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Switching dynamics and linear response spectra of a driven one-dimensional nonlinear lattice
containing an intrinsic localized mode
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An intrinsic localized mode (ILM) represents a localized vibrational excitation in a nonlinear lattice. Such a
mode will stay in resonance as the driver frequency is changed adiabatically until a bifurcation point is reached,
at which point the ILM switches and disappears. The dynamics behind switching in such a many body system
is examined here through experimental measurements and numerical simulations. Linear response spectra
of a driven micromechanical array containing an ILM were measured in the frequency region between two
fundamentally different kinds of bifurcation points that separate the large amplitude ILM state from the two
low amplitude vibrational states. Just as a natural frequency can be associated with a driven harmonic oscillator,
a similar natural frequency has been found for a driven ILM via the beat frequency between it and a weak,
tunable probe. This finding has been confirmed using numerical simulations. The behavior of this nonlinear
natural frequency plays important but different roles as the two bifurcation points are approached. At the upper
transition its frequency coalesces with the driver and the resulting bifurcation is very similar to the saddle-node
bifurcation of a single driven Duffing oscillator, which is treated in an Appendix. The lower transition occurs
when the four-wave mixing partner of the natural frequency of the ILM intersects the topmost extended band
mode of the same symmetry. The properties of linear local modes associated with the driven ILM are also
identified experimentally for the first time and numerically but play no role in these transitions.
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I. INTRODUCTION

A useful advance in the theory of nonlinear excitations
in discrete lattices in the late 1980s and early 1990s was
the discovery that some localized vibrations in perfectly
periodic but nonintegrable lattices can be stabilized by lattice
discreteness; that is, the presence of nonlinearity plus dis-
creteness provides a natural habitat for vibrational localization
[1–4]. This realization has led to a variety of studies of the
features associated with such intrinsic localization [5–8]. In the
literature these localized excitations are called either intrinsic
localized modes (ILMs) with the emphasis on the fact that they
can occur in any dimension and involve no disorder or discrete
breathers (DBs) with the emphasis on their similarity to the
exact one-dimensional (1D) breather soliton. These unusual
modes can occur at any lattice site and may be stationary
or move slowly through the lattice. One key element for
realistic lattices is the existence of gapped dispersion curves.
These nonlinear localized modes have attracted attention both
because of fundamental interest [9–18] and also because of
possible practical applications [19–28].

A driven 1D micromechanical cantilever array provides
a straightforward way in which to examine such localized
excitations for systems that have many degrees of freedom
[13]. Experimentally, a stationary ILM can be maintained
in steady state using a driver to compensate for damping
[9,11,29]. Given sufficient starting amplitude it will stay in
resonance as the driving frequency is changed adiabatically.
In the resultant autoresonant (AR) state the driver frequency
controls the ILM amplitude [30–35]. This AR-ILM is stable
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between two bifurcation frequencies when the driver frequency
is the control parameter [22,26]. Only a low amplitude state
exists outside this frequency range. With the driver tuned to the
topmost frequency of the linear resonance band the excitation
pattern changes with increasing driver frequency as follows: a
uniform excitation pattern of the top mode of the band, chaotic
moving ILMs, a low amplitude state, the AR-ILM state of
interest, and finally a low amplitude state. The AR state is
achieved only when the driver frequency is chirped up with
sufficient speed from the top of the band frequency to pass
the low energy state separating the linear resonance frequency
regime from the AR state, which is bounded by the upper
bifurcation point. When the driver frequency is decreased from
inside the AR state, the ILM disappears into a low amplitude
state at the lower bifurcation frequency. As yet the properties
and dynamics of ILMs near the bifurcation points have only
been described in a brief report [26].

Although the ILM’s shape changes with the driver fre-
quency, one of the switching results for such a driven many
body system seems intriguingly similar to that previously
observed for the transition of a Duffing oscillator in the
AR state (a single degree of freedom). Studies of a single
driven nonlinear oscillator that obeys the Duffing equation
have a long history and reveal a variety of phenomena from a
linearlike resonance to chaos [36], depending on the driving
condition. The most well known effect is hysteresis that
accompanies a sudden change of amplitude when the driver is
swept up or down over a certain frequency range. Because the
Duffing resonator is the simplest nonlinear oscillator with these
phenomena, this model system has been used for a variety of
theoretical studies [37–41], for developing new ideas [31,42],
and for applications [43–45]. A stochastic resonance when
the Duffing resonator is at a kinetic phase transition, where
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the system is simultaneously in 50% high and 50% low
amplitude states, is one example [46,47]. Another example
is a bifurcation amplifier, which uses the sudden change at the
bifurcation to amplify a signal [43].

Prediction of the bifurcation point for a single nonlinear
Duffing oscillator has been studied in some detail since such
a catastrophic change in oscillator behavior is important from
an applications point of view. To forecast a sudden rise of a
vibration amplitude of a single driven Duffing resonator from
a low amplitude state [36,48], a beat frequency between a
driver and a phase mode was observed to decrease when the
bifurcation point was approached. A natural question to ask is
how similar is the many body AR-ILM bifurcation property
to that of the single AR oscillator? A related question is how
different could it be?

The spectrum of local modes associated with a large
amplitude ILM have now been examined in some detail.
A variety of linear resonances have been observed and
interpreted. They include the natural frequency [NF] of the
ILM, this NF is for an ILM with the same amplitude pattern
but no driver nor damping. Even and Odd linear localized
modes (LLMs) [15,49] are also present. What role, if any, do
these resonances play in the bifurcation transition?

In order to determine how similar the dynamics of the upper
bifurcation point of the ILM is to the single Duffing oscillator
result, the next section of this paper focuses on the large
amplitude behavior and the NF property of a driven damped
Duffing resonator. To see this linear mode a second variable
frequency driver called a probe is introduced so that the NF
can be observed in the presence of damping. The NF peak
and its four-wave partner (NF) appear as distinct structures in
the response spectrum. Section III describes the experimental
setup for the ILM study in a 1D micromechanical cantilever
array. The probe is very weak with respect to the driver locked
to the ILM, and hence does not perturb the ILM, but is still
strong enough to see linear localized features produced by
it. The experimental probe spectra results are presented in
Sec. IV. A variety of linear resonances have been observed and
interpreted. They include the NF of the ILM, an even LLM
[15,49] of the ILM, and also the topmost extended band modes.
The simulations, described in Sec. V, are used to confirm the
sources of some of the resonant features near the bifurcation
points. Section VI considers the resemblance between the
driven ILM and the single driven Duffing resonator at the upper
bifurcation point and described the more complex behavior
at the lower bifurcation point. By examining their different
behaviors near the bifurcation points, experimentally and
through numerical simulations, and by comparing the results
with those found for a single Duffing oscillator, the bifurcation
dynamics of ILMs have been quantitatively characterized.
Some possible applications of linear probe spectroscopy
to nonlinear systems are also discussed. The conclusions
emphasize the importance of the NF role to understanding the
bifurcation dynamics. An appendix quantifying the analytical
NF spectrum results of the singe Duffing resonator follows.

II. BACKGROUND

Since the NF of the ILM will play an important role in the
understanding of its bifurcation transitions, first we describe

how one can observe the NF of the simplest nonlinear system,
namely, the single Duffing resonator. It is well known that
the general solution for a driven harmonic oscillator with
NF = ω0 and driver frequency � and no damping is the
sum of two contributions [50]. One is the general solution
of the homogeneous equation while the other is a particular
integral of the inhomogeneous equation. For the case of small
oscillations near the NF ω0 the resulting signature appears in
the form of beats with frequency ωb = |ω0 − �|. As the driver
approaches NF the beat frequency goes to zero, ωb → 0, a
transition to the resonant state occurs, and the small signal
method is no longer valid. When damping is included and the
driven oscillator inspected after a sufficiently long time only
the particular solution of the inhomogeneous equation with
driver frequency � remains in this steady state. To recover the
beat signal a second (weak) source with tunable frequency
ω, usually called the probe, is introduced. The maximum
amplitude for the beat now occurs when ω = ω0, giving the
same NF condition as before. Once again, as the driver and NF
approach each other the amplitude at the NF grows.

