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Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids
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It is demonstrated theoretically that the nonlinear stage of the Rayleigh-Taylor instability can be retarded at
arbitrary Atwood numbers in a rotating system with the axis of rotation normal to the acceleration of the interface
between two uniform inviscid fluids. The Coriolis force provides an effective restoring force on the perturbed
interface, and the uniform rotation will always decrease the nonlinear saturation amplitude of the interface at any
disturbance wavelength.
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I. INTRODUCTION

The instability of an interface, which separates two fluids
and is accelerated into the heavier fluid, is known as the
Rayleigh-Taylor instability (RTI) in honor of Rayleigh, who
studied the unstable mode in a gravitational field [1], and
Taylor, who considered the linear stability of unstable surface
waves under acceleration [2]. RTI is of interest in a wide
variety of fields, such as deep convection in oceans, inertial-
confinement fusion (ICF), supernovae explosions, plasma
physics, and vortex control. There are three stages in the
RTI development. Interface disturbances in the linear stage
of the classical RTI grow exponentially with a growth
rate:

γ =
√

gkA, A = ρ1 − ρ2

ρ1 + ρ2
,

where g is the interface acceleration, k is the wave number
in the plane normal to g, and A is the Atwood number.
ρ1 and ρ2 are the densities of the denser and lighter fluids,
respectively. In the second stage, the interface is twisted
into bubbles of lighter fluid and spikes of the heavier one
penetrating into the lighter fluid along with the growth of
perturbations. The bubble velocity saturates later on and the
growth of the amplitude turns from exponential to linear in
time. Such a transition is commonly referred to as a nonlinear
saturation. At the last stage, the strong shear near the interface
may cause vortices due to Kelvin-Helmholtz instability and
then extensive interfacial mixing ensues. In order to study the
nonlinear behavior of bubbles and spikes, weakly nonlinear
theory has been developed [3–5] for irrotational flows.

Since RTI may dramatically reduce the performance of
inertial confinement fusion (ICF) at both the initial implosion
acceleration stage and the later deceleration stage by RT
mixing [6], RTI should be suppressed as completely as possible
[7–9]. For inviscid and irrotational uniform fluids, it has been
shown that a uniform rotation with its axis parallel to the
interface acceleration decreases the growth rate of normal
mode disturbances [10]. Following this pioneering work a
series of linear RTI analyses have been carried out to study
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the effect of viscosity [11], general rotation [12], and surface
tension [13]. For exponentially stratified incompressible and
viscous fluids, it is found that rotation tends to inhibit RTI
through viscous effects [14]. Recent numerical simulations
demonstrated that rotation with viscosity and diffusion, at
least in the Boussinesq approximation or for low Atwood
number flow, could retard RTI [15]. In the above study the
rotation axis is parallel to the gravity, and the RTI suppression
is explained by analyzing the vorticity field in the mixing zone.
In other words, some studies of rotating RTI mainly focused
on the case where the rotating vector is parallel to the interface
acceleration, and hence the nonlinear influence of rotation
about an axis normal to the direction of the acceleration on the
bubble-spike formation was not studied theoretically. This is
the motivation of the present paper.

II. PHYSICAL MODEL AND NONLINEAR THEORY

We consider an inner cylindrical fluid domain surrounded
by an outer fluid. The inviscid fluids are immiscible and rotate
around the z axis with the constant angular velocity �. y points
in the radial direction and x is in the azimuthal direction. The
acceleration g is in the same direction as y, and the densities
of inner and outer fluids near the interface are assumed to
be constant values ρ1 and ρ2, respectively. The interface at
r = R is accelerated to the inner fluid due to a disturbance
as shown in Fig. 1(a). The disturbed flow near the interface
can be described in the rectangular coordinate system fixed
at the undisturbed interface as shown in Fig. 1(b) when the
interface displacement η and the azimuthal wavelength are
much smaller than R.

The two-dimensional potential flow of fluids is described
by the hydrodynamical potentials φj and stream functions ψj ;
hence the disturbing velocities are

uj = ∂φj

∂x
= ∂ψj

∂y
, vj = ∂φj

∂y
= −∂ψj

∂x
, (1)

where the subscript j = 1, 2 indicate inner and outer fluids,
respectively. We assume that the instability is restricted to
the neighborhood of the interface and hence apply the same
boundary conditions as in the case of the traditional RTI. The
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(a) (b)

FIG. 1. (Color) (a) Schematic of the rotating system and (b) the
coordinates used to study the interface instability. It is assumed that
the interface displacement η � R, the radius of the interface.

governing equations and boundary conditions are

∇2ψj = ∇2φj = 0,
∇ψ1 = ∇φ1 = 0, y → −∞,

∇ψ2 = ∇φ2 = 0, y → ∞,
(2)

∂tη + ∇φj · ∇η = φj,y, y = η, (3)

ρ1
{
φ1,t + 1

2 (∇φ1)2 − gy + 2�ψ1
}

= ρ2
{
φ2,t + 1

2 (∇φ2)2 − gy + 2�ψ2
}
, y = η. (4)

