3r〈ũα(0,t)ũω(r,t ′)〉e−i(k′+k)·xe−ik·r

= 1

(2π )3

∫
d3r Cαω(r; t,t ′)e−ik·rδ(k′ + k)

= Cαω(k; t,t ′)δ(k′ + k). (25)

The second line uses the homogeneity constraint,
〈ũα(x,t)ũω(x + r,t ′)〉 = 〈ũα(0,t)ũω(r,t ′)〉.

Note that the zeroth-order velocity field expansion terms
are random Gaussian functions as is implied by the temporal
δ function in (13). Recall the correlation of an odd-numbered
product of random Gaussian variables vanishes. Thus in our

analysis this means all terms in the perturbation expansion
with an odd power of λ will vanish.

Continuing in reduced notation (without odd-order mo-
ments), a series expansion for the exact correlator is obtained:

〈ũkũk′
〉 = C

(0)
k δk+k′ + λ2

(〈
ũ

(0)
k ũ

(2)
k′

〉 + 〈
ũ

(1)
k ũ

(1)
k′

〉 + 〈
ũ

(2)
k ũ

(0)
k′

〉)
+ λ4

(〈
ũ

(0)
k ũ

(4)
k′

〉 + 〈
ũ

(1)
k ũ

(3)
k′

〉 + 〈
ũ

(2)
k ũ

(2)
k′

〉
+ 〈

ũ
(3)
k ũ

(1)
k′

〉 + 〈
ũ

(4)
k ũ

(0)
k′

〉) + O(λ6). (26)

As mentioned above, all terms can be written as products of
zeroth-order velocity fields. For example consider the last of
the second-order correlations (or moments):〈

ũ
(2)
k ũ

(0)
k′

〉 = 2R
(0)
k M

(0)
k R

(0)
k−jM

(0)
k−j

〈
ũ

(0)
j ũ

(0)
l ũ

(0)
k−j−lũ

(0)
k′

〉
. (27)

Another property of random-Gaussian variables is that any
nth-order moment may be decomposed into a sum of products
of lesser-order moments. In the above case, the fourth-order
moment is decomposed into three pairs of second-order
moments:〈

ũ
(2)
k ũ

(0)
k′

〉 = 2R
(0)
k M

(0)
k R

(0)
k−jM

(0)
k−j

(〈
ũ

(0)
j ũ

(0)
l

〉〈
ũ

(0)
k−j−lũ

(0)
k′

〉
+ 〈

ũ
(0)
j ũ

(0)
k−j−l

〉〈
ũ

(0)
l ũ

(0)
k′

〉 + 〈
ũ

(0)
l ũ

(0)
k−j−l

〉〈
ũ

(0)
j ũ

(0)
k′

〉)
.

(28)

Note that all possible combinations of second-order moments
are created in this decomposition. What is immediately
useful here is that the fourth-order moment can be written as
pairs of second-order moments, which more importantly are
zeroth-order correlation functions.

Using the definition of the (zeroth-order) correlator, the
above equation becomes〈

ũ
(2)
k ũ

(0)
k′

〉 = 2R
(0)
k M

(0)
k R

(0)
k−jM

(0)
k−j

(
C

(0)
j C

(0)
k δk+k′

+C
(0)
j C

(0)
k δk+k′ + C

(0)
l C

(0)
j δkjδj+k′

)
. (29)

The last term vanishes as it implies M
(0)
k−jδk−j, which vanishes

by definition. Cleaning up leaves〈
ũ

(2)
k ũ

(0)
k′

〉 = 4R
(0)
k M

(0)
k R

(0)
k−jM

(0)
k−jC

(0)
j C

(0)
k δk+k′ . (30)

A similar calculation can be made for the other terms, giving
the correlation equation to second order:

Ckδk+k′ = C
(0)
k δk+k′ + 4R

(0)
k M

(0)
k R

(0)
k−jM

(0)
k−jC

(0)
j C

(0)
k δk+k′

+ 4R
(0)
k′ M

(0)
k′ R

(0)
k′−j′M

(0)
k′−j′C

(0)
k C

(0)
j′ δk+k′

+ 2R
(0)
k M

(0)
k R

(0)
k′ M

(0)
k′ C

(0)
j C

(0)
k−jδk+k′ + O(λ4).

(31)

This can be applied to all orders. However, as this is an infinite
expansion, a full calculation will be intractable. This led Wyld
to use a diagrammatic resummation, an approach that would
contain the effects of all orders generated by the perturbation
expansions into a more manageable set of equations.

B. Wyld’s diagrammatic method

Wyld associated diagrams to the terms of the perturbation
expansion. These diagrams could then be combined to form
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order-by-order the velocity correlation. This procedure in
turn produced a graphical expansion for the exact correlator
function. In this subsection this diagrammatic formulation is
presented and the resulting expressions for correlation function
based on these diagrams is given.

1. Defining diagrams

Wyld diagrammatic notation assigns particular symbols to
the various terms present in the perturbation expansion of the
velocity field:

α

k,t ↔ ũ(0)
α (k, t) → ũ(0)

k

External
velocity leg ,

(32)

α β

t t′k ↔ R(0)

αβ(k; t, t′) → R(0)

k Bare propagator ,

(33)

α

β

γ

k
j

k j
↔ M (0)

αβγ(k) → M (0)

k Bare vertex .

(34)

These are placed into the relevant equations for the perturbed
expressions.

Following the example of Eq. (19), the second-order
velocity term in the perturbation expansion,

ũ
(2)
k = 2R

(0)
k M

(0)
k ũ

(0)
j R

(0)
k j M

(0)
k j

(
ũ

(0)
l ũ

(0)
k j l

)
, (35)

can be written in diagrams as

ũ(2)

k = 2
R

(0)
k M

(0)
k

ũ
(0)
j

R
(0)
k j

ũ
(0)
l

M
(0)
k j

ũ
(0)
k j l

.

The effectiveness of this diagrammatic approach is appreciated
by seeing it with all variables, arguments, and indices restored:

ũ(2)
α (k, t) = 2

R
(0)
αα′(k; t,t′)

M
(0)
α′βγ

(k)

ũ
(0)
β (j,t′)

R
(0)
γγ′(kj; t′,t′′)

ũ
(0)
δ (l,t′′)

M
(0)
γ′ (kj)

ũ(0)(kjl,t′′) ,

for which the corresponding analytic equation is

ũ(2)
α (k,t) = 2

∫ t

−∞
dt ′R(0)

αα′ (k; t,t ′)M (0)
α′βγ (k)

∫
d3j ũ

(0)
β (j,t ′)

×
∫ t ′

−∞
dt ′′R(0)

γ γ ′(k − j; t ′,t ′′)M (0)
γ ′δε(k − j)

×
∫

d3l
[
ũ

(0)
δ (l,t ′′) ũ(0)

ε (k − j − l,t ′′)
]
. (36)

2. “Tree” diagrams

Tree diagrams in the perturbation expansion always begin
on a propagator and end in external velocity legs. The equations
and their diagrammatic representations for these terms are
given below to fourth order:

ũ(1)

k = R(0)

k M (0)

k ũ(0)

j ũ(0)

kj ⇐⇒ ũ(1)

k =
ũ
(0)
j

ũ
(0)
k j ,

(37)

ũ(2)

k = 2R(0)

k M (0)

k R(0)

kjM
(0)

kj ũ(0)

j ũ(0)

l ũ(0)

kjl ⇐⇒ ũ(2)

k = 2
ũ
(0)
j

ũ
(0)
l

ũ
(0)
k j l

,
(38)

ũ(3)

k = R(0)

k M (0)

k R(0)

j M (0)

j R(0)

kjM
(0)

kj

× ũ(0)
g ũ(0)

jgũ(0)

l ũ(0)

kjl

⇐⇒ ũ(3)

k =

ũ(0)g

ũ
(0)
j g

ũ
(0)
l

ũ
(0)
k j l

+ 4R(0)

k M (0)

k R(0)

kjM
(0)

kj R(0)

kjlM
(0)

kjl

× ũ(0)

j ũ(0)

l ũ(0)
mũ(0)

kjlm

+ 4
ũ
(0)
j

ũ
(0)
l

ũ(0)m

ũ
(0)
k j lm

,

(39)
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ũ(4)

k = 2R(0)

k M (0)

k R(0)

kjM
(0)

kj R(0)

l M (0)

l R(0)

kjlM
(0)

kjl

× ũ(0)

j ũ(0)

h ũ(0)

lhũ(0)
mũ(0)

kjlm

⇐⇒ ũ(4)

k = 2
ũ
(0)
j ũ

(0)
l

ũ
(0)
l h

ũ(0)m

ũ
(0)
k j lm

+ 4R(0)

k M (0)

k R(0)

j M (0)

j R(0)

kjM
(0)

kj R(0)

kjlM
(0)

kjl

× ũ(0)
g ũ(0)

jgũ(0)

l ũ(0)
mũ(0)

kjlm

+ 4

ũ(0)g

ũ
(0)
j g

ũ
(0)
l

ũ(0)m

ũ
(0)
k j lm

+ 8R(0)

k M (0)

k R(0)

kjM
(0)

kj R(0)

kjlM
(0)

kjlR
(0)

kjlmM (0)

kjlm

× ũ(0)

j ũ(0)

l ũ(0)
mũ(0)

n ũ(0)

kjlmn

+ 8
ũ
(0)
j

ũ
(0)
l

ũ(0)m

ũ(0)n

ũ
(0)
k j lmn

..