The corresponding NF of a nonlinear oscillator can be iden-
tified in terms of its asymptotic limit as the driver and damping
simultaneously go to zero (so that its amplitude remains fixed),
then the resonance plays the same role as the NF for a driven
harmonic oscillator without damping. To be more quantitative
consider the single Duffing oscillator given by

ẍ + 1

τ
ẋ + ω2

0x + εx3 = αd cos �t + αp cos ωt, (1)

where τ is the relaxation time, ω2
0 is square of the linear

resonance frequency, ε > 0 is a hard nonlinear constant, αd

and αp are the acceleration amplitudes for the driver and probe,
and � and ω are the driver and probe frequencies, respectively.
A high amplitude state of the Duffing oscillator is obtained
by driving it at a frequency � slightly above ω0. Next, with
the driver frequency fixed, a weak probe oscillator is initiated
at a frequency nearby, where ω ∼ �. The analytical form for
the amplitude response curve can be obtained by assuming
the displacement has three frequency components so that

x = 1
2 Ãe−i�t + 1

2 ãe−iωt + 1
2 b̃e−iω′t + c.c. (2)

Here ω′ = 2� − ω is the four-wave mixing frequency, Ã is the
large oscillation driver response, ã is the probe response, and b̃

is the four-component response. [The term four-wave mixing
is used in analogy with optics terminology to describe the
nonlinear process generated by the cubic term in Eq. (1).] Weak
vibration components, such as that at 2ω − �, proportional to
|ã|2Ã, are omitted because they are much smaller than those
that vary like |Ã|2ã vibrating at ω′ = 2� − ω. The probe
response function χ̃ (ω) can be calculated from Eq. (2):

Re[χ̃(ω)e−iωt ] = Re[ã/αp] cos ωt + Im[ã/αp] sin ωt. (3)

The details of the probe response function calculation for this
Duffing oscillator, which results in four resonances, are given
in the Appendix. As mentioned there, the response function
can also be calculated as a fluctuation spectrum [46,51]. As
to be expected from the fluctuation-dissipation theorem the
response function and the fluctuation spectrum give the same
information.
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From Eq. (A3) in the Appendix the response function
resonances are at

ωn = � ±
√

�2 + ω2
nl ±

√
4�2ω2

nl + (
3
4ε|Ã|2)2

, (4)

where the bare nonlinear NF is ω2
nl = ω2

0 + 3
2ε|Ã|2. The

positive sign under the radical in Eq. (4) gives two solutions far
from the driver frequency at ω ≈ −� and 3�. The solutions of
interest are those near the driver frequency � and equidistant
from it. The imaginary part of this response function has
a positive peak above the driver frequency and a negative
peak symmetrically placed below it at a high amplitude state.
The negative peak becomes comparable in amplitude to the
positive one when the oscillating amplitude |Ã| is large. As
expected, as |Ã| → 0, the positive peak approaches the linear
NF ω0, and the negative response peak disappears. For these
two symmetrical resonances about the driver, the upper one is
the nonlinear NF because of its remaining activity as |Ã| → 0
and because of its positive sign, while the lower negative one
is its nonlinear mixing partner from the cubic term in Eq. (1)
because of its disappearance as |Ã| → 0. If either resonance is
driven by the probe oscillator, the other sideband is generated
by nonlinear mixing.

Figure 1 provides a general overview of the probe response
for the Duffing oscillator both in and out of the AR states.
The parameters used are similar to those that apply to
measurements associated with the AR-ILM state. Figure 1(a)
is the familiar amplitude versus frequency curves. When
the driver frequency is decreased from above the previous
bifurcation frequency toward the linear resonance frequency
the amplitude can suddenly jump from a low to a large value.
This is the case studied in Ref. [48]. The results are also
presented by Thompson and Stewart [36]. The imaginary part
of probe response curves for driver frequencies “A,” “B,” and
“C” in Fig. 1(b) correspond to these cases. Note that the NF
is lower than the driver frequency. The bifurcation takes place
when the beat frequency goes to zero so that the nonlinear NF
is suddenly in resonance. After the bifurcation, the positive
peak for the NF appears above the driver while a negative peak
is observed below, as shown in the curve “D” of Fig. 1(b). This
is caused by the nonlinear mixing between the driver and the
NF. When the driver frequency is decreased further, only the
NF positive peak appears at the linear resonance frequency ω0.

Conversely, when the driver frequency increases from “F”
to above the linear resonance frequency ω0, the amplitude
increases until the driver frequency reaches a bifurcation
frequency “H” where the amplitude drops suddenly to a
small value. Here, we describe the sudden drop at the high
frequency bifurcation point in terms of the NF. In the AR
state the NF = ωn is slightly larger than the driver frequency.
Note that the positive peaks in the curves “F” to “H” are
all higher than the driver frequency. As the driver frequency
increases, the NF increases but at a slower rate so that the beat
frequency decreases. At the bifurcation point, ωn − � = 0
and the amplitude of the NF frequency resonance takes its
maximum value. Its phase is shifted by −90◦; the same
behavior as observed for a damped, linear resonator. Beyond
this point the oscillator uncouples from the driver, and the
amplitude drops suddenly.
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FIG. 1. (a) The Duffing resonator amplitude as a function of the
driver frequency �/2π . (b) Imaginary part of the linear response
curve at driver frequencies indicated by letters in (a). The vertical
dashed line indicates the linear resonance frequency ω0/2π . Solid
circles indicate the driver frequency for each spectrum. When the
vibration amplitude is low, as in case “A,” the response curve has
one peak at the dashed line. When the driver frequency decreases
from “A,” its amplitude suddenly jumps at the bifurcation point “C.”
During this approach, the peak shifts toward the driver frequency.
After the bifurcation “D,” there are two peaks: One is positive above
the driver and the other is negative and below the driver. As the
driver frequency decreases further, “E,” the negative peak becomes
smaller. When the driver frequency is very low, as in “F,” there is
only one positive peak at the linear resonance frequency. When the
driver frequency increases from “F” to “H,” the positive peak is
always above the driver frequency until the driver reaches to the
other bifurcation, “H.” The difference frequency between the positive
peak and the driver frequency becomes small and the peak height
diverges at the bifurcation point “H.” The curve for “H” is reduced
to 1/3. Parameters are ω0/2π = 100 kHz, ε = 1 × 1020 (1/m2s2),
τ = 0.02 (s) and αd = 80 (m/s2).

Another point of view considers the sidebands as Stokes
and anti-Stokes lines [51]. However, for this lattice system,
some positive peaks appear below the driver frequency in the
spectra because of the many degrees of freedom, as we will
see below. Thus, identifying them in terms of the sign of the
imaginary response is more relevant than signifying them in
terms of their relative frequency position with respect to the
driver. By distinguishing the positive peaks as resonances all
the important resonant modes, including extended band modes
can be identified for the lattice system. These features can be
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continued down to smaller amplitudes where positive response
is found for the linear state. From this perspective, all negative
peaks are four-wave mixing (cubic in the equation of motion)
partners of corresponding positive ones.

These two oppositely directed amplitude transitions are of-
ten described as saddle-node bifurcations. When approaching
such a bifurcation point by changing the driver frequency, an
unstable solution approaches the stable solution; hence, the
decrease in the beat frequency is the signal of an approaching
unstable solution. The van der Pol plane [52] is a suitable way
to consider the large amplitude driver response and the small
amplitude NF in phase space, because this frame rotates with
the driver frequency. Figure 2(a) shows a typical phase plane
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FIG. 2. (Color online) (a) Paths in the van der Pol phase plane
of the Duffing oscillator. Gray curves indicate paths at a fixed driver
frequency. The distance from the origin to the open and closed circles
show the amplitudes for the unstable (saddle) and high amplitude
stable (node) fixed points. A low amplitude stable point is near the
origin. Solid and dashed curves with gray arrows illustrate movement
of the high amplitude stable point and unstable point with increasing
driver frequency and merge at the top of this figure where saddle-node
bifurcation takes place. (b) An ellipse represents the amplitude path
of the driven excitation when the NF is excited by a weak probe.
A series of magnified elliptical paths are shown, each around the
appropriate stable point for a specific driver frequency. The driver
frequency is increased from 100 to 100.4 kHz in 40-Hz steps. Open
and solid circles are the unstable point and stable point in panel (a)
for a 100.24-kHz driver frequency. As the saddle-node bifurcation is
approached, the aspect ratio of the ellipse grows. Parameters in Eq. (1)
are ω0 = 105 × 2π s−1, τ = 0.01 s, ε = 1.97 × 1020 s−2 m−2, αd =
300 m/s2, αp = 5 m/s2, and � = 1.000 to 1.040 × 105 × 2π s−1.

for the large amplitude driver response of a Duffing resonator.
It shows three fixed points: a stable high amplitude node repre-
sented by the distance from the origin to the solid dot, a stable
low amplitude node near the origin, and an unstable saddle
point. The high amplitude node and unstable saddle approach
each other at the top of this figure with increasing driver
frequency; the result is pair annihilation at the bifurcation
point. An elliptical curve in Fig. 2(b) describes the orbit of
the large amplitude driver response, when it is perturbed by
the probe at the nearby NF frequency. The (period)−1 is the
difference frequency between NF and the driver, i.e., the beat
frequency. The orbit shape is elliptic due to the local dynamic
property around the fixed point. In Fig. 2(b), a relatively large
probe perturbation is applied to magnify the effect; however,
the perturbation actually is very small so that a linear response
function χ (ω) applies. The approach of the unstable solution
modifies the local environment around the stable point. Since
an orbit near the saddle moves slowly, the rotation period of
the ellipse becomes longer when the driver frequency is closer
to the bifurcation point, i.e., the beat frequency decreases.
Thus, the NF intersecting the driver in frequency space and
the saddle-node bifurcation picture in the van der Pol phase
space provide complementary views of same transition.