The above governing equations are the same as those of the
classical RTI except for the Coriolis force terms. It is noted
that the centrifugal effect brought by rotation is included in the
acceleration g and will be discussed at the end of this paper.
The interface displacement η and the disturbance variables ψj

and φj can be expanded in powers of ε,

η(x,t) = εη1(x,t) + ε2η2(x,t) + ε3η3(x,t) + O(ε4),

φj (x,y,t) = εφ1
j (x,y,t) + ε2φ2

j (x,y,t) + ε3φ3
j (x,y,t)

+O(ε4), j = 1,2,

ψj (x,y,t) = εψ1
j (x,y,t) + ε2ψ2

j (x,y,t) + ε3ψ3
j (x,y,t)

+O(ε4), j = 1,2.

We insert this ansatz into Eqs. (2) to (4), which are expanded
in a Taylor series about the undisturbed interfacial position
(η = 0). By collecting the terms with the same powers in ε,
we obtain the systems of order 1, 2, and 3, governing the linear
instability and the second- and third-order corrections. In the
first order of ε we obtain the equations

∇2ψ1
j = ∇2φ1

j = 0,
∇ψ1

1 = ∇φ1
1 = 0, y → −∞,

∇ψ1
2 = ∇φ1

2 = 0, y → ∞,
(5)

∂tη
1 = φ1

j,y, y = 0, (6)

ρ1
(
φ1

1,t − gη1 + 2�ψ1
1

) = ρ2
(
φ1

2,t − gη1 + 2�ψ1
2

)
, y = 0.

(7)

Introducing normal mode of η1, ψ1
j , and φ1

j in the form of
∼ei(kx+ωt), where k is the wave number in the x direction, we
solve (5) to (7) and obtain the frequency for unstable mode ω =
−iγ − �A, where γ =

√
gkA − A2�2 is the linear growth

rate and the Atwood number is A = (ρ1 − ρ2)/(ρ1 + ρ2).
For the case of a basic-mode initial disturbance of the form
ε cos(kx), the corresponding growing solution η is obtained

up to the third order as follows:

η = ε cos(kx − A�t)eγ t + ε2C2 cos(2kx − 2A�t)e2γ t

+ ε3[Cc
31 cos(kx − A�t) + Cs

31 sin(kx − A�t)

+C3 cos(3kx − 3A�t)
]
e3γ t , (8)

where

C2 = kA

2
,

Cc
31 = − k2

16γ 2
(A4�2 + A2�2 + 3A2γ 2 + γ 2),

(9)

Cs
31 = k2A�

8γ
(A2 + 1),

C3 = k2

8
(4A2 − 1).

Different from the traditional RTI, the unstable modes are
not stationary but traveling waves, though the phase velocity
is much smaller than the rotation velocity �R. When the
angular velocity � decreases to zero, the linear growth rate γ

approaches the traditional value γ0 = √
gkA, and with A = 1

and � = 0 the previous nonlinear solution of the interface
position η is recovered [4].

The uniform rotation brings two additional forces, the
Coriolis force and the centrifugal force. In order to analyze
the Coriolis effect on the RTI, we first assume that the total
acceleration of the interface g is a constant. According to the
expression of the linear growth rate γ =

√
gkA − A2�2, the

Coriolis force always diminishes the growth of the RTI. It is
shown in Fig. 2(a) that this retardation effect becomes stronger
when the Atwood number A is increased. The reciprocal of the
dimensionless angular velocity �∗ = �/

√
gk is the Rossby

number. Secondly, since only the product gA appears in γ , the
Coriolis suppression effect on the linear RTI works for both an
acceleration stage (g > 0 and A > 0) and a deceleration stage
(g < 0 and A < 0).

According to Eq. (8), the nonlinear evolution of the
fundamental mode up to the third order can be expressed
as ηN cos(kx − A�t), where the nonlinear amplitude ηN =
(ηL + η3

LCc
31) and the linear amplitude ηL = εeγ t . Since

Cc
31 < 0 [see Eq. (9)], the third-order modulation always

diminishes the growth of the fundamental mode. Such a
nonlinear effect is described by the nonlinear suppression
factor S:

S = ηN − ηL

η3
Lk2

= − 1

16γ 2
(3A2γ 2 + γ 2 + A4�2 + A2�2).

(10)

Apparently, S is a negative value; hence the larger −S,
the stronger the nonlinear suppression exerted on the basic
mode. It is shown in Fig. 2(b) that larger rotation velocity
and Atwood number will cause stronger suppression of the
nonlinear evolution of the RTI. The shape variation of spikes
and bubbles including higher-order harmonics along with the
uniform rotation are shown in Figs. 2(c) and 2(d).