(40)

Due to their apparent shape, these are the so-called tree diagrams, with single propagator lines on the left as trunks and propagators
ending in zeroth order velocity lines as branches on the right.

3. Correlation diagrams

Correlation diagrams arise from attaching tree-level diagrams together by fusing the velocity field terms at the ends of
branches. These become the zeroth-order correlation functions. The diagram for the zeroth-order correlation term or “bare
correlator” is given by

↔ C(0)

αβ(k; t, t′)α β

t t′k → C(0)

k . (41)

A similar diagram is used for the exact correlation,

↔ Cαβ(k; t, t′)α β

t t′k → Ck, (42)

where the double lines are used to distinguish it from its bare counterpart.
To see how the diagrams operate, it is instructive to examine the construction of second-order correlation terms from the

tree-level diagrams. The first term considered here is the last of the second-order terms in Eq. (26):〈
ũ

(2)
k ũ

(0)
k′

〉 = 2R
(0)
k M

(0)
k R

(0)
k j M

(0)
k j

〈
ũ

(0)
j ũ

(0)
l ũ

(0)
k j lũ

(0)
k′

〉 = 4R
(0)
k M

(0)
k R

(0)
k j M

(0)
k j C

(0)
j C

(0)
k′ δk+k′ . (43)

Diagrammatically, this corresponds to

2
ũ
(0)
k j

ũ(0)g

ũ
(0)
j g

ũ
(0)
k′ = 4

C
(0)
j

C
(0)
k′

. (44)

Note that we will treat many of the diagrams in this paper as equations. An extra factor of 2 arises from the combinatorics,
analogous to the Wick contractions in QFT of the fourth-order moment into products of second-order moments; for example, we
consider the combinations of the second-order term from above:

ũ(2)

k ũ(0)

k′ =
ũ
(0)
j ũ

(0)
k′

ũ
(0)
l

ũ
(0)
k j l

+
ũ
(0)
j

ũ
(0)
k′

ũ
(0)
l

ũ
(0)
k j l

+
ũ
(0)
j

ũ
(0)
k′

ũ
(0)
l

ũ
(0)
k j l

, (45)

which results in

ũ(2)

k ũ(0)

k′ ũ(0)

j ũ(0)

l ũ(0)

k−j−lũ
(0)

k′ + ũ(0)

j ũ(0)

k−j−l ũ(0)

l ũ(0)

k′ + ũ(0)

j ũ(0)

k′ ũ(0)

l ũ(0)

k−j−l . (46)
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The last term above vanishes as in Eq. (29), introducing a rule
that any diagram with a closed loop that is connected to the
diagram by a single propagator line will vanish.

The other diagrams in the second-order terms are obtained
by a similar construction,〈

ũ
(0)
k ũ

(2)
k′

〉 = 2R
(0)
k M

(0)
k R

(0)
k′−j′M

(0)
k′−j′

〈
ũ

(0)
k ũ

(0)
j′ ũ

(0)
l′ ũ

(0)
k′−j′−l′

〉
= 4R

(0)
k M

(0)
k R

(0)
k′−j′M

(0)
k′−j′C

(0)
k C

(0)
k′−j′δk+k′ (47)

implies

ũ
(0)
k 2

ũ
(0)
j′

ũ
(0)
l′

ũ
(0)
k′ j′ l′

= ,

C
(0)
k′ j′

C
(0)
k

4

(48)

and 〈
ũ

(1)
k ũ

(1)
k′

〉 = R
(0)
k M

(0)
k R

(0)
k′ M

(0)
k′

〈
ũ

(0)
j ũ

(0)
k j ũ

(0)
j′ ũ

(0)
k′ j′

〉
= 2R

(0)
k M

(0)
k R

(0)
k′ M

(0)
k′ C

(0)
j C

(0)
k j δk+k′ (49)

implies

ũ
(0)
j

ũ
(0)
k j

ũ
(0)
j′

ũ
(0)
k′ j′

= 2
.

C
(0)
j

C
(0)
k j

(50)

This procedure can be applied to all orders, and it can be shown
that a one-to-one correspondence is established between
diagrams and their analytical counterparts, with the correct
numerical prefactors. A reproduction of primitive correlator
diagrams to fourth order is given in Fig. 1.

In Wyld’s perturbation method all correlations of bare
quantities involve Gaussian statistics, but at all orders in the
perturbation expansions it is formally exact. However, this
means retaining an infinite number of terms in the expansion
of the correlation function. The next subsection sees the
systematic renormalization of these terms into a manageable
formula.

C. Improved Wyld-Lee renormalized perturbation theory

Wyld’s method of renormalization is a resummation of dia-
grams based on the emergence and recurrence of fundamental,
irreducible diagram units. These are so-defined since they are
diagrams of a given order which can be found as parts of
diagrams at all higher orders. To illustrate this, we use diagram
(W6) in Fig. 1 as an example; this diagram is essentially
diagram (W2) in which the top correlator has been replaced
with diagram (W2); the result is a reducible diagram of O(λ4)
composed of an irreducible diagram of O(λ2) embedded into
itself. This will be applied not only to correlators but to the
propagator and vertex functions as well, introducing additional
renormalized equations for these quantities. By this process,
the resulting system of equations is constructed only in terms
of renormalized quantities, establishing a new renormalized
perturbation expansion. An analogy can be made with finding

the irreducible diagrams in other diagrammatic methods, most
appropriately those in particle physics [45].

The main controversies associated with Wyld’s formalism
are due to the renormalization, and therefore, the procedure
here will be different from Wyld’s. In Wyld’s approach for
the correlator, he directly computes the two-point velocity
correlator, inputting the perturbation expansion at each order
for the two velocity fields. Instead, we will deduce the two-
point velocity correlation function through the Navier-Stokes
equation. In particular, the new starting point is that which was
used by Kraichnan for DIA [10] [and McComb for the Local
Energy Transfer (LET) theory [9]]. Namely, we look at the
spectral NSE multiplied by a second velocity-field coefficient,
uα′ (−k,t ′) and then averaged:(

∂

∂t
+ νk2

)
〈uα(k,t)uα′ (−k,t ′)〉

= 〈fα(k,t)uα′(−k,t ′)〉
+M

(0)
αβγ (k)

∫
d3j 〈uβ(j,t)uγ (k − j,t)uα′(−k,t ′)〉. (51)

With the definition of the exact correlator [Eq. (22)] the
above equation can be viewed as an evolution equation for
the exact correlator, eventually leading to the spectral energy
equation. To compute the above equation, we apply the
perturbation technique to the terms on the right-hand side,
the force-velocity and the three-point velocity correlation
functions. This approach was not originally used by Kraichnan
but was found as an alternate route to deriving the DIA by
Leslie [8].

When this correlation expansion is renormalized, there are
two ways it differs from Wyld. First when the linear operator
on the left-hand side is taken to the right-hand side, it remains
a bare response function [see on the left-hand side of Eq. (51)
in its inverted form] and this term within the renormaliza-
tion procedure will always remain unrenormalized. Second,
the vertex associated with the momentum-transfer operator
M

(0)
αβγ (k) is outside the average, and will also not be included

in the resummation. By our above procedure both these points
are accommodated in a natural way into the formulation.
Part of this renormalization procedure has been previously
pointed out in the book by McComb [9], where the first of
the above two steps was noted. Keeping the vertex function
on the right-hand side of Eq. (51) in its bare form, is being
noted here for the first time. As we will discuss below, both
these steps are necessary to avoid double counting effects in
the renormalization procedure.