III. EXPERIMENTAL SETUP

With the pump-probe experiments described here the
properties of a driven ILM near its bifurcation points have
been measured. Figure 3(a) shows the experimental setup. The
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FIG. 3. (a) Experimental setup for the linear response measure-
ment of the AR state by the uniform probe perturbation. The array
is composed of alternating 50- and 55-μm-length cantilevers. The
driver at frequency F and probe signal at frequency f are added and
used to excite the array uniformly by the thin piezoelectric transducer
(PZT). A laser diode (LD) illuminates a cantilever nearby the ILM and
the reflected beam is detected by a position sensitive detector (PSD).
The displacement signal is recorded by a digitizer or, analyzed by a
lock-in amplifier. A typical driver amplitude is 14 V, while the probe
amplitude is 12 mV. (b) Spatial pattern of a large amplitude ILM
and a small amplitude (magnified) even mode LLM at a particular
cantilever site.
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driven micromechanical array contains 152 cantilevers cou-
pled together by a common overhang. Because of the positive
nonlinearity of the cantilever array, the ILM is generated above
the top of the linear dispersion curve. We designed a dielement
array so that it is possible to excite the highest frequency
normal plane wave mode with a uniform driver. Uniform
excitation is achieved easily by shaking the entire sample up
and down with a piezoelectric transducer (PZT) attached to the
sample bottom. Because of the mass difference between the
short and long cantilevers in a unit cell uniform acceleration
produces a different force on each. A cw driver oscillator with
frequency F feeds energy to the array maintaining the ILM
in the large amplitude AR state. For linear response measure-
ments an additional weak probe oscillator with frequency f is
used to perturb the array. The output of the probe oscillator is
combined with the strong driver and connected to the PZT so
the perturbation is applied uniformly across the lattice. With an
ILM present the motion of a nearby single cantilever is moni-
tored using a diode laser and a position sensitive detector (PSD,
Hamamatsu Photonics). A lock-in amplifier or a digitizer is
used to selectively analyze the cantilever motion that is caused
by the probe oscillating at a given frequency. A response
spectrum is measured by scanning the probe frequency, while
the driver frequency is held fixed. By then changing the driver
frequency in a stepwise fashion, the linear mode properties
can be monitored as a bifurcation point is approached.

With fixed boundary conditions, or via symmetry breaking
by the AR ILM state, all linear modes can be classified into
odd and even symmetries in terms of the vibrating spatial
pattern and appear alternatively when ordered by their mode
frequency. For example, the ILM shown in Fig. 3(b) is odd and
the LLM (in Ref. [15]) is even. In the absence of impurities
our method measures only odd modes, i.e., a vibration pattern
(. . . , − 0.4,1, − 0.4, . . .) that has a finite coupling to the
uniform acceleration driver with the dielement mass pattern.
Even modes are not recorded in these spectra; however, if
impurities exist to one side of the ILM, the broken symmetry
makes the local even mode observable.

Observing a small probe signal near the frequency of the
ILM, which produces about 1000 times larger signal, is a
problem. In addition, any perturbation could cause a drastic
change in the vibration spectrum, such as broadband chaotic
noise, since the ILM is a nonlinear phenomenon. For these
reasons, we first examined the FFT spectrum from the digitizer
(12 bit) of the PSD signal. Because of the limited bit width of
the digitizer, we used a slightly larger probe amplitude for this
case. The FFT spectrum of the ILM at a fixed probe frequency
f and driver frequency F is shown in Fig. 4(a). The large
peak at the center is the ILM vibration at the driver frequency.
The center peak height is normalized to 1 and the ordinate
is magnified to see the weak structure produced by the probe
perturbation. The upper frequency narrow peak is the response
of the probe. There is another peak symmetric to the driver on
the lower frequency side, which is the four-wave mixing signal
at 2F − f . By changing the probe frequency in a stepwise
fashion, we obtain the spectral map as shown in Fig. 4(b). The
two crossing patterns connecting opposite corners identify
fFFT = f and fFFT = 2F − f , and they are due to the probe
response signal and four-wave mixing signal, respectively.
There are no other signals except the ILM. Figure 4(c) shows
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FIG. 4. (a) The ILM vibration spectra by FFT. Abscissa is the
difference frequency of the FFT frequency and the driver frequency
normalized by the bandwidth of the linear normal mode. The center
peak is the ILM. The spectrum is normalized by its peak height
and magnified to see the small structures. The probe perturbation is
applied at a frequency indicated by the arrow. There is four-wave
mixing signal at opposite side of the center peak. Two other peaks
nearby the center are spurious from the driver oscillator. (b) A
probe response map made from step scanned FFT spectra. Abscissa
is the driver-difference FFT frequency, and the ordinate is the
driver-difference probe frequency. The probe frequency is changed
stepwise, and an FFT spectrum is obtained at each step. This figure
is made from 500 FFT spectra. The dark vertical center structure is
the ILM signal at the driver frequency. There are signals on two lines
crossing at the center. The signal on fFFT = f is the probe response
signal, and the signal on the other straight line fFFT = 2F − f is
by the four-wave mixing. (c) Probe response spectrum (solid line)
and four-wave mixing signal (dashed line) as a function of the probe
frequency. These are calculated from the map.

the spectra deduced from the map of the signals on the crossing
lines. Two broad resonance structures are seen: The upper one
is the NF and the lower one is its nonlinear mixing partner.

Figures 4(b) and 4(c) demonstrate that the probe causes
a small perturbation producing only two clean signals. The
signal on the line fFFT = f is the probe response spectrum.
More importantly, Figs. 4(a)–4(c) show that the broad resonant
structure in Fig. 4(c) is not due to the spectral width of
the driving oscillators used in these experiments or by some
nonlinear process, but due to a real feature that should be
assigned to the NF resonance. Hereafter, a lock-in amplifier
(ITHACO-NF 3961B) was used instead of the digitizer and the
measured signal at the probe frequency was obtained with a
combination of two digital multimeters connected to the cosine
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and sine outputs. The internal AD converters of the lock-in
amplifier cannot be used, because a small gain setting of the
amplifier is required to avoid saturation by the ILM signal,
and because the probe signal is too small for the internal AD
converters at such settings. However, measurements with the
external multimeters presents no problem since their ranges
can be set independently. A probe spectrum was taken at a
fixed driver frequency. We compared spectra taken by these
two methods and made sure that the lock-in amplifier method
produced the same spectrum, then reduced the probe driver
amplitude to a small value consistent with a good signal to
noise ratio. The driver frequency is changed stepwise, and this
process is repeated over the entire AR state.

IV. EXPERIMENTAL RESULTS

The AR ILM amplitude as a function of the driver frequency
F is shown in Fig. 5. The amplitude was measured using the
setup in Fig. 3(a), with the reference signal of the lock-in
amplifier connected to the driver. Generation of an ILM is made
by chirping up the driver frequency from the top of the optic
band to the middle of the AR region. Because of the irreversible
nature of the AR state beyond the transition points, a measure-
ment sequence is initiated from the middle frequency region
(open circle), and the driver frequency is then step incremented
slowly up or down. The lower abscissa in Fig. 5 is the driver fre-
quency normalized to the top of the linear optic band frequency.
The upper abscissa is the difference frequency between the
driver F and the linear optic mode frequency fT normalized by
the optical bandwidth fBW. (This ratio provides a general mea-
sure of the strength of the nonlinearity for this driven system.)
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FIG. 5. Experimentally observed AR amplitude as a function of
the driver frequency F . Lower abscissa: driver frequency normalized
to the top of the optic branch. Upper abscissa: difference frequency
between the driver and the top of the optic branch (fT = 140.0 kHz)
normalized by the band width (3.1 kHz). The stable AR region
indicated by “AR” is 140.46 to 144.85 kHz, or 0.148 to 1.57 by the
normalized difference frequency. First, the AR-ILM was generated by
rapidly chirping up the driver frequency from top of the band. Open
circle indicates the end frequency of the chirping, and it is starting
point of the measurement. From this point, the driver frequency was
either scanned down or scanned up. Lower two curves are the results
for scanning down or up from outside of the AR state. The noisy
amplitude in the low frequency region is due to chaotic traveling
ILMs. Curves are shifted for clarity.
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FIG. 6. Experimental response spectra for the AR state as a
function of the normalized difference frequency. The gap frequency of
the large sideband peaks (beat frequency) decreases and the response
grows as the driver frequency approaches the upper bifurcation point.
Observed sidebands are produced by a NF of the ILM oscillation.
Spectra are aligned from 140.5 to 144.85 kHz with 50-Hz steps from
bottom to top [0.161 to 1.56 by the normalized difference frequency
(F − fT )/fBW]. The upper and lower frequency limits are near the two
bifurcation frequencies. The abscissa is normalized by the bandwidth
of the optic branch.