The Coriolis suppression mechanism is straightforward and
may be explained as follows. In first-order approximation,
the disturbance velocity in the x (azimuthal) direction at
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FIG. 2. (Color) (a) Linear growth rate γ and (b) the nonlinear suppression factor S of the fundamental mode as functions of the dimensionless
rotation frequency. (c), (d) Interface displacements η at γ0t = 5 for εk = 0.001 in the cases A = 1 and A = 0.4, respectively. The definitions
γ0 = √

gkA, �∗ = �/
√

gk, and the wavelength λ = 2π/k have been used.

the interface can be expressed as u1 	 −u2 	 εeγ tcos(kx −
A�t + θ ), where θ is the rotation-induced phase difference
between u and the interface perturbation η. cosθ = A�/γ0 =√

A�∗. It is shown in Fig. 3(a) that θ = π/2 for the classical
RTI case without rotation. However, a uniform rotation normal
to the acceleration of the interface will change θ and cause a
normal Coriolis force −2�u. Since u1 and u2 share the same

(a)

(b)

FIG. 3. (Color) Schematics illustrating the streamlines of inner
(dashed lines) and outer (solid lines) fluids near the interface at
(a) �∗ = 0 and (b) �∗A = 1. The thick blue lines indicates the
interface, and the arrows in (b) represent the effective Coriolis force.

absolute value but with opposite directions at the interface, the
direction of the effective normal Coriolis force Fn is the same
as that of the heavier side. Consequently, the integrated Fn over
every half wavelength behaves as a restoring force exerted on
the distorted interface. When �∗ increases to 1/

√
A or θ = 0,

u1 is in the same phase as the interface displacement, and the
effective normal Coriolis force, shown as arrows in Fig. 3(b),
becomes a restoring force everywhere on the interface. It is
easy to check that when � < 0 the suppression mechanism of
the Coriolis force works as well.

In reality, the rotation induced centrifugal force changes the
acceleration of the interface. In this paper we assume that the
amplitude η and wavelength λ of the interface displacement
are much smaller than R, and it is easy to find that Eq. (8)
remains the same for cases including the centrifugal effect
except that the interface acceleration g = g0 + R�2 is used,
where g0 is the value without centrifugal effect. Consequently,
the linear growth rate, including both the Coriolis effect and
the centrifugal effect, is

γ =
√

g0kA + R�2kA − A2�2. (11)

Since Rk = 2πR/λ > 2π > A, the effect of uniform rotation
will enhance the linear RTI by increasing γ in the acceleration
stage (A > 0,g0 > 0) and retard the RTI by decreasing γ

in the deceleration stage (A < 0,g0 < 0). The perturbation
enters the nonlinear regime when the amplitude is larger than
a certain value. The shape of the interface changes from the
sinusoidal form to broad thin bubbles and narrow thick spikes.
It is convenient to define the transition into the nonlinear
regime as occurring when the nonlinear saturation amplitude
ηs is reached, where the amplitude of the fundamental mode
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is reduced by 10% due to nonlinear effects, i.e., ηs = ηN =
0.9ηL. From Eq. (8) we get

ηs

λ
= 1

π

√
2

5(3A2 + 1) + 5(A4�2 + A2�2)/γ 2
. (12)

The appearance of an additional term 5(A4�2 + A2�2)/γ 2

in the above equation is caused by the Coriolis force,
and the centrifugal effect only changes the linear growth
rate γ . Because this additional term is always positive, the
surprising conclusion can be drawn that the uniform rotation
will always decrease the nonlinear saturation amplitude at
an arbitrary Atwood number and wavelength, during the
acceleration stage as well as the deceleration stage. Bubbles
and spikes will grow to a larger length scale before entering
the nonlinear regime if the Atwood number and the rotation
angular velocity are small. When A = 1 and � = 0 the
ratio ηs/λ 	 0.1, which is the widely used threshold for
nonlinearity [16].

III. DISCUSSION

When the uniform rotation is significantly strong, i.e.,
R�2 = |g0|, the RTI will be completely suppressed by
rotation at the deceleration stage (A < 0 and g0 < 0). For
the acceleration stage (A > 0 and g0 > 0), the additional term

in Eq. (12) may be simplified as

5(A4�2 + A2�2)/γ 2 	 5(A4�2 + A2�2)/(2g0kA)

= 5(A3 + A)/(2Rk)

� 5(A3 + A)/4π < 1;

hence the nonlinear saturation amplitude ηs is
only slightly retarded by rotation. It is noted that
the interface of the present model is a circular cylinder;
hence the current stabilization mechanism is applicable to the
equatorial region but not the polar regimes of a compressible
rotating sphere. However, numerical simulations [15] have
shown that when the gravity is parallel to the rotation, just as
what happens at the polar regimes, the mixing zone generated
by the RTI can be retarded by the effect of the Coriolis
force on the vorticity field. Though these two mechanisms
are different, the one proposed in this paper is applicable
for potential flows and the other one is found in rotational
flows; their cooperation makes it possible to suppress the
Rayleigh-Taylor instability near a spherical interface by
using rotation, and may have potential applications in the
field of inertial confinement fusion, which includes both the
acceleration and the deceleration stages.
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