The process of renormalization firstly requires the iden-
tification of reducible and irreducible diagrams. The first
criterion by which to classify diagrams accordingly is the
ability to separate a diagram into two parts by severing a
single correlator. Diagrams that can be split into two separate
diagrams by cutting a single correlator are labeled by Wyld as
“Class A.” We introduce a modification to the procedure here
which is to further distinguish two types of Class A diagrams:
those diagrams with the correlators on the left-hand side of the
leftmost vertex, and those with separable diagrams connected
by a single bare correlator that occurs on the right-hand side
of the leftmost vertex. These are labeled Class AL and Class
AR , respectively.
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(W1) (W2) (W4) (W3)
2 4 4

16
(W5)

(W29) (W28) (W6) (W7)
8 8 8 16

(W21) (W20) (W13) (W12)
16 16 16 16

(W33) (W24) (W25) (W32)
16 16 16 16

(W17) (W16) (W9) (W8)
16 16 8 8

(W19) (W18) (W31) (W30)
16 16 16 16

(W26) (W27) (W23) (W22)
16 16 16 16

(W14) (W15) (W10) (W11)
8 8 16 16

FIG. 1. Wyld’s diagrams representing the correlator expansion up to and including the fourth-order terms. The labels shown on each
diagram correspond to those given in Fig. 2 of the original paper [2].

For purposes that will soon become apparent, we note that
bare correlators are given analytically by〈

ũ(0)
α (k,t)ũ(0)

ω (k′,t ′)
〉

= 〈
R

(0)
αα′ (k; t,s)f̃α′(k,s)f̃ω′ (k′,s ′)R(0)

ωω′(k′; t ′,s ′)
〉
, (52)

which reveals the propagators within each. This identification
allows the derivation of the propagator diagrams to come. An
example of cutting an external correlator is given diagrammat-
ically by

→

→ ,f̃k f̃a

with its analytic counterpart given by

R
(0)
k M

(0)
k R

(0)
j M

(0)
j

∣∣C(0)
k C

(0)
k j

→ (
u

(0)
k

)(
R

(0)
k M

(0)
k R

(0)
j M

(0)
j C

(0)
k ju

(0)
a

)
→ (

R
(0)
k fk

)(
R

(0)
k M

(0)
k R

(0)
j M

(0)
j C

(0)
k jR

(0)
a fa

)
.

This diagram, (W4), is a member of the Class AL diagrams;
note that the equation still reads left to right. Using Fig. 1
as a reference, the Class AL diagrams are 4, 17–25 (odd),
26, 29–33 (odd); and the Class AR diagrams are 3, 5, 16–24
(even), 27, 28–32 (even). While it is not evident, it must be
pointed out that the set of Class AL diagrams is smaller than
its complement but without this classification diagrams will
be created redundantly as was found already at fourth order
by Wyld [2] and Lee [44]. It is for this reason that we have
introduced this subdivision of Wyld’s Class A diagrams.
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Note that Class AL diagrams can be written with the leftmost correlator in the form of a force-force correlation.
We introduce an equation for these diagrams to fourth order, first graphically followed by its analytic counterpart:

f̃kf̃k′ = f̃kf̃k′ + 4 f̃kf̃k′ + O(λ4), (53)

R
(0)
k 〈f̃kf̃k′ 〉Rk′ = R

(0)
k 〈f̃kf̃k′ 〉R(0)

k′ + 4R
(0)
k 〈f̃kf̃k′ 〉R(0)

k′ R
(0)
k′ M

(0)
k RjM

(0)
j C

(0)
k′ + O(λ4). (54)

In writing these equations, a new function, the exact propagator, has been introduced and a new diagram is associated with it:

= + 4 + O(λ4), (55)

Rk = R
(0)
k + 4λ2R

(0)
k M

(0)
j C

(0)
j R

(0)
k j M

(0)
k R

(0)
k + O(λ4). (56)

The complete expansion of the propagator to fourth order is given below:

=

+ 4 + 16 + 16

+ 8 + 16 + 16

+ 16 + 16 + 16

+ 16 + O(λ6)

(WP1)

(WP2) (WP3) (WP4)

(WP5) (WP6) (WP7)

(WP8) (WP9) (WP10)

(WP11)

.

(57)

Note that while the method used here to obtain these terms is different from Wyld’s, in the end the same terms are obtained for
the expansion. In determining this expansion, we have only considered a subset of Wyld’s Class A diagrams and enforced that
these diagrams have a bare propagator on their left, breaking the leftmost correlation function that characterize the Class AR

diagrams. As suggested by McComb [9], this maintains consistency with the DIA derivation of Kraichnan [8,11,12]. A similar
prescription will be used in determining the renormalized equation for the propagator as we will later see.

The procedure for dealing with Class AR diagrams will be postponed as it is similar to that used to re-sum the remaining
diagrams. Diagrams not classified as Class A are designated as Class B diagrams; these are further classified into reducible and
irreducible based on finding embedded elements of low order within diagrams of higher order. An example of this can be seen
by examining the diagram W6 in Fig. 1:

(W6)
.

It is readily seen that the elements between the two outermost vertices is the diagram W2 in Fig. 1; this is also equivalent to
the W2 diagram by replacing the top correlator with itself. This will be given in more detail below, however it will be useful to
include another function at this time.

Wyld introduced an exact vertex function as an expansion without giving a detailed account of how it was derived but instead
wrote a diagram series expansion for the exact vertex function:

= 4 4 4 O(λ5)+ + + +
,

(58)

Mk = M
(0)
k + 4M

(0)
k C

(0)
j R

(0)
k j M

(0)
a R(0)

a M
(0)
b + 4M

(0)
k C

(0)
k j R

(0)
j M (0)

a R(0)
a M

(0)
b + 4M

(0)
k R

(0)
j R

(0)
k j M

(0)
a C(0)

a M
(0)
b + O(λ5). (59)
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The renormalized vertex diagram is defined in the same manner as its bare counterpart:

α

β

γ

k
j

k j
↔ Mαβγ(k) → Mk . (60)

Using these irreducible diagrams, Wyld generated the full expansion by replacing any of the constituent elements with a
higher-order element. For example, replacing the correlator, a propagator, or a vertex in the first term of Eq. (58) results in the
following terms, respectively:

, , .

Irreducible diagrams can then be found by selectively removing correlators, propagators, and vertex corrections from Class B
diagrams. The set is left with diagrams that cannot be constructed from nontrivial (bare correlators, propagators, or vertices)
elements. Under this classification, there are two up to fourth order:

(W2)
,

(W7)
.

Starting with the second-order Class B irreducible diagrams, all Class B diagrams (except the Class B irreducible diagrams
that arise at higher orders) can be generated by replacing the appropriate correlator, propagator, and vertex corrections with their
respective expansions. This is demonstrated using three correlator diagrams:

(W6)
,

(W9)
,

(W15)
.

The three correlator diagrams are constructed as follows.
a. Construction with a correlator correction.

( ) → ( ) =

= + + · · ·
(W6)

(61)

Replacing a bare correlator with an exact one in the irreducible second-order correlator diagram is equivalent to inserting the
series for the correlator, giving rise to the anticipated diagram as well as others.

b. Construction with a propagator correction.

( ) → ( ) =

= + + · · ·(W8)

(62)

Inserting the exact propagator and its expansion obtains the desired term (W9).
c. Construction with a vertex correction.

( ) → ( ) =

= + + · · ·(W15)

(63)

As with the others, the inclusion of the vertex expansion in this case produces (W15) plus others at higher orders.
In the above examples, the leftmost propagator and vertex have remained unrenormalized. This procedure can be applied to

the Class B and Class AR diagrams in Fig. 1, generating the respective irreducible diagrams. Replacing the appropriate bare
diagrams with the renormalized quantities in the irreducible diagrams and then collecting these together with the Class AL terms
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expressed in Eq. (57), leads to an equation for the exact correlator:

= ff + 2 + 4

+ 16 + 16

+ 16 + 16 + O(λ6).