To reach the high amplitude state the driver frequency must
increase at a sufficient rate to cross over from the low amplitude
state, through the chaotic state, to the AR state [53]. With a slow
scan of the driver frequency, the AR state cannot be reached,
as shown by the bottom trace in Fig. 5. The middle trace is
the result of scanning down from above the upper bifurcation
frequency, showing that the AR state is a metastable state.

The measured linear response spectra for the AR state at
different driver frequencies are presented in Fig. 6, which show
resonance peaks near the driver frequency and also extended
band modes. Movement of the resonance peaks toward the up-
per or lower bifurcation points provide dynamical evidence for
the bifurcation mechanisms. The two strong sidebands shown
in Fig. 6 are due to the NF of the AR state. (See simulations
in Sec. V for confirmation.) The probe spectra are displayed
with the driver frequency varying from 140.50 to 144.85 kHz
in 50-Hz intervals from bottom to top. This range corresponds
to 0.161–1.56 in terms of the difference frequency normalized
by the bandwidth. The higher frequency sideband is the NF
while the lower frequency one is its four-wave mixing partner.
The two driver frequency limits shown are close to the upper
and lower bifurcation frequencies, and so the frequency range
essentially corresponds to the entire stable region of the AR
state. Note that the difference frequency of the sidebands to the
driver (the beat frequency) decreases and the response grows as
the driver frequency approaches the upper bifurcation point.
One of the weak satellite features that appears near the low
frequency transition is an extended wave in the optic branch.
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FIG. 7. (a) AR amplitude of the ILM as a function of the driver
frequency. (b) The NF (solid) and the even LLM (dashed) beat
frequencies as a function of the driver frequency. The data show
that the NF approaches the driver frequency at the upper bifurcation
point while the LLM frequency does not. (c) NF peak height as a
function of the driver frequency. It diverges at the upper bifurcaiton
point. The peak height does not increase monotonically over part of
the region due to an experimental problem giving a lower sensitivity
of the probe amplitude at the larger ILM condition.

The NF beat frequency and its peak height are summarized
in Figs. 7(a) and 7(c) for the AR amplitude as a function of
the driver frequency shown in Fig. 7(a). The beat frequency
(solid) first increases, then decreases as the upper bifurcation
point is approached, as shown in Fig. 7(b). The resonance
amplitude first increases with driver frequency, next decreases,
and finally increases rapidly as the upper bifurcation point
is approached. The decrease in the middle region may be
due to an experimental error because of the large oscillation
amplitude of the ILM and because of suppressed gain of the
middle stage of the equipment affected by the large ILM
signal. From this figure, it is clear that the beat frequency
decreases and the amplitude diverges as the upper bifurcation
point is approached. On the other hand, there is no similar
signature with regard to the bifurcation mechanism for the
lower bifurcation point in this figure.

By plotting the imaginary part of the linear response
spectrum as a function of the probe frequency for fixed driver in
Fig. 8, the results can be used to explore the lower bifurcation
point. The large symmetrically located positive and negative
peaks are due to the NF and its mixing partner. There are
several small resonant structures below its lower sideband
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FIG. 8. Experimental imaginary part of the response as a function
of the normalized difference probe frequency. Spectra near by the
lower bifurcation are ordered by the driver frequency from 0.355 to
0.161 in 0.016 steps. The large peak at the center is the ILM signal.
“NF” denotes natural frequency peak, and letters inside parentheses
are for their four-wave mixing partners. The lower bifurcation takes
place at 0.148. The even LLM is identified between the band mode
and the lower (NF). It is activated weakly by an asymmetry caused by
the probe laser heating or an impurity. The even LLM crosses with the
lower NF. Band modes are seen as a sequence of small peaks and the
label “band” is placed at the highest frequency mode. The lower bifur-
cation takes place when the lower (NF) coalesces with the band mode.

peak. As the lower bifurcation point is approached, one of them
crosses the lower sideband peak of the NF. By comparison with
simulations (below), we identify this mode as an even-LLM,
while the other mode, relatively far from the lower NF, is an
extended band mode. The even mode is not activated by the
uniform driver so it cannot be measured normally with this
technique; however, it may be activated by an impurity or im-
perfection. The probe laser can be a source of such an impurity,
since it is sharply focused to one side of the ILM. The dashed
curve in Fig. 7(b) shows the driver frequency dependence of
the even LLM. From experiments shown in Fig. 8 the lower
bifurcation takes place when the (NF) reaches the band mode.

V. SIMULATIONS

A lumped element model of the cantilever array is used for
simulations with equations of motion of the form

mi

d2xi

dt2
+ mi

τ

dxi

dt
+ k2Oixi + k4Ox3

i

+
∑

j

k
(j )
2I (2xi − xi+j − xi−j )

+ k4I {(xi − xi+1)3 + (xi − xi−1)3}
= miαd cos �t + miαp cos ωt, (5)

where i is the site number of the cantilever, mi is the mass, τ

is the relaxation time, k2Oi and k4O are harmonic and quartic
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TABLE I. Parameters used in simulations. Values are the same as in Ref. [24].

mi k2Oi k
(j )
2I τ k4O k4I

Symbol (kg)a (N/m)a (N/m)b (s) (N/m3) (N/m3)

Value 7.67 × 10−13 0.142 277 0.082 845 3 8.75 × 10−3 1.0 × 108 4.0 × 1010

6.98 × 10−13 0.168 389 0.030 8231
0.010 831
0.004 047 21
0.002 495 21
0.000 823 741

aThe upper row is for the longer cantilever; the lower row is for the shorter cantilever.
bListed from nearest neighbor to sixth nearest.

onsite spring constant, k
(j )
2I is the harmonic spring constant

for the intersite connection up to sixth neighbor, and k4I is
the quartic spring constant for the intersite connection. The
right hand side is the driving term. Here to match experiment
αd = 1000 m/s2 is the driver acceleration and � is the driver
frequency. The second term is for the probe at frequency ω

and acceleration amplitude αp = 0.01 m/s2. Fixed boundary
conditions are used and the total number of cantilevers is 100.
The specific lattice parameters, listed in Table I, are determined
by experimental observation and comparison with simulations.

Figure 9(a) shows the calculated amplitude of the AR-
ILM as a function of the driver frequency. It is obtained by
decreasing or increasing the driver frequency from the middle
of the AR-ILM frequency region. Below the lower bifurcation
frequency exists the low amplitude, no ILM state. On the other
hand, Fig. 9(b) presents results of simulation starting from
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FIG. 9. (a) Simulated AR-ILM amplitude as a function of the
driver frequency with driver appropriate to the experimental level.
The AR region is identified between two transitions at edges. The
stable frequency region is 137.56 to 146.54 kHz, or 0.102 to 2.29
by the normalized difference frequency. (b) Amplitude vs driver
frequency for different chirping or starting conditions. Top trace,
fast frequency rate required to reach the AR-ILM state. Bottom two
traces, slow up and down scanning; no AR state occurs. The top of
the band frequency is 137.14 kHz and the band width is 4.1 kHz.
Curves are shifted down for clarity.

the no ILM, low amplitude state while changing the driver
frequency either up or down. The AR-ILM state is achieved
only when the driver frequency is chirped up rapidly to pass
through the low amplitude state. At a slow speed of scanning,
the end result is no ILM as shown by bottom traces in Fig. 9(b).
When the driver frequency decreases from above the upper
bifurcation frequency, the low amplitude state is maintained
through the AR frequency region. The small amplitude at the
bottom curve in Fig. 9(b) illustrates where chaotic traveling
ILMs can be realized.

The calculation of the response spectrum is carried out in a
manner similar to the experiments. First, the ILM is generated.
Then, the uniform probe is applied. Displacement at the center
site of the ILM is multiplied by cosine and sine functions
vibrating with the probe frequency. Two set of simulations with
opposite phases of the probe driver are made, then by subtract-
ing one from the other the large oscillation component pro-
duced by the ILM can be eliminated. The long time average of
the cosine and sine multiplied displacements gives the real and
imaginary parts of response functions and then by changing the
probe frequency slowly, the response spectra are calculated.

