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The relaxation dynamics in mixed chaotic systems are believed to decay algebraically with a universal decay
exponent that emerges from the hierarchical structure of the phase space. Numerical studies, however, yield a
variety of values for this exponent. In order to reconcile these results, we consider an ensemble of mixed chaotic
systems approximated by rate equations and analyze the fluctuations in the distribution of Poincaré recurrence

times. Our analysis shows that the behavior of these fluctuations, as a function of time, implies a very slow

convergence of the decay exponent of the relaxation.
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I. INTRODUCTION

Recurrences play an important role in physics. The statistics
of the recurrence times of particles govern the transport
properties of open systems such as quantum dots attached to
external leads and the relaxation characteristics of distribution
functions in closed systems (see Ref. [1]). Additionally, in the
short-wavelength limit, quantum mechanical properties such
as energy level correlations [2], weak localization [3], and shot
noise [4] are also determined by recurrences of the underlying
classical dynamics.

One of the basic statistical characteristics of recurrences
in open systems is the distribution of Poincaré recurrence
times F'(¢). This is the probability of a trajectory to return,
at time larger than ¢, to a predefined region in phase space.
In this paper we focus our attention on the the distribution
of Poincaré recurrence times of mixed chaotic systems (more
precisely, two-dimensional symplectic maps). In these generic
systems the phase space consists of islands of regular dynamics
immersed in a sea of chaotic behavior and around these islands
there are smaller satellite regular motion islands around which
are even smaller islands, and so forth ad infinitum [1]. In
such systems, a trajectory within the chaotic component of the
phase space may stick to the regular islands for an exceedingly
long time. This feature is believed to manifest itself in an
algebraic decay of the distribution of Poincaré recurrences in
the long-time asymptotic limit
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Many studies have investigated this algebraic decay, focus-
ing on two main issues: the question of universality of the decay
exponent Yy and the calculation of its actual value. Yet after
three decades of studies the answers to these questions are
still controversial. Theoretical and numerical studies [5—18]
yield a variety of values for y; ranging from 1 to 3. Some
of the numerical studies have obtained different values even
for the very same system. A possible explanation to this odd
situation is that the long-time asymptotic behavior of the
Poincaré recurrence distribution cannot be reached within the
existing computational power. The numerical calculation of y
in the long-time asymptomatic limit is exceedingly difficult.
Trajectories of a particle moving in the intricate hierarchical
structure of the phase space are very sensitive to numerical
noise. Such noise may transfer the particle from regions
of chaotic motion to regular ones and vice versa and can
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also help in crossing cantori, which serve as leaky barriers
within the phase space. These uncontrolled artifacts hinder
the identification of the true long-time asymptotic behavior
of F(t). This explanation, however, relies on the assumption
that even in the absence of numerical noise the convergence of
the Poincaré recurrence distribution to its asymptotic behavior
is very slow. The aim of the present work is to study this
aspect of the relaxation problem. We show that F'(¢) exhibits
time-dependent fluctuations that do not decay fast enough in
time. Consequently, F(¢) at different time intervals seems to
exhibit different relaxation behavior that may be interpreted as
different relaxation exponents. This behavior is demonstrated
in Fig. 1, where the numerical calculation of F(¢) for the
standard map is depicted on a log-log scale. It shows that
different time intervals may be associated with different decay
exponents. Thus convergence to the asymptotic behavior is
extremely slow and not monotonic, but rather oscillatory in
Int.

These variations in the relaxation dynamics emerge from
randomlike local variations in the phase space of the chaotic
component of mixed systems. The trajectories that contribute
to F(¢) as time progresses are trajectories that become closer
to the boundaries of the regions with regular motion. The
closer the trajectory approaches such a boundary, the longer
it sticks to it. This behavior implies that self-averaging of the
relaxation dynamics is not very effective and therefore the
convergence to the asymptotic value of the decay exponent is
rather slow, as demonstrated in Fig. 1.