(64)

We note the distinction between Wyld’s original exact correlator equation (Fig. 5 in Ref. [2]),

= ff + 2 + 16 + O(λ6),

Class-A diagrams Class-B diagrams

(65)

where the first term on the right-hand side contains both AL and AR diagrams. It can easily be checked that both Eqs. (64) and
(65) lead to the same perturbation expansion. Further remarks about the exact correlator will be made in a later section; we now
continue with the propagator.

The approach Wyld used to determine an equation for the exact correlator could not be used for the exact propagator. Using
both Classes AL and AR , the result is a primitive expansion for the propagator with some of the terms redundantly generated,
specifically diagrams (WP3), (WP6), and (WP7) in Eq. (57). Wyld recognized this problem and circumvented this by using a
Dyson equation for the propagator, expressing his arguments only mathematically and without a diagram equation for the exact
propagator. The result was to introduce modified vertex functions and use the Ward-Takahashi identities to relate these to the
propagators, as in QFT [45]. Wyld’s final complete set of equations has a diagrammatic expansion for the exact correlator, two
diagram series for the exact and modified vertex functions, and the Ward-Takahashi identities.

However, it was argued by Lee that the method of using the Dyson equation and Ward-Takahashi identities cannot be
applied to the full three-dimensional NSE in a manner similar to Wyld’s scalar model [44]. Lee had adapted Wyld’s method to
magnetohydrodynamic turbulence and found the same problem but introduced the following equation for the exact propagator:

= + 4 + O(λ4). (66)

The leftmost propagator and vertex have both been left bare. The former clears the redundant generation of propagator diagram
(WP3), while the latter does the same for diagrams (WP6) and (WP7). This equation for the propagator does correct the
redundancies, however, the asymmetry introduced by Lee at second order also does not generate Wyld’s diagram (W10) at fourth
order, hence his inclusion of a fourth-order irreducible propagator term not found in Wyld. Lee included this term in the exact
propagator:

= + 4 + 16 + O(λ6). (67)

Lee introduced this as an ad hoc fix, however we observe here that the above equation can be derived by adopting a scheme
where the leftmost propagator and vertex of the exact propagator remain unrenormalized, similar to what we did for the correlator
expansion. We have now a single procedure for deriving both the correlator and propagator expansions.

This was the motivation for using Eq. (51) at the start of this Subsection as our formulation of Wyld’s approach. Finding the
irreducible propagator diagrams from the set of Class AL diagrams while maintaining that the leftmost propagator and vertex
remain unrenormalized results in Eq. (67). Our justification for doing so follows one of Kraichnan’s early derivations of the
propagator [17]. His approach was to include an additional, infinitesimal perturbation, ηα(k,t), to the equation for the velocity
field [cf. Eq. (10)],

ũα(k,t) =
∫ t

−∞
dt ′R(0)

αα′ (k; t,t ′)f̃α′ (k,t ′) +
∫ t

−∞
dt ′R(0)

αα′ (k; t,t ′)ηα′(k,t ′)

+ λ

∫ t

−∞
dt ′R(0)

αα′ (k; t,t ′)M (0)
α′βγ (k)

∫
d3j ũβ(j,t ′)ũγ (k − j,t ′), (68)
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and then to derive the propagator as a response function to the perturbation,

R̂αω(k; t,t ′)δ(k − k′) ≡ δũα(k,t)

δηω(k′,t ′)

= R(0)
αω(k; t,t ′)δ(k − k′) + λR

(0)
αα′(k; t,t ′)M (0)

α′βγ (k)
∫

d3j
δ

δηω(k′,t ′)

[
ũβ(j,t ′)ũγ (k − j,t ′)

]
. (69)

This response function would then be averaged in the same manner as the correlation function to give the renormalized response
function or propagator:

Rαω(k; t,t ′) = 〈R̂αω(k; t,t ′)〉. (70)

Note that the averaging would leave the bare propagator and the vertex unchanged,

Rαω(k; t,t ′)δ(k − k′) = R(0)
αω(k; t,t ′)δ(k − k′) + λR

(0)
αα′ (k; t,s)M (0)

α′βγ (k)
∫

d3j

〈
δ

δηω(k′,t ′)
[ũβ(j,s)ũγ (k − j,s)]

〉
; (71)

this analytic form of the propagator is consistent with our current version. In particular observe that Eq. (71) is consistent with
our procedure of keeping the leftmost propagator and vertex functions as bare.

Lastly, we consider the equation for the renormalized vertex as a function of renormalized quantities. Since there is no leftmost
vertex or propagator, the exact vertex expansion from Wyld is still valid to O(λ5) and can be used here:

= + 4 + 4 + 4 + O(λ5) . (72)

In summary, the exact correlator, given by Eq. (64)
along with the renormalized propagator and vertex functions,
Eqs. (67) and (72), respectively, constitute a closed set
of integral equations that describe the time evolution of
the two-point correlation function. We will refer to this
set as the “Improved Wyld-Lee Renormalized Perturbation
Theory.” It contains the same information about the correlator
expansion up to fourth order (Fig. 1) and describes turbulence
insofar as the NSE can be treated perturbatively, with the
Gaussian statistics assumed in the external forcing introduced
to facilitate the closure. The above equations are still, in
principle, infinite series, however the resummation contains
the detail of a greater number of terms and allows a truncation
that retains more of this information. Truncating after second
order and noting that the bare propagator is equivalent to
(∂t + νk2)−1, the equation above and the equation for the
propagator Eq. (67) give the result of the DIA [Eqs. (7)
and (8)].

Thus we have developed a single unified procedure for
deriving both the correlator and propagator expansions in the
Wyld formalism. The correlator equation from Wyld’s original
approach [Eq. (65)] is correct, but his approach to calculating
the propagator was flawed, as it led to the redundant generation
of diagrams as observed by Lee [44]. Our procedure of keeping
the leftmost propagator and vertex as bare recovers Wyld’s
original and correct correlator expansion but at the same
time leads to a correct equation for the propagator expansion.
This is our simple single procedure for obtaining the Wyld
theory.

As such, we have established here a well-defined procedure
for renormalization. Summarizing this procedure in terms
of the equation for the correlation, we symbolically write

it as

L0〈ũũ〉 = M (0)〈ũũũ〉. (73)

Note that the linear operator, whose inverse is the bare prop-
agator, and the vertex function are outside of the correlations.
In perturbation theory the three-velocity correlation function
above would be a function of the bare correlation, vertex
function and response function, 〈ũũũ〉 = f [C(0),M (0),R(0)]
and our renormalization procedure is to replace these by the
exact respective functions f [C(0),M (0),R(0)] → f [C,M,R].
In other words our procedure keeps the leftmost propagator
and vertex out of the resummation.

III. THE MARTIN-SIGGIA-ROSE FORMALISM

The MSR Formalism [3] is by now a well-known analytic
procedure that can be used to calculate the “statistical dynam-
ics of classical systems.” The formalism establishes an operator
theory where the observables are defined as Heisenberg
operators. This permits a nonperturbative treatment akin to
the Schwinger formalism [46–48] in quantum field theory,
which formally closes the statistical moment hierarchy. The
operator formalism introduces an adjoint operator, which can
be used in the construction of nontrivial commutation relations
leading to correlation and response functions [16]. Employing
the Schwinger formalism for statistical closure involves the
use of a generating or characteristic functional. An alternative
to the construction of such operators comes from path integrals
[49,50].

Notable sources providing detailed information on MSR
are works by Rose [51], Phythian [52–54], Andersen [55],
and Krommes [16]. As demonstrated in their original paper,
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the formalism is applicable to the turbulence problem which
has inspired further work in the analysis of least-action
principles [56,57] and gauge symmetries [58–60] in the study
of turbulence.

In the previous part of the paper we reformulated Wyld-Lee,
in order to eliminate the double-counting problem in a more
natural way. Then we presented a rather pedagogic clarification
of their theory, particularly of the way in which the use of
diagrams led to renormalization. Now, in this section, we aim
to make a comparable elucidation of MSR’s theory. Of course
in their case there is no procedural error to rectify. Yet, a
pedagogic exposition of their use of diagrams in obtaining
renormalization is of value and, when taken in conjunction
with our exposition of Improved Wyld-Lee theory, allows the
relationship between the two formalisms to be clearly seen. In
this way we are able to show that the two formalisms are fully
equivalent.