Figure 10 presents the magnitude of the linear response
spectra as a function of the normalized beat frequency
between the driver and the probe. The traces are for different
driver frequencies throughout the entire stable AR region.
As the upper bifurcation point is approached at the top of
the figure, the two symmetric peaks, the NF and its mixing
partner, move toward the driver frequency, at the center, and
their amplitudes increase. As the lower bifurcation point is
approached at the bottom of the figure the mixing partner of
the NF moves toward and finally intersects the topmost band
mode of the array. The band modes are magnified by 20-fold
to make them visible on this plot.

The driver frequency dependencies of two different kinds of
beats are shown in Fig. 11. In these plots the abscissa presents
the driver frequency with respect to the top of the band mode
spectrum normalized by the bandwidth of the optic branch.
This provides a normalized measure of the nonlinearity. In
Fig. 11(a) the amplitude of the center of the ILM for two
different driving accelerations, αd = 300 m/s2 and αd =
1000 m/s2, are displayed, defining the corresponding AR state.
In Fig. 11(b) the normalized beat frequency of the NF (solid
line) and LLM (dashed line) are shown for αd = 1000 m/s2.
Note that the NF beat decreases as the upper bifurcation is
approached. The peak height displayed in Fig. 11(c) diverges
as the beat frequency decreases. [Also note there is a small
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FIG. 10. (Color online) Linear response spectra of the AR state
as a function of the probe frequency. These are aligned by the driver
frequency from bottom to top. The entire stable frequency region
of the driver frequency is shown, i.e., 137.6 to 146.4 kHz, or 0.112
to 2.26 by the normalized difference frequency (F − fT )/fBW. The
uniform probe perturbation is applied in simulations. At the upper
bifurcation point, the natural resonance beat frequency softens and its
peak height diverges. At the lower bifurcation point, the lower natural
resonance peak overlaps with the top of the band modes, shown as
small peaks near the bottom of the figure. The AR transition occurs
when this linear mode overlaps via four-wave mixing. The band mode
response near the lower bifurcation region are magnified 20 times.
αd = 1000 m/s2.

sudden rise of the beat frequency and the peak height in
Figs. 11(b) and 11(c) at the lower bifurcation point.]

With no clear evidence of the lower bifurcation in Fig. 11,
and because of experimental evidence of the interaction
between the band mode and the NF in Fig. 8, the imaginary
part of linear response spectrum is plotted in Fig. 12 for
all modes. Different from the spectra shown in Fig. 10, the
probe perturbation is now applied to one lattice point (site
47) that is the next short cantilever site to the center of
the ILM (site 49). With this one lattice point driving, all
modes are excited, including the even LLM. The vibration
at the perturbation site is analyzed to calculate the response
spectra. The spectra are aligned from high to low normalized
driver-difference frequency (F − fT )/fBW, numbers from the
top, and the spectrum at the bottom is very close to the lower
bifurcation point. Initially, the even LLM is outside of the
NF partner peak. When decreasing the driver frequency, this
even LLM crosses the NF partner peak. Dashed curves are
magnified band mode spectra that appear below the lower NF
partner. The lower bifurcation point occurs when the lower NF
partner coalesces with the topmost band mode.

Vibration eigenvectors of the ILM, the NF, and the even
LLM are shown in Fig. 13 for two driver frequencies; one of
them is very close to the lower bifurcation point and the other
is very close to the upper bifurcation point. Both vibration
shapes for upper and lower sideband peaks are shown. These
are obtained by averaging snapshots at the maximum response
instant over a few thousand periods of vibrations. Because
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FIG. 11. (a) ILM center amplitude as a function of the driver
frequency relative to the topmost band mode frequency normalized by
the optical bandwidth. For αd = 1000 m/s2 two different bifurcation
points are identified by the sudden drops in amplitude. For αd =
300 m/s2 there is no sudden drop of the amplitude at the lower AR
side. (b) Normalized beat frequency between the driver and the NF
(solid) and the even LLM (dashed) for αd = 1000 m/s2. (c) The peak
height of NF beat for the case αd = 1000 m/s2. It diverges as the
upper bifurcation frequency is approached. (d) NF (solid) and even
LLM (dashed) beat frequencies for αd = 300 m/s2. In this case, the
even LLM softens before the lower NF beat intersects the top band
mode at the lower bifurcation point.

of the cosine probe driver, the maximum response appears
a quarter period delayed in each period. Only snapshots at
these moments are accumulated. Again, two simulations with
opposite probe phase eliminate by subtraction most of the large
vibration of the ILM. The same method is used in the response
calculation so the NF mixing partner labeled (NF) in Fig. 13
is upside down with respect to the NF.

When the driver frequency is large, the ILM has a large
amplitude and is narrow in width. The NF has the lowest beat
frequency for this case. The ILM generates at least two LLMs,
the even LLM is next to the NF, and the odd LLM extends
outside of the even LLM. For both even and odd shaped LLMs,
the lower peaks are due to the LLMs and the upper peaks are
four-wave mixing results with the ILM. The shape of the upper
odd LLM is very similar to the ILM, because it is strongly
affected by the shape of the ILM. When the driver frequency
approaches the lower bifurcation point, i.e., the ILM becomes
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FIG. 12. (Color online) Imaginary part of the response spectra
near the lower bifurcation point as a function of the probe frequency.
From top to bottom, the driver frequency is decreased toward the
lower bifurcation point. The lower bifurcation happens when the
lower (NF) and the band mode coalesce. αd = 1000 m/s2. To see
all the modes, the probe perturbation is applied to a short cantilever
(site 47) next to the ILM (site 49). Vibration is analyzed at the same
perturbation site. Lower parts of spectra are magnified ten times to
see band modes. As the lower (NF) approaches the lower bifurcation
point (bottom trace), the peak heights of the (NF) and the band mode
are enhanced. At the middle of this picture, the lower (NF) peak and
the even LLM cross without interaction.
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FIG. 13. Normalized vibration shapes of ILM and LLMs aligned
by their peak frequencies. The left panel is for a driver frequency
nearby the lower bifurcation (F − fT )/fBW = 0.137 (137.70 kHz)
and right panel is for nearby the upper bifurcation (F − fT )/fBW =
2.16 (146.00 kHz). αd = 1000 m/s2. Letters indicate names of modes,
and letters with parentheses are for peaks generated by the four-
wave mixing with the mode and the ILM. For the high frequency
case (right), even and odd LLMs exist below the ILM. For the low
frequency case (left) the odd LLM merges into the band and becomes
the top band mode. In addition, the frequency of the even LLM is
closer to the ILM than is the NF.

smaller and wider. The odd LLM is extended and looks
like a band mode, i.e., its frequency is very close to the top of
the optic band. In both frames, the NF shape is very similar to
that of the ILM. On the other hand, its mixing partner labeled
“(NF)” in the left panel near the lower bifurcation point is
clearly different from that of NF. Since the frequency of the
(NF) is very close to top of the band at the lower bifurcation,
its shape is distorted by interaction with the optic band.

Another distinct feature, seen in Fig. 13, is the difference
in shape between the odd-LLM (or the top band mode) at the
bottom of each panel, and their mixing partner shown at the top
of each panel. As shown here, the mixing partner (upper) shape
now resembles the ILM. This narrower shape is generated by
the nonlinear mixing the odd-LLM with the ILM, and since
the ILM only exists locally the nonlinear mixing can only take
place at the lattice points where the ILM exists.

VI. DISCUSSIONS

A. Upper bifurcation point for an ILM and a Duffing resonator

At the upper bifurcation of an ILM, the NF frequency
approaches the driver frequency and its amplitude diverges.
Simulations show good agreement with the experimental
results. Clearly, the NF itself plays an important dynamic role
at the upper bifurcation point. In addition the driven ILM
amplitude behavior with frequency is similar to that found
for the Duffing oscillator [compare Figs. 5 and 9(a)]. Also,
the behavior of the ILM NF is quite similar to that found
for a single Duffing oscillator, as described in Sec. II and the
Appendix. At the bifurcation for both the ILM and the single
Duffing resonator, as shown in Eq. (A7), the beat frequency
between the driver and the NF goes to zero at the transition.

More evidence of an NF for the driven ILM is their similar
shapes shown in Fig. 13. In contrast, LLMs have a completely
different form than the ILM consistent with the expectation
that a deformation vibration of the ILM requires the excitation
of LLMs. At the same time, the similar shape in Fig. 13
means that the perturbed motion of the NF does not cause
shape deformation of the driven ILM. Since there is only one
degree of freedom in the single Duffing resonator, this shape
resemblance between the NF and the ILM suggests the NF in
both systems are similar.