Obviously, a direct study of the fluctuations of F(¢) around
its asymptotic behavior (1), whether analytical or numerical,
suffers from the same difficulties of the calculation of the
asymptotic decay exponent itself. To circumvent this difficulty
it is convenient to introduce an ensemble of mixed chaotic
systems and to use ensemble averaging in order to extract the
properties that characterize the relaxation dynamics. This is
similar in spirit to disorder averaging [19], which allows one to
characterize the dynamics of a particle in a disordered system,
such as the correlation function of its position at different
times. However, unlike disordered systems where the meaning
of their ensemble is well understood, it is unclear what might
be the invariant measure of the ensemble of mixed chaotic
systems. Nonetheless, the role of the ensemble averaging that
we shall employ here is merely a regularization procedure that
allows one to extract the intrinsic properties of the pure system.
It is similar to the introduction of an infinitesimal noise into
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FIG. 1. A log-log plot of the survival probability of the standard
map (at critical kicking strength) showing local fluctuations in its
decay power y.

the dynamics of a hard chaotic system in order to extract the
Pollicott-Ruelle resonances that characterize the relaxation of
the pure system [20].

The idea of of averaging over an ensemble of mixed
chaotic systems has already been suggested by Cristadoro and
Ketzmerick [16]. However, they use it only to calculate the
average of the decay exponent and the average of the square of
its fluctuations. They did not consider the correlation function
of these fluctuations, which is essential for understanding the
convergence of the decay exponent to its asymptotic value.
Here we shall use disorder diagrammatics to perform averages
and identify the correlation function of the fluctuations in the
return probability. Then we shall use this result to calculate the
typical value of the local fluctuations in the decay exponent
8y =y — yo and show that

(8y?) ~ t7* f(In1), )

where € < 1 and f(In?) is an oscillatory function.

Our analytical analysis of the problem is based on the rate
equation model for the dynamics of mixed chaotic systems
developed by Meiss and Ott [8]. In Sec. II we present the
model where, following Cristadoro and Ketzmerick [16],
we add a small random component to the transition rates of the
original Meiss-Ott model. In Sec. III we present the solution
of the pure model and in Sec. IV we use the results of the
disorder diagrammatics to calculate the correlation function
of the fluctuations in the return probability. This correlation
function will be used in Sec. V to derive the formula (2)
for the local fluctuations in the decay exponent. In Sec. VI
we present numerical calculations that support our analytical
results. A summary is given in Sec. VII. The technical details
of our calculations can be found in the Appendixes.

II. RANDOM TREE MODEL

In this section we present our model for the ensemble
of mixed chaotic systems. It is based on the assumption
that the statistical characteristics of the dynamics of mixed
chaotic systems can be described by rate equations. First let
us recall the rate equation approach for mixed chaotic systems
introduced by Meiss and Ott [8]. Their model assumes that the
dynamics within the chaotic component of the phase space can
be approximated by the master equation for the probabilities
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FIG. 2. (Color online) Hierarchical structure of the phase space
of mixed chaotic systems (left panel) and the Meiss-Ott tree model
(right panel).

of finding the particle in states that respect the self-similar
structure of the phase space (see the illustration on the left
in Fig. 2). Each one of the Meiss-Ott states is associated
with a definite region of the phase space whose boundaries
(represented by the dashed lines on the left in Fig. 2) are
determined by lowest flux cantori encircling the relevant set
of regular islands.

The topology of the phase space division is that of a Cayley
tree, as shown on the right-hand side of Fig. 2. Namely, a
particle in a given state might move to either a single lower
state of the hierarchy or one of two possible higher states. A
level transition is associated with a transition to a state that is
closer to the boundary circle of the island chain it is presently
revolving around, while a class transition corresponds to the
case where the particle moves into a higher state associated
with one of its present satellite island chains (see Fig. 2).