A. Setting up the formalism

It has been seen already that the velocity field uα(x,t)
is a fundamental observable in fluid dynamics. The MSR
formalism extends the common notion of it to that of a classical
statistical operator [52,55]. In the language of quantum field
theory (QFT), it is similar to a Heisenberg operator, in that
it is time dependent [45]. This is an essential first step in
establishing the formalism.

1. Dynamical equations

A generalized equation of motion for a generalized field
variable, ψ(1) ≡ uα1 (x1,t1), is introduced:

∂t1ψ(1) = U (1) + U (12)ψ(2) + U (123)ψ(2)ψ(3).

It is argued that this equation can accommodate many
dynamical systems, and in principle, can be generalized to
higher orders of interaction. We are free with the choice of
variables and so to maintain consistency with the previous
part of this paper, we continue to work in spectral space:

∂t ũα(k,t) = Uα(k; t) + Uαβ(k,j; t,t ′)ũβ(j,t ′)
+Uαβγ (k,j,l; t,t ′,t ′′)ũβ(j,t ′)ũγ (l,t ′′). (74)

The quantities defined within,

Uα(k; t) ↔ 0-point potential/external force, (75)

Uαβ(k,j; t,t ′) ↔ 1-point potential, (76)

Uαβγ (k,j,l; t,t ′,t ′′) ↔ 2-point potential, (77)

are the generalized interaction potential functions, which
may depend on time and be random. Integration of repeated
arguments and summation of indices is implied. Using δ

functions for wave vector and time arguments, and Kronecker
δ where needed, we can specify these potentials to give the
spectral NSE:

Uα(k; t) = f̃α(k,t) ⇒ Fα(k,t), (78)

Uαβ(k,j; t,t ′)ũα(j,t) = −ν

∫
d3j

∫
dt ′δαβδ(k − j)δ(t − t ′)j2ũα(j,t) ⇒ Dαβ(k,j; t,t ′) ≡ −ν

∫
d3j

∫
dt ′δαβδ(k − j)δ(t − t ′)j2,

(79)

Uαβγ (k,j,l; t,t ′,t ′′)ũβ(j,t ′)ũγ (l,t ′′) = λM
(0)
αβγ (k)

∫
d3j

∫
d3l

∫
dt ′

∫
dt ′′δ(k − j − l)δ(t − t ′)δ(t − t ′′)ũβ(j,t ′)ũγ (l,t ′′)

⇒ M
(0)
αβγ (k,j,l; t,t ′,t ′′) ≡ λM

(0)
αβγ (k)

∫
d3j

∫
d3l

∫
dt ′

∫
dt ′′δ(k − j − l)δ(t − t ′)δ(t − t ′′).

(80)

We see that the zero-point potential takes the role of the
external force, which is uncoupled to the velocity field; the
one-point potential comprises the linear terms of the equation,
namely, the dissipative term; and the two-point potential now
becomes the convection term. We have relabeled the potentials
to help in the comparison.

In keeping the goal of an analogous formalism to QFT,
an adjoint operator is introduced by way of a canonical
commutation relation,

[ũα(k,t),̂ũβ(k′,t)] = δαβ δ(k − k′), (81)

thus defining the operator as a functional derivative,

̂̃uα(k,t) ≡ −δ

δũα(k,t)
. (82)

In the path-integral formalism, the Fourier conjugate of the
adjoint field occurs naturally in the treatment of the δ functional
(see, for example, Jensen [49] and Krommes [16]). An
equation of motion for the adjoint field,

−∂t
̂̃uα(k,t) = Dβα(k,j; t,t ′)̂ũβ(j,t ′)

+M
(0)
βγα(j,l,k; t ′,t ′′,t )̂ũβ(j,t ′)ũγ (l,t ′′), (83)
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may be constructed using Eqs. (74), (81), and the canonical
relations,

∂t ũα(k,t) = δH[u,̂ũ,t]

δ̂̃uα(k,t)
, − ∂t

̂̃uα(k,t) = δH[u,̂ũ,t]

δũα(k,t)
; (84)

the generalized Hamiltonian functional, H[u,̂ũ,t], is postu-
lated and then determined from the first of these relations; see,
for example, Refs. [51,52,57,61].

We can construct a single dynamical equation that includes
Eqs. (74) and (83). Both fields are collected together in what
Eyink calls a “doublet field”’ [57] and Krommes calls an
“extended field vector” [16]:

U(α,k; t) =
[

ũα(k,t)̂̃uα(k,t)

]
. (85)

For these “doublet” quantities, a curly script is used and their
doublet-vector indices are given in small caps font where the
indices are either + or −; for example,UA=+(α,k; t) = ũα(k,t).
We can also establish a commutator for the doublet field vector,

[UA(α,k; t),UB(β,k′; t)] = i[σ2]ABδαβ δ(k − k′), (86)

where the (Pauli) matrix is

σ2 ≡
[

0 i

i 0

]
. (87)

As argument labels will soon increase, we continue with
our reduced notation where all arguments are combined into
subscript wave vectors,UA(α,k; t) → Uk; this is effectively the
same as the notation used in MSR.

An equation of motion for the doublet field vector is then
simply constructed from the dynamical equations of u and û:

−iσ2∂tUk = Fk + Dk,j Uj + 1
2M

(0)
k,j,l Uj Ul. (88)

Once again, the curly script used for the so-called doublet-field
potentials distinguishes them from their earlier counterparts.
The above equation combines the system of equations,
Eqs. (74) and (83), into a single equation for a single field
variable; it is to this equation that we apply our statistics.

2. Statistics

A generating functional is introduced and used to create all
statistical quantities,

Z =
{

exp

[ ∫ tf

ti

UA(α,k; t)ηA(α,k; t)dt

]}
T

, (89)

where {· · · }T denotes time ordering. Here ηA(α,k,t) plays the
role of the source term that is standard to these techniques.
It is, in effect, a perturbation to the zero-point potential [cf.
Eq. (68)].

Using the generating functional, one can find the statis-
tical moments or cumulants as needed through functional
differentiation of the generating functional with respect to
the source term. In practice, the cumulants are obtained by
functionally differentiating the logarithm of the generating
functional, returning what are called the connected Green’s
functions [45]. As an example, the first- and second-order

cumulants are produced, respectively, via

GA(α; k; t) = δ

δηA(α,k,t)
ln〈Z〉 = 〈{ZUA(α,k,t)}T〉

〈Z〉 , (90)

GAB(α,β; k,k′; t,t ′) = δ2

δηA(α,k,t)δηB(β,k′,t ′)
ln〈Z〉

= δ

δηA(α,k,t)
GB(β; k′; t ′). (91)

In the reduced notation, GA(α; k; t) → Gk and
GAB(α,β; k,k′; t,t ′) → Gk,k′ . Note that the correlator and
propagator functions are contained within the second-order
cumulant of the extended field vector,

G(α,β,k,k′; t,t ′)|η=0

=
[

〈ũα(k,t)ũβ(k′,t ′)〉 〈ũα(k,t )̂ũβ(k′,t ′)〉
〈̂ũα(k,t)ũβ(k′,t ′)〉 0

]

=
[

Cαβ(k,k′; t,t ′) Rαβ (k,k′; t,t ′)

Rβα (k′,k; t ′,t) 0

]
, (92)

where we recall that ũα(k,t) is defined in (82)
The interest is in obtaining a dynamical equation for a

particular statistical quantity, which for example can be the
second-order correlation function of two velocity fields of
a turbulent fluid. Using Eqs. (88), (90), and (91), one can
construct an equation of motion for the mean field:

−iσ2∂tGk =Fk + ηk +Dk,jGj + 1
2M

(0)
k,j,l(Gj,l + GjGl).

(93)

A second-order cumulant is present on the right-hand side
in this equation for the first-order cumulant on the left-hand
side, thus generating a statistical hierarchy and so the closure
problem. Differentiating Eq. (93) by ηk′ gives

−iσ2∂tGk,k′ = δk,k′ +Dk,jGj,k′

+M(0)
k,j,l

(
GjGl,k′ + 1

2

δGj,l

δηk′

)
. (94)

In this case, the problem of closure occurs with the last term
where a third-order cumulant is introduced:

δGk,j

δηl
= Gk,j,l. (95)

A method is needed to proceed further without the intro-
duction of ad hoc hypotheses to link various moments or
cumulants.