To see the resemblance of the two systems more clearly, we
plot the ILM center amplitude in a van der Pol plane that is
usually used to analyze the Duffing oscillator [52]. Although
the ILM has many degrees of freedom, only the amplitude of
the center site of the ILM is monitored, because the ILM and
its NF only differ in phase. To make the comparison the sine
amplitude of the ILM displacement is plotted as a function of
the cosine component,

xi = a cos �t + b sin �t, (6)

where xi is the displacement at the center and a and b are
cosine and sine coefficients. The results are shown in Fig. 14,
where, just like Fig. 2(b), the ILM amplitude at a particular
instant is described by an arrow from the origin to a point on the
elliptical trajectory for a particular driving frequency and the
area of the ellipse is related to the amplitude of the NF, which
is driven by the weak probe. Note that at large amplitudes
the major axis of the ellipse is along the θ direction of an
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FIG. 14. (Color online) Sine coefficient b vs cosine coefficient a

(van der Pol phase plane) of the probe perturbed ILM. The driver
frequency is changed from (F − fT )/fBW = 0.137 (138 kHz) to
2.161 (146.4 kHz) with 0.098 (0.4-kHz) steps. The probe frequency is
set at each NF for different driver frequencies. The stable fixed point
located at each center of each ellipse moves circularly upward as
the driver frequency is increased and approaches a = 0. The dashed
curve is a quarter circle with its center at the origin. Ellipses are
along the θ direction, showing that the NF causes phase oscillation
of the ILM. To see these ellipses, relatively larger probe excitation
amplitude 10 m/s2 is used. The small ellipse for 2.161 is due to off
resonance by the sideband response nonlinearity with the larger probe
excitation amplitude.

origin-centered circle (dashed curve), indicating that the NF
accompanies the phase oscillation of the ILM. Our conclusion
is that the dynamics of an ILM in a micromechanical array as
the upper bifurcation point is approached is the same as that
previously described for a single Duffing oscillator.

B. Mechanism of the lower bifurcation

The mechanism of the lower bifurcation is different from
the upper one. It is related to the interaction between the NF
and the band mode. This can be seen most easily by examining
Fig. 15. As the ILM frequency increases with amplitude the
upper and lower NF frequencies depend on the ILM amplitude,
and the beat frequency softens when approaching to the
upper bifurcation point. At the lower bifurcation point, the
lower (NF) four-wave mixing peak intersects the band mode.
Although the even LLM is very close to the driver frequency
around the lower bifurcation point it does not play a role in the
transition because the NF has odd symmetry.

The key to understanding the lower bifurcation is again
the NF. The enhancement of the NF-response peak can be
understood as follows. The NF is the positive peak on the high
frequency side of the ILM. Vibration at the upper sideband
peak generates a four-wave mixing signal at the lower (NF)
peak. If the lower (NF) peak coalesces with the band mode
frequency, the four-wave mixing signal of the upper NF
resonates with it, and the resonance reduces the damping. This
signal is four-wave mixed again with the large amplitude ILM
and amplifies the upper NF signal. The net gain can be far
larger than before coalescence and if the net gain overcomes
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FIG. 15. (Color online) ILM, NF, even LLM, and odd LLM
frequencies as a function of the ILM amplitude (frequency) for fixed
αd = 1000 m/s2. Lower bifurcation takes place when the lower peak
of the (NF) touches the optic band. At a low driving amplitude such
as αd = 300 m/s2, the gap frequency of the even LLM softens before
touching of the lower (NF) and the ILM begins to move laterally.

the loss, the coupled NF and band modes grow without any
driving source. Thus, the response diverges.

This process is the same as parametric oscillation by
four-wave mixing, which produces two different frequencies
ω1 and ω2 from the large amplitude vibration at � simultane-
ously when these frequencies satisfy a relation ω1 + ω2 = 2�.
A similar nonlinear process occurs in parametric oscillators
and amplifiers where the three-wave mixing ω1 + ω2 = �

process is usually employed [54,55]. Signals at ω1 and ω2

are called signal and idler, respectively, and some parametric
oscillators have resonators to enhance the parametric process.
For the ILM case, the NF can be one of the resonators and
the band mode can be another resonator. Since ω1 and ω2

are symmetric to the driver frequency for ω1 + ω2 = 2�, the
coalescing of the lower peak of the NF and the band mode
producing the idler and the resonating signal. If this process
takes place, the driver energy is effectively converted into
these modes, and auto oscillation will be observed producing
divergence of the response peak.

A theoretical study about the lower bifurcation reveals
that it is a stability transition bifurcation [22]. Before the
bifurcation, there are stable ILM and low amplitude solutions.
At the bifurcation, the stable ILM changes from a sink to
a saddle with the remaining low amplitude stable solution.
Thus, the ILM disappears and only the low amplitude state is
realized [22]. From our study, the divergence of the amplitude
of the NF is observed, which corresponds to the conversion
of the spiral sink to a spiral source in the van der Pol phase
space. The theoretical work predicts conversion to the saddle
in the full phase space, while we observed switching to a
source in a lower dimensional subspace of the full phase
space, consistent with the theoretical work.

Figure 15 also suggests the existence of another kind of
bifurcation when the even LLM softens faster than the coales-
cence of the band and the lower NF peak, although we have
not observed such a case experimentally. We have explored
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numerically the parameter space and found that such a case
happens with lower driver amplitude, αd = 300 m/s2. In this
case, there is no low amplitude state as shown in Fig. 11(a). The
ILM smoothly goes into the chaotic region when the driver fre-
quency is decreased in simulations. The softening of the even
LLM is consistent with the removal of the ILM pinning effect.

C. Application of the natural frequency measurement

There are two applications that come to mind. (1) For any
driven, damped systems, the NF of a nonlinear excitation is
to be expected if it has a stable fixed point in a van der Pol
phase space. A four-wave emission spectrum [by Eq. (A8)]
can be used to observe such an NF. For example, Kollmann
et al. studied the stability of solitons in a discrete, driven,
damped nonlinear Ablowits-Ladik Schrödinger equation [56].
Since bifurcation is realized at the edge of stable region an NF
should provide a well defined marker of the incipient transition.
(2) A quantum oscillator system may provide another appli-
cation. There is a similar sideband structure in an emission
spectrum of a driven quantum oscillator [57], indicating that
the NF may exist in a quantum lattice. ILMs in quantum lattices
have been studied theoretically [58–62] and experimentally
[63–68]. In those systems, observation of the NF could be
used to study the approach to bifurcation.

Although our linear spectroscopic measurement of the NF
identifies properties near the stable point, if a barrier height
can be obtained for a transition from the stable state to
another stable state, it may be helpful for applications, such
as exploring stochastic resonance. If the barrier height can be
estimated from such a response experiment, then ILMs can be
used to explore stochastic resonances, bifurcation amplifiers,
or other information processing in arrays.

VII. CONCLUSION

Once the NF of a nonlinear oscillator is identified in
terms of its asymptotic limit as the driver and damping
simultaneously go to zero (so that its amplitude remains
fixed) then the resonance plays the same role as the NF for
a driven harmonic oscillator without damping. One of the
main findings of this work is that this idea carries over to
a discrete nonlinear lattice with many degrees of freedom. By
experimental measurement and simulations it has been shown
that the NF plays key, but different, roles in the two bifurcation
transitions observed there. We have shown that observing
the linear response spectrum via a variable frequency probe
perturbation on a strongly driven nonlinear mode is very useful
for experimentally studying the approach to the switching
transitions. The two bifurcations of the AR-ILM observed
in the cantilever array are studied both experimentally and
numerically. The driver frequency is the variable parameter
with which to reach the bifurcation regions that occur at both
edges of the stable AR driver frequency range. The NF of the
ILM is observed as a sideband pair symmetrically located
about the driver frequency. Other linear features observed
with this technique are an even-linear local mode and the
topmost band modes. At the upper bifurcation, the NF peak
approaches the driver, as measured by the softening of the beat
frequency between the two. At the lower bifurcation point, the

position of the four-wave mixing partner of the NF coalesces
with the topmost band mode of the same symmetry and the
NF amplitude diverges. The nonlinear mixing of these two
modes causes auto oscillation of the NF and the ILM again
becomes unstable. The tracking of the NF of the ILM is the
key ingredient in identifying the approach of both transitions.