The binary structure of the Meiss-Ott tree allows one to
designate the states of the system by binary numbers: A state
reached by a level transition is denoted by the number of the
previous state to which a Figure 1 is added, while a state
reached by a class transition is obtained by adding the figure
0, as demonstrated on the right-hand side of Fig. 2. Let n
represent some arbitrary state on the tree and denote by Dn
the nearest state at the upper part of the tree from which the
particle may arrive. We shall also denote by n0 and n1 the
two states down the tree reached by class and level transitions,
respectively. With these definitions, the master equation takes
the form

dP,
dt

= _(Wn—>Dn + Wissno + Wn—)nl)Pn
+ Wn0~>n PnO + Wnl~>nPn1 + WDn~>n PDnv (3)

where P, is the probability of finding the particle in the state
n and W,_,,, is the transition rate from the state n to m. Meiss
and Ott assumed that these transition rates satisfy a simple
scaling behavior

Wn—ml
0
WDn%n

Wn—>n0 .

WDn~>n

= ¢ @)
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and

vVnO—)n _ o ‘/an—>n (2} (5)
= — = —7

&0 Wnﬁnl 3]

Wn%nO

where g9, £1, wy, and w; are constants that have been estimated
to be [8]

g0 ~ 0.143,
wp =~ 0.0142,

&1 2 0.382,
oy == 0.0532.

(6)

Within this model it is also assumed that a particle staying in
the upper state of the tree leaves the tree at rate  and never
returns. From here on, the escape rate r will be set to unity by
choosing proper units of time.

It is known, however, that the rates ratios (4) and (5)
fluctuate considerably at different positions of the tree [21].
Therefore, it is natural to generalize the Meiss-Ott model by
adding a random component to the transition rates, i.e., to
replace the constant transition rates by fluctuating ones:

Wissm = Waosm (1 + &um), )

where &,,, are assumed to be uncorrelated random variables
with zero mean,

<§nm€n’m/> = Gz(ann/(smm/ + 6nm/(smn’)~ (8)

Here o is a dimensionless constant that controls the amount
of randomness of the ensemble. Notice that this form ensures
that &,,, is fully correlated with &,, since these quantities
characterized the down and up transition along the same link
of the tree model.

This ensemble, which we call the random tree model, is
based on two main assumptions. (a) The main source of
fluctuations comes from the flux exchange between states,
while deviations from the scaling behavior of phase space areas
of the states may be neglected. This assumption ensures that
the relations (5) are left intact. One may take fluctuations in the
phase space areas. These will generate correlations between
the random variables &,,, belonging to neighboring links of the
tree model. However, for leading-order perturbation theory in
the strength of the random component, it will not affect the
final result. (b) The fluctuations in the flux exchange through
different boundaries of the states are uncorrelated. The above
choice implies that statistical properties of the dynamics on
small scales of the phase space is the same as at larger
scales with the proper rescaling of time. This property greatly
simplifies our analytical treatment of the problem; however, as
we shall see when we compare the results of this model with
the numerical calculation of symplectic maps, this assumption
may be questionable.

Notice that this model is different from the model of
Cristadoro and Ketzmerick [16], who introduce the disorder
in the ratio between the transition rates along nearby bonds
of the Cayley tree and in the ratio of the up transition to the
down transition along the same bond. This form of disorder
generates long-range correlations between transition rates of
far away bonds, which are absent in our model.

In order to identify the relation between the functions
P, () and the survival probability F(¢), let us sum the master
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equation (3) over all the states of the tree n:
d _dF@)
dt~""" dr

—P. 9

The left-hand side of this equation is precisely the derivative of
the survival probability F(r) = ), P, since the sum over P,
is the probability of finding the particle at any site on the tree.
From here and Eq. (1) it follows that the long-time asymptotic
decay of P;(¢) is

Pi(t) ~ ', (10)

Thus one may study the convergence to this asymptotic limit
by analyzing the behavior of the return probability

P(t) = Pi