3. Closure

The problem of closure can now be addressed. The method
employed by MSR is the Schwinger-Dyson formalism, which
has been used to deal with the closure problem in QFT [45].
The authors sought a way to transfer this quantum statistical
formalism to classical physics. By way of a functional
Legendre transform,

L[GA(α; k; t)] = lnZ[ηA(α; k; t)]

−GA′(α′; k′; t ′)ηA′(α′; k′; t ′), (96)
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a closure can be found through the introduction of vertex
functions which can be related to cumulants of order n through
n-order functional derivatives of the above equation with
respect to Gj [16]. As we wish to find a closure for the
third-order cumulant, it is straightforward to calculate the
three-point vertex function,

MABC(α,β,γ ; k,j,l; t,t ′,t ′′)

= δ3L[GA′(α′; k′; s ′)]
δGA(α; k; t)δGB(β; j; t ′)δGC(γ ; l; t ′′)

(97)

= − δ

δGA(α,k; t)
[GBC(β,γ ; j,l; t ′,t ′′)]−1, (98)

which is symmetric with respect to the indices A, B, and C.
We also note this is different from usual QFT notation, in
that we use M to represent this function instead of the more
common �, which is used in both Wyld and MSR; the reason
for doing this is for its connection to the renormalized vertex
function introduced earlier. Similarly, the last term in (94) may
be rewritten to contain the three-point vertex:

1

2
M(0)

k,j,l
δGj,l

δηk′
= 1

2
M(0)

k,j,lGj,j′Gl,l′

(−δ[Gj′,l′ ]−1

δGm

)
Gm,k′

= 1

2
M(0)

k,j,lGj,j′Gl,l′Mm,j′,l′Gm,k′ . (99)

Another function that is crucial in QFT is the self-energy
function [62]. In particle physics self-energy is responsible for
attributing a particle with a “dressed” or renormalized mass,
which is an observable quantity. In the present calculation, the
self-energy is defined using the three-point vertex,

�AA′(α,α′; k,k′; t,t ′)

≡ 1

2
M(0)

ABC(α,β,γ ; k,j,l; t,r,s)GBB′(β,β ′; j,j′; r,r ′)

×GCC′ (γ,γ ′; l,l′; s,s ′)MA′B′C′(α′,β ′,γ ′; k′,j′,l′; t ′,r ′,s ′),
(100)

or in reduced notation,

�k,k′ ≡ 1
2M

(0)
k,j,lGj,j′Gl,l′Mk′,j′,l′ . (101)

The dynamical equation for the second-order cumulant,
Eq. (94), can be rewritten with the self-energy term as

−iσ2∂tGk,k′ = δk,k′ + Dk,jGj,k′ + M(0)
k,j,lGjGl,k′ + �k,jGj,k′ .

(102)

The inclusion of the self-energy leads to the establishment of
the well-known Dyson equation [63][

G
(0)
k,k′

]−1
Gj,k′ = δk,k′ + �k,jGj,k′ . (103)

The Dyson equation is an equation of motion for the second-
order cumulant, which is directly obtained from Eq. (101).
It also establishes the inverse bare second-order cumulant,
defined by[

G
(0)
k,k′

]−1 ≡ −iσ2∂t δk,k′ − Dk,k′ − M(0)
k,j,k′Gj. (104)

Written differently,

[Gk,k′]−1 = [
G

(0)
k,k′

]−1 − �k,k′ , (105)

this equation gives similar (Dyson) equations relating the bare
and exact propagators,

[Rk,k′]−1 = [
R

(0)
k,k′

]−1 − [�k,k′]±∓, (106)

which are the off-diagonal components in [Gk,k′]−1; this
equation can be rearranged to give

Rk,k′ = R
(0)
k,k′ + R

(0)
k,j[�j,j′]±∓Rj′,k′ . (107)

One can see that the renormalization is already done in
the above by the self-energy term. Furthermore, this is the
propagator (to second order) established earlier,

Rαβ(k; t,t ′)

= R
(0)
αβ (k; t,t ′) + R

(0)
αα′ (k; t,t ′′)[Mα′δγ (k)Rδδ′(k − j; t ′′,s)

×Cγγ ′(j; t ′′,s)Mδ′β ′γ ′(−k)]Rβ ′β(−k; s,t ′). (108)

Returning to the vertex function, by differentiating Eq. (105)
and using Eq. (98) it can be rewritten in terms of the self-energy
and itself:

Mk,j,l = M(0)
k,j,l +

(
δ�k,j

δGk′,j′

)
Gk′,k′′Gj′,j′′Mk′′,j′′,l. (109)

This completes our brief exposition of the MSR formalism.
We now have a set of equations that close the statistical
hierarchy:

−iσ2∂tGk = Fk + Dk,yGj + 1

2
M(0)

k,j,l(Gj,z + GjGz),

(110)

−iσ2∂tGk,k′ = δk,k′ + Dk,jGj,k′ + M(0)
k,j,lGjGl,k′ + �k,jGj,k′ ,

(111)

�k,k′ = 1

2
M(0)

k,j,lGj,j′Gl,l′Mk′,j′,l′ (112)

Mk,j,l = M(0)
k,j,l +

(
δ�k,j

δGk′,j′

)
Gk′,k′′Gj′,j′′Mk′′,j′′,l. (113)

Going one step further to incorporate the self-energy term:

−iσ2∂tGk = Fk + Dk,yGj + 1

2
M(0)

k,j,l(Gj,z + GjGz), (114)

−iσ2∂tGk,k′ = δk,k′ + Dk,jGj,k′ + M(0)
k,j,lGjGl,k′

+
(

1

2
M(0)

k,m,nGm,m′Gn,n′Mj,m′,n′

)
Gj,k′ ,

(115)

Mk,j,l = M(0)
k,j,l +

[
δ

δGk′,j′

(
1

2
M(0)

k,m,nGm,m′Gn,n′Mj,m′,n′

)]
×Gk′,k′′Gj′,j′′Mk′′,j′′,l, (116)

we find that these equations require iterations which can
also extend to infinite orders. Truncations of Mk,j,l are then
necessary to deliver practical and computable results. The
first-order truncation of the vertex function is

Mk,j,l ≈ M(0)
k,j,l, (117)
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and while it may not be immediately evident, this truncation
gives the DIA. The next order of approximation,

Mk,j,l ≈ M(0)
k,j,l + M(0)

k,k′,j′′Gj′′,k′′M(0)
j,j′,k′′Gj′,j′′Gk′,k′′M(0)

k′′,j′′,l,

(118)

similarly generates fourth-order terms given in Wyld, as will
also be seen in the following section.

B. The diagrammatic representation of MSR

The formalism was originally demonstrated with diagrams
related to the turbulence problem, and is by the author’s
account comparable to that of Wyld. We now work directly
from their diagrammatic interpretation and make a direct
comparison to Wyld.

The correlator and propagators are obtained from the
second-order cumulant tensor:

G(α,β; k,k′; t,t ′)|η=0 =
[

Cαβ(k,k′; t,t ′) Rαβ (k,k′; t,t ′)

Rβα (k′,k; t ′,t) 0

]
.

(119)

We define a diagram for this object just as with the correlator
and other diagrams:

↔ GAB(α, β;k,k′; t, t′)
A,α B,β

k,t k′,t′

→ Gk,k′ . (120)

Using the same notation for exact correlators and propaga-
tors from the Wyld analysis, Eq. (119) can be transcribed

diagrammatically as

=

⎡
⎢⎢⎢⎢⎣

0

⎤
⎥⎥⎥⎥⎦

. (121)

The external force introduced as F would not survive in the
second-order cumulant equation, Eq. (94). This term is needed
for stationary turbulence, as was seen in Wyld. MSR avoids
this difficulty by introducing the forcing as potential. In the
case of turbulence considered here, MSR considered the mean
field to be zero, hence Gk = 0. Noting these points, Eq. (104)
is rewritten as[

G
(0)
k,k′

]−1 = −iσ2∂t δk,k′ − Dk,k′ − Fk,k′ . (122)

For the forcing potential Fk,k′ the only nonzero component is
[Fk,k′]−− = 〈f̃α(k,t)f̃α′(k′,t ′)〉.