In the language of the phase space representation for this
nonlinear lattice, this linear probe spectroscopy measures the
local property nearby the stable ILM state as a response spec-
trum. For the upper bifurcation case, the saddle-node bifurca-
tion of pair annihilation of the stable and the unstable solution
causes softening of the phase oscillation in the van der Pol
phase space, which is a 2D projection of the full phase space
for considering the NF of the ILM. For the lower bifurcation
case, it is the transition of the stable ILM solution to the saddle
in this phase space. The auto oscillation of the NF indicated by
the divergence of the peak amplitude is the sign of conversion
from a stable sink to an unstable spiral source in the van der
Pol phase plane.
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APPENDIX: DRIVEN DUFFING OSCILLATOR AND ITS
NATURAL FREQUENCY

Equation (1) is the model equation of the single Duffing
oscillator. The driver � is set near its fundamental resonance
and a probe (ω) spectrum response is obtained near this driver
frequency. Inserting Eq. (2) into Eq. (1) and retaining terms
that oscillate near the driver frequency, one finds(

ω2
0 + 3

4ε|Ã|2 − �2 − iγ�
)
Ãe−i�t

+ (
ω2

0 + 3
2ε|Ã|2 − ω2 − iγ ω

)
ãe−iωt + 3

4εÃ2b̃∗e−iωt

+ (
ω2

0 + 3
2ε|Ã|2 − ω′2 − iγ ω′)b̃e−iω′t + 3

4εÃ2ã∗e−iω′t

= αde
−i�t + αpe−iωt , (A1)

where γ = 1/τ . By equating each oscillating terms, the three
resulting equations are(

ω2
0 + 3

4ε|Ã|2 − �2 − iγ�
)
Ã = αd, (A2a)(

ω2
0 + 3

2ε|Ã|2 − ω2 − iγ ω
)
ã + 3

4εÃ2b̃∗ = αp, (A2b)(
ω2

0 + 3
2ε|Ã|2 − ω′2 − iγ ω′) b̃ + 3

4εÃ2ã∗ = 0. (A2c)

Equation (A2a) is the driver response. Where three solu-
tions are possible for Ã, the high amplitude solution is taken
among them. From Eqs. (A2b) and (A2c), the probe response
function can be calculated as

χ̃ (ω) = ã

αp

= 1(
ω2

nl − ω2 − iγ ω
) − 9

16ε2|Ã|4 1
(ω2

nl−ω′2+iγ ω′)

= χ̃0 (ω)

1 − 9
16ε2|Ã|4χ̃0 (ω) χ̃∗

0 (ω′)
, (A3)
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FIG. 16. Real (upper) and imaginary (lower) parts of analytical
(solid) and simulated (dashed) sideband response for a single Duffing
resonator as a function of probe frequency. αd = 2000 m/s2 and
αp = 0.01 m/s2. Simulated response is obtained by eliminating the
large amplitude oscillation by taking the difference of opposite probe
phase simulations. The result is divided by the prove driver strength.
The upper peak is larger than the lower peak and has a positive
imaginary part.

where χ̃0 (ω) = 1
ω2

nl−ω2−iγ ω
and ω2

nl = ω2
0 + 3

2ε|Ã|2. Real and

imaginary parts of the response functions are given by χ̃ =
χ1 + iχ2.

Note that the nonlinear frequency shift of ã and b̃ is twice
that of Ã. This result is analogous to that in a nonlinear glass
fiber where the phase shift due to a cross-phase modulation is
twice that for self phase modulation [69]. It is this mechanism
that makes the NF frequency dependence different from that
of the driving frequency. It is Eq. (A2c) that brings the natural
resonance close to the driver.

The solid curves in Fig. 16 show the real and imaginary
parts of the analytical response curve described by Eq. (A3).
Values of the parameters used throughout this Appendix are
τ = 0.01 s, ω0 = 2π × 105 s−1, and ε = 1.97 × 1020 s−2 m−2.
The dashed curves in Fig. 16 show the corresponding curves
by simulations. For the probe driver, we have used typically
αp = 0.01 m/s2. To eliminate the large amplitude vibration
oscillating at the driver frequency, we made two sets of
simulations with opposite probe phases, keeping the driver the
same. The resultant difference between the two simulations
contains only the effect of the probe. Then, the remaining
displacement is multiplied by cos ωt or sin ωt and averaged
over a certain time (like a lock-in amplifier) to obtain real
and imaginary parts of the probe response. By changing the
probe frequency, real and imaginary parts of the response
spectra are calculated. Figure 16 shows real and imaginary
parts of the probe response. The curves in Fig. 16 show good
agreement between analytical solution and simulations. The
small difference between them is due to scanning the probe
frequency at a nonzero speed.

Similar sideband curves are obtained by Dykman et al.
in Refs. [46,70]. They studied the Duffing oscillator as a
foundation for a stochastic resonance situation. Since noise
plays an important role in the stochastic resonance, they
calculated a spectral density of vibration analytically (Eq. (19)
in Ref. [46]). Although their equation is somewhat more
complex than ours, it reproduces our sideband curve, the
beat frequency, and peak height well if we calculate the

spectral density of only the high amplitude state (j = 3 in
their notation) in their Eq. (19).

The beat frequency ωb is calculated from the denominator
of Eq. (A3) by setting its real part to zero, ignoring the damping
γ . The result is

ωb = ωn − �

=
√

�2 + ω2
nl −

√
4�2ω2

nl + 9
16ε2|Ã|4. (A4)

The beat frequency is related to the stability of the stationary
state. For the Duffing equation, the stability can be checked
by evaluating perturbed equations at the stationary state
[Chap. 4.1 in Ref. [71], or Chap. 7 in Ref. [72]]. For example,
from the equation of motions for a(t) and b(t) (Eqs. (7.16) and
(7.17) in Ref. [72]) and their linear approximated equations
(Eq. (7.21) in Ref. [72]), one can obtain a second order
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FIG. 17. (Color online) (a) The driver response and the NF as
a function of the driver frequency of the Duffing resonator. αd =
1000 m/s2. Solid curve is the stable driver response amplitude, and
long dashed curve is the unstable branch. Dotted curve is the natural
resonance curve for the high amplitude solution. Inset is the magnified
picture at a middle range, it shows how to find the natural frequency.
For a given driver frequency, find a point (open circle) on the driver
response curve indicated by the solid curve. Draw a horizontal line and
find crossing points with the dotted curves. These points indicate the
natural frequency at the amplitude determined by the driver frequency.
As the amplitude decreasing, the upper natural frequency peak is
approaching the linear resonance peak. When the driver frequency
is nearby the linear resonance frequency, the lower peak is very
small and the upper peak is dominant. Note that the position of the
natural frequency peak is different from the unstable solution. (b) The
beat frequency of the natural frequency as a function of the driver
frequency. It goes to zero as approaching to the upper bifurcation.
(c) The peak height of the natural frequency as a function of the
driver frequency. It diverges at the upper bifurcation point.
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derivative equation with one variable by inserting one of
the linearized equations. The oscillation frequency can be
calculated as

ω2
b = 1

4�2

[(
ω2

nl − �2
)2 − ε2 9

16
|Ã|4

]
. (A5)

The beat frequency by Eq. (A4) can be approximated to
Eq. (A5) by using the fact ωb � �,ωnl . There is not much
difference in the driver frequency dependence of the beat
frequency between these two equations.

The single Duffing resonator has one bifurcation point with
increasing frequency for the AR high amplitude state, where
the amplitude drops suddenly. The beat frequency by Eq. (A5)
decreases as it is approached. The bifurcation frequency is
calculated from Eq. (A2a) as

� =
√

ω2
0 + 3

4
ε|Ã|2 − γ 2

2
≈

√
ω2

0 + 3

4
ε|Ã|2. (A6)

Inserting this result into Eq. (A5) gives zero frequency, so

ω2
b = 1

4�2

[(
ω2

0 + 3

2
ε|Ã|2 − ω2

0 − 3

4
ε|Ã|2

)2

− ε2 9

16
|Ã|4

]

= 0. (A7)

Figure 17 shows the natural resonance frequency as a
function of the driver frequency. Solid and long dashed
curves in Fig. 17(a) are the stable and unstable solutions,
respectively. Dotted curves are upper and lower natural
resonance frequencies, as a function of the amplitude. To find
those frequencies, determine the amplitude at a given driver
frequency first (open circle). Then, draw a horizontal line. See

two crossing points with the dotted curves (solid circles). These
frequencies are the natural resonance frequencies. Figure 17(b)
is the beat frequency. It increases first, then goes to zero at
the upper bifurcation point. Figure 17(c) is the peak height.
It gradually increases at lower frequency, but diverges at the
bifurcation point.

Although Eq. (A3) gives the response for the high amplitude
state, it can be applied to the low amplitude state by using
the low amplitude solution among three solutions of Ã. In
this case there is only one resonance peak below the driver
frequency, nearby the linear resonance frequency. Because of
the low amplitude of the driver response, and because of weak
four-wave mixing process, the other peak is not seen in the
spectrum. As the driver frequency decreases approaching a
low to high bifurcation point, the NF peak approaches the
driver frequency and the amplitude jumps to high amplitude
[36,48].