Using Eq. (105), an equation for Gk,k′ can be constructed:

Gk,k′ = Gk,j
[
G

(0)
j,j′

]−1
Gj′,k′ − Gk,j�j,j′Gj′,k′ . (123)

From the structure of these matrices, using the Dyson equation
for the propagator given in Eq. (107) along with Rk,a[Ra,k′ ]1 =
δk,k′ [16], one can construct a graphical interpretation for the
second-order cumulant equation:

=

⎡
⎢⎢⎢⎢⎢⎢⎣ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Σ−+

Σ+−Σ−−

(124)

Equating Eqs. (121) and (124), one can obtain a diagrammatic
equation for the exact correlator

Σ−−= + ,

(125)

where �−− = [�k,k′]−− and

= f̃ff(k, t) ⊗ f̃ff(k′, t′) (126)

is the external force contribution, which in the case of NSE
turbulence is the correlation of two random forces. The
mathematical formula for this is then

Ck,k′ = Rk,j〈f̃(j,t) ⊗ f̃(j′,t ′)〉Rj′,k′ + Rk,j[�j,j′] Rj′,k′ . (127)

The graphical equation for the exact propagator can
likewise be extracted from Eq. (124),

Σ±∓= + , (128)

with its analytic counterpart Eq. (107). Note at this point that
the MSR procedure has built into it that the leftmost response
function in Eq. (128) is unrenormalized and from Eqs. (101)
and (128) that the leftmost vertex function is bare. Recall in the
Wyld formulation Lee had introduced these corrections ad hoc,
and we showed in Eq. (51) how this can be properly accounted
for at the outset. With this modification to the Wyld procedure,
the Wyld and MSR renormalized perturbation approaches are
equivalent. We will show explicitly that this is true up to fourth
order in the perturbation expansion.
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We now express the self-energy and vertex equations in diagrams. Using the earlier graphical notation for the bare and exact
vertices from Sec. II B, the self-energy, Eq. (101), can be presented as

Σk,k′ =
1
2 M(0)

k,j,k j

Gj,j′

Gk j,k′ j′

Mk′,j′,k′ j′ . (129)

Similarly, the vertex diagram, Eq. (109), is

Mk,j,l

=

M(0)

k,j,l

+ I4

Gj′,j′′

Gl′,l′′

Mk,j′′,l′′ ; (130)

the quantity I4 is used here in place of δ�k,j/δGk′,j′ . This equation can be substituted into the vertex term of Eq. (129), giving

Σ =
1
2
M(0)

G

G
M(0)

+
1
2
M(0)

G

G

I4

G

G

M , (131)

where wave-vector labels have been suppressed; the corresponding equation to this diagram is

�k,k′ = 1

2
M(0)

k,j,lGj,j′Gl,l′M(0)
k′,j′,l′ + 1

2
M(0)

k,j,lGj,j′Gl,l′

[
δ�j′,l′

δGm,n

]
Gm,m′Gn,n′Mk′,m′,n′ . (132)

We introduce a diagram for the four-point term I4 for convenience; it can be written as

I4 =
M(0)

G

M
+

M(0)

G

M
+

M(0)

G

G

I5 , (133)

with the corresponding equation

I4 = δ�j′,l′

δGm,n
= δ

δGm,n

(
1

2
M(0)

j′,g,hGg,g′Gh,h′Ml′,g′,h′

)
= 1

2
M(0)

j′,m,hGh,h′Ml′,n,h′ + 1

2
M(0)

j′,g,mGg,g′Ml′,g′,n + 1

2
M(0)

j′,g,hGg,g′Gh,h′
δ

δGm,n
(Ml′,g′,h′). (134)

The term I5 ≡ δMl′,g′,h′/δGm,n has also been temporarily introduced. As the next steps are intermediate, we will briefly suppress
labels. Inserting Eq. (133) into Eq. (131) results in an expansion:

Σ =
1
2

+
1
2

+
1
4

. (135)

This can be further written with the bare vertices as

Σ =
1
2

+
1
2

+ O(λ5) , (136)

where we make the association of λ with the bare vertex term M(0) as was done in the previous section.
Note that M(0) is a 2 × 2 × 2 tensor, and it can be shown [16,51] to be symmetric with three nonzero entries:[

M(0)
k,j,l

]
++− = [

M(0)
k,j,l

]
+−+ = [

M(0)
k,j,l

]
−++. (137)
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Using this and noting that only [Ga,b]−− vanishes, the self-energy is constrained to have only one zero component, [�a,b]++.
The remaining terms on the right-hand side of the self-energy equation Eq. (136) are found to be

− + = + + +

+ + + + + O(λ5),

(a) (b) (c) (d)

(e) (f) (g) (h)

(138)

for the off-diagonal terms, and

− − = + + +

+ + + + + O(λ5),

(a) (b) (c) (d)

(e) (f) (g) (h)

(139)

are the nonvanishing diagonal components. Both of these equations have been shown only to fourth order in M(0) as this is the
extent of this study.

We have obtained the above results, Eqs. (138) and (139) from the basic equations in MSR, and as we will see later in this
section, they give a perturbation expansion that agrees with Wyld up to fourth order. However they never actually calculated in
their paper the fourth order self-energy contributions as we have in Eqs. (138) and (139). Instead MSR recast their formalism
into a simplified diagramatic approach and from this their perturbation expansion was developed.

The MSR diagramatic approach began by writing the fourth order contributions to the self-energy in terms of two Green’s
function lines convoluted with vertex functions. They wrote the nonvanishing elements of the self-energy tensor through the
diagrammatic equations

Σ−− = 1
2

α + β + 1
2

γ , (140)

Σ±∓ = α + 1
2 β , (141)

where α, β, and γ label the three vertex functions, which MSR claimed to be

+

+

− = + + + + O(λ5) ,α (142)

−

−
+ = + + O(λ5) .β (143)

−

−
− = + O(λ5).γ (144)

These three terms correspond to the nonvanishing elements of M, which are [M]++−, [M]−−+, and [M]−−−, and their
permutations. We have displayed these vertex functions noting specifically that for a given combination of indices, the α vertex
function has four diagrams, the β vertex has two diagrams, and the γ vertex only one. The expressions on the left-hand side in the
above equations indicate how vertex diagrams attach to the self-energy terms. Permuting indices leaves the vertices unchanged,
for example [M]−−+ = [M]−+− = [M]+−−, and diagrammatically this corresponds to in-plane rotations and reflections about
a line connecting a vertex and the midpoint of an opposing edge. Such permutations are trivial for the α and γ vertex functions
where any operation returns the same diagrams given in the above equations. The β vertices require these permutations to
generate the necessary self-energy terms. For example, �∓± uses Eq. (143) as it is shown; however, �−− requires a 120◦
counterclockwise rotation, [M]−−+ → [M]+−−, for diagrams Eq. (139)(f ) and (e), respectively, whereas a 120◦ clockwise
rotation, [M]−−+ → [M]−+−, is needed for Eq. (139)(g) and (h), respectively. In this manner, one can confirm that all the
diagrams in Eqs. (138) and (139) are produced. We will examine now in close detail how the formalisms of MSR and Wyld
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lead to complete agreement at fourth order. Inserting the vertex corrections, Eqs. (142)–(144) into their respective positions in
the self-energy diagrams, Eqs. (140) and (141), gives the self-energy diagrams to fourth order. Then, the expanded self-energies
are inserted into Eq. (128) to obtain from the MSR formalism the propagator diagrams to fourth order:

(145)

A factor ℘ has been introduced for each vertex since this overall factor differs between MSR and Wyld. The labels (Wpn)
correspond to Wyld’s propagator diagrams (57). Labels containing an asterisk denote diagrams with half the weighting of their
Wyld counterparts; however there are always two such diagrams and their sum gives the correct weighting. Using this propagator
expansion, the terms in Eq. (125) for the exact correlator may now be determined. Those terms obtained from the forcing function
are

(146)
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Similar to the above, the labels (Wn) here correspond to Wyld’s correlator diagrams as seen in Fig. 1. Again, an asterisk denotes
diagrams that are symmetric when reflected about a horizontal line and in Wyld’s formalism such diagrams are equivalent.