In addition, the four-wave emission spectrum can be
calculated from Eq. (A2) as follows:

χ̃emission(ω) = b̃

αp

= −3

4
εÃ2χ̃ (ω′)

ã∗

αp

= − 3
4εÃ2χ̃(ω′)χ̃∗

0 (ω)

1 − 9
16ε2|Ã|4χ̃∗

0 (ω)χ̃0(ω′)
. (A8)

Because of very similar denominator of Eq. (A8) to Eq. (A3),
the emission spectrum has the same two peak structure as the
response function when the amplitude |Ã| is large. Such side-
bands have been observed in a four-wave emission spectrum
of the driven antiferromagnet, C2H5CH3(CuCl4)2 [66,73].
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[11] T. Rössler and J. B. Page, Phys. Lett. A 204, 418 (1995).
[12] R. Lai and A. J. Sievers, Phys. Rep. 314, 147 (1999).
[13] M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski,

and H. G. Craighead, Phys. Rev. Lett. 90, 044102 (2003).
[14] M. Sato, B. E. Hubbard, and A. J. Sievers, Rev. Mod. Phys. 78,

137 (2006).
[15] V. Hizhnyakov, A. Shelkan, M. Klopov, S. A. Kiselev, and A. J.

Sievers, Phys. Rev. B 73, 224302 (2006).
[16] E. Kenig, B. A. Malomed, M. C. Cross, and R. Lifshitz, Phys.

Rev. E 80, 046202 (2009).

[17] Y. Doi and K. Yoshimura, J. Phys. Soc. Jpn. 78, 034401 (2009).
[18] E. Kenig, R. Lifshitz, and M. C. Cross, Phys. Rev. E 79, 026203

(2009).
[19] P. Maniadis and S. Flach, Europhys. Lett. 74, 452 (2006).
[20] M. Spletzer, A. Raman, A. Q. Wu, and X. Xu, Appl. Phys. Lett.

88, 254102 (2006).
[21] A. J. Dick, A. J. Balachandran, and C. D. Mote, Nonlin. Dyn.

54, 13 (2008).
[22] Q. Chen, Y.-C. L. L. Huang, and D. Dietz, Chaos 19, 013127

(2009).
[23] J. Wiersig, S. Flach, and K. H. Ahn, Appl. Phys. Lett. 93, 222110

(2009).
[24] M. Kimura and T. Hikihara, Chaos 19, 013138 (2009).
[25] L. Q. English, F. Palmero, A. J. Sievers, P. G. Kevrekidis, and

D. H. Barnak, Phys. Rev. E 81, 046605 (2010).
[26] M. Sato, S. Imai, N. Fujita, S. Nishimura, Y. Takao, Y. Sada,

B. E. Hubbard, B. Ilic, and A. J. Sievers, Phys. Rev. Lett. 107,
234101 (2011).

[27] Y. Doi and A. Nakatani, J. Solid Mech. Mater. Eng. 6, 71
(2012).

[28] Y. Watanabe, K. Hamada, and N. Sugimoto, J. Phys. Soc. Jpn
81, 014002 (2012).

[29] M. Sato, B. E. Hubbard, L. Q. English, B. Ilic, D. A.
Czaplewski, H. G. Craighead, and A. J. Sievers, Chaos 13, 702
(2003).

012920-14

http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1103/PhysRevB.41.7835
http://dx.doi.org/10.1016/0038-1098(88)91178-7
http://dx.doi.org/10.1016/0038-1098(88)91178-7
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1063/1.1650069
http://dx.doi.org/10.1063/1.1650069
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1103/PhysRevA.45.4097
http://dx.doi.org/10.1103/PhysRevB.48.13508
http://dx.doi.org/10.1103/PhysRevB.48.13508
http://dx.doi.org/10.1016/0375-9601(95)00519-9
http://dx.doi.org/10.1016/S0370-1573(98)00090-8
http://dx.doi.org/10.1103/PhysRevLett.90.044102
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/PhysRevB.73.224302
http://dx.doi.org/10.1103/PhysRevE.80.046202
http://dx.doi.org/10.1103/PhysRevE.80.046202
http://dx.doi.org/10.1143/JPSJ.78.034401
http://dx.doi.org/10.1103/PhysRevE.79.026203
http://dx.doi.org/10.1103/PhysRevE.79.026203
http://dx.doi.org/10.1209/epl/i2005-10550-y
http://dx.doi.org/10.1063/1.2216889
http://dx.doi.org/10.1063/1.2216889
http://dx.doi.org/10.1007/s11071-007-9288-0
http://dx.doi.org/10.1007/s11071-007-9288-0
http://dx.doi.org/10.1063/1.3078706
http://dx.doi.org/10.1063/1.3078706
http://dx.doi.org/10.1063/1.3043434
http://dx.doi.org/10.1063/1.3043434
http://dx.doi.org/10.1063/1.3097068
http://dx.doi.org/10.1103/PhysRevE.81.046605
http://dx.doi.org/10.1103/PhysRevLett.107.234101
http://dx.doi.org/10.1103/PhysRevLett.107.234101
http://dx.doi.org/10.1299/jmmp.6.71
http://dx.doi.org/10.1299/jmmp.6.71
http://dx.doi.org/10.1143/JPSJ.81.014002
http://dx.doi.org/10.1143/JPSJ.81.014002
http://dx.doi.org/10.1063/1.1540771
http://dx.doi.org/10.1063/1.1540771


SWITCHING DYNAMICS AND LINEAR RESPONSE . . . PHYSICAL REVIEW E 87, 012920 (2013)

[30] J. Fajans, E. Gilson, and L. Friedland, Phys. Plasmas 6, 4497
(1999).

[31] J. Fajans and L. Friedland, Am. J. Phys. 69, 1096 (2001).
[32] S. V. Batalov and A. G. Shagalov, Phys. Rev. E 84, 016603

(2011).
[33] Y. Gopher, L. Friedland, and A. G. Shagalov, Phys. Rev. E 72,

036604 (2005).
[34] A. Barak, Y. Lamhot, L. Friedland, and M. Segev, Phys. Rev.

Lett. 103, 123901 (2009).
[35] O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and

I. Siddiqi, Phys. Rev. Lett. 101, 117005 (2008).
[36] J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and

Chaos (Wiley & Sons, Chichester, 1986).
[37] I. Serban, M. I. Dykman, and F. K. Wilhelm, Phys. Rev. A 81,

022305 (2010).
[38] A. Chatterjee, Int. J. Mech. Sci. 52, 1716 (2010).
[39] A. Elias-Zuniga, Nonlin. Dyn. 45, 227 (2006).
[40] B. Yurke, D. S. Greywall, A. N. Pargellis, and P. A. Busch, Phys.

Rev. A 51, 4211 (1995).
[41] A. G. Shagalov, J. J. Ramsmussen, and V. Naulin, J. Phys. A:

Math. Theor. 42, 045502 (2009).
[42] K. M. Murch, R. Vijay, I. Barth, J. A. Aumentado, L. Friedland,

and I. Siddiqi, Nat. Phys. 7, 105 (2011).
[43] R. B. Karabalin, R. Lifshitz, M. C. Cross, M. H. Matheny, S. C.

Masmanidis, and M. L. Roukes, Phys. Rev. Lett. 106, 094102
(2011).

[44] I. Kozinsky, H. W. C. Postma, O. Kogan, A. Husain, and M. L.
Roukes, Phys. Rev. Lett. 99, 207201 (2007).

[45] J. S. Aldridge and A. N. Cleland, Phys. Rev. Lett. 94, 156403
(2005).

[46] M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E.
McClintock, N. D. Stein, and N. G. Stocks, Phys. Rev. E 49,
1198 (1994).

[47] H. B. Chan and C. Stambaugh, J. Stat. Mech.: Theory Exp.
(2009) P01028.

[48] J. M. T. Thompson and L. N. Virgin, Int. J. Nonlinear Mech. 21,
205 (1986).

[49] V. Hizhnyakov, A. Shelkan, M. Klopov, and A. J. Sievers,
J. Lumin. 128, 995 (2008).

[50] L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon Press,
Oxford, 1960).

[51] S. M. Soskin, R. Mannella, and P. V. E. McClintock, Phys. Rep.
373, 247 (2003).

[52] D. W. Jordan and P. Smith, Nonlinear Ordinary Differential
Equations (Oxford University Press, New York, 2007).

[53] Q. F. Chen, L. Huang, and Y. C. Lai, Appl. Phys. Lett. 92, 241914
(2008).

[54] R. G. Smith, in Laser Handbook, edited by F. T. Arecchi and
E. Q. Schulz-Dubois (North Holland, Amsterdam, 1972),
Vol. 1.

[55] Y. R. Shen, The Principles of Nonlinear Optics (Wiley & Sons,
New York, 1984).

[56] M. Kollmann, H. W. Capel, and T. Bountis, Phys. Rev. E 60,
1195 (1999).
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