Those diagrams representing the self-energy interaction are expressed by

Σ = + +
℘2

2 ℘4 ℘4

+ + +
℘2

2
℘4

2
℘4

2

+ + +
℘2

2
℘2

2
℘2

2

+ + +℘2

2
℘2

2
℘2

2

+ +
℘2

2
℘2

2 + O(λ6)

(W2) (W13) (W12)

(W6) (W8) (W9)

(W15) (W11∗) (W11∗)

(W10∗) (W7∗) (W10∗)

(W7∗) (W14) .

(147)

Combining Eqs. (146) and (147) gives the diagrammatic equation for the exact correlator function expanded to fourth order in
the bare vertex as obtained by the MSR formalism. There are 44 diagrams counted in these two equations, confirming a statement
made in the MSR paper. Some of these 44 diagrams are repetitions of the same diagram. If these diagrams are then combined
taking appropriate account for weight factors, they yield the 33 diagrams in the Wyld perturbation expansion in Fig. 1. Comparing
these two equations to the diagrams given in Fig. 1, it can be concluded that the MSR formalism gives the primitive correlator
expansion of Wyld provided the factor ℘ = 2.

IV. COMPARISON

The renormalized diagrammatic expressions for homogeneous isotropic turbulence have been presented here according to the
formalisms of Wyld (Secs. II B–II C) and Martin, Siggia, and Rose (Sec. III B). Comparisons are made between the Improved
Wyld-Lee formalism presented in Sec. II C to expressions for the self-energy and vertex diagrams derived by MSR in the previous
section. Ultimately we show that both formalisms are equivalent to fourth order.

To compare the diagram equations as obtained in their respective formalisms, some rearrangement of terms is necessary.
Looking again at the propagator expression of Wyld in Eq. (67), this equation can be written in such a way as to anticipate the
MSR form of the propagator with the self-energy term

= + 4 + 16 + O(λ6)

= + 4 + 16 + O(λ6) .

(148)

Noting the reflection symmetry about the horizontal line of Wyld diagrams, the fourth-order term in Eq. (148) can be written as
a sum of two terms:

2 = +

.

(149)
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This allows the above equation for the propagator, Eq. (148), to be written using two of the MSR-vertex terms, M(α)

and M(β) [see Eqs. (142) and (143)]:

= + 4 α + 8 β + O(λ6)
.

(150)

In all further diagrams of both formalisms, diagrams that are equivalent through this symmetry will be combined. The “O(λ6)”
has been kept explicit as the above only applies to fourth order; the next order has not been analyzed. Substituting the off-diagonal
self-energy term, Eq. (141), in place of the terms in the brackets of Eq. (150), we find that the MSR propagator given in Eq. (128)
is recovered:

Σ±∓= +
.

Before continuing with Wyld, it will be helpful to rewrite the diagram equation for the exact MSR correlator, seen in Eq. (125)
and reproduced here:

Σ−−= +
.

Substituting the propagator equation given above [from Eq. (128)] for the exact propagator on the left of the force-force
correlation, 〈f ⊗ f〉 and the self-energy term, �−−, the correlator equation becomes

= + Σ±∓

+ Σ−− + Σ±∓ Σ−− .

(151)

However, in making the comparison with Wyld, it will be better to use Eq. (151). To fourth order, the self-energy terms can be
written explicitly as

Σ−− = ℘2

2 + ℘4

2 + ℘4

+ ℘4 + ℘4 + ℘4

2 + O(λ6),

(152)

Σ±∓ = ℘2 + ℘4 + ℘4

+ ℘4 + ℘4 + O(λ6) .

(153)

The factor ℘, associated with each vertex, has been included for convenience. Note that independent of MSR, these terms had
been derived at about the same time as them for the case of wave turbulence in Ref. [64]. The terms with only one self-energy
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component are given as

Σ−− = ℘4

2 + ℘4

2

+ ℘4 + ℘4

+ ℘4 + ℘4

2 + O(λ6),

(154)

and

Σ±∓ = ℘2 + ℘4

+ ℘4 + ℘4

+ ℘4 + O(λ4) .

(155)

The term with both �−− and �±∓ will not be expanded. This term can be combined with Eq. (155) to give

Σ±∓ + Σ±∓ Σ−− = Σ±∓
.

(156)

Using the expressions (154)–(156), these equations can be substituted back into Eq. (151):

= + 4 + 2

+ 16 + 16 + 16

+ 16 + 16 + 8

+ 16 + 16 + 8

.

(157)
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The term ℘ = 2 has been used, which will allow the comparison with Wyld. To make a comparison with this correlator, some
adjustment is required for the Wyld correlator. The equation for the correlator given in Eq. (64),

= ff + 2 + 4

+ 16 + 16

+ 8 + 16 + O(λ6) ,

(158)

can be expanded using the renormalized vertex expansion of Eq. (58) and truncated to fourth order, leaving

= ff + 2 + 4

+ 16 + 8 + 16

+ 16 + 8 + 16

+ 16 + 16 + 16

.

(159)

This equation can be readily compared to Eq. (157). The
double-force correlation term in Wyld can be connected with
that given in MSR [see Eq. (126)]:

f̃ f̃ = (160)

Equations (157) and (159) are equivalent. It can be said that
the results produced here by both formalisms are equivalent
to fourth order. This raises questions on the claims by
MSR and Kraichnan over the incorrect treatment of the
vertex renormalization by Wyld. Their claim was that Wyld
was missing certain classes of vertex corrections, namely,
Eqs. (143) and (144). This is true, but Wyld’s resummation
procedure is also different from MSR. In the Wyld approach,
at every order in the perturbation expansion, he adds what
he calls irreducible diagrams. Notice in the original Wyld
formulation his correlation equation (65) had two types of irre-
ducible diagrams; one can compare to the corresponding MSR
equation (140) and see the difference. In making this com-
parison, importantly note that the leftmost vertex in the Wyld
case is also renormalized, which again differs from MSR.
Nevertheless, as we saw on comparing Wyld and MSR,
that up to fourth order, they lead to equivalent perturbation
expansions. We made a modification to the original Wyld

procedure, in order to have a single procedure for treating
both the propagator and correlator. For this, we modified the
correlator equation of Wyld to Eq. (64), in which, just like
for the propagator, the leftmost vertex and propagator remain
unrenormalized. However the basic principle adopted by Wyld
to include certain irreducible diagrams at each order in the
perturbation expansion is still adhered to in our improved
Wyld-Lee perturbation theory. Within this approach, again we
explicitly confirmed that Eq. (64) agreed with MSR to fourth
order.

V. CONCLUSION

The formalisms of Wyld and Martin, Siggia, and Rose
have been presented in detail is this paper. Specific attention
has been given to the diagrammatic interpretations of both
formalisms, as this is where confusion can arise when making
comparison.

A new derivation of the propagator and correlator for the
Wyld formalism has been given, that obtains the corresponding
expressions proposed by Lee. The main feature of this
resummation procedure is that the leftmost propagator and
leftmost vertex remain unrenormalized. This procedure, when
added to the original Wyld formalism, we named here as
the Improved Wyld-Lee Renormalized Perturbation Theory,
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which in particular comprises Eqs. (64), (67), and (72).
Applying this method for the propagator, one directly obtains
the DIA results when truncated to lowest nontrivial order, just
as one does with the MSR formalism.

Furthermore, equations of the Improved Wyld-Lee Formal-
ism for the exact correlator (64) and propagator (67) have
been shown to agree with the corresponding MSR equations
(140) and (141), respectively. What we have pointed out here
is that Wyld had a different procedure for expressing his
basic equations, involving what he called irreducible terms.
Accounting for these, we illustrated how the Wyld procedure
agrees with MSR up to fourth order. We had included the
factor ℘ in the MSR diagrams [(154) and (155)] to account
for a weighting factor. We found that setting ℘ = 2 gives
the proper Wyld weightings but this cannot be known a
priori by the MSR procedure. However our corrections do
not fundamentally change Wyld’s approach of classifying

certain irreducible diagrams and accounting for them in his
perturbation expansion. It is this procedure that makes his
approach different from MSR, and due to that, just a simple
comparison of the vertex functions in both formalisms is
insufficient in making a comparison of the two formalisms.
It is therefore the conclusion of this work that both formalisms
are equivalent. This means that the Wyld formalism, with the
diagrammatic resummation used here, produces equations for
the exact correlator and propagator that are the same as those
obtained using the formalism of MSR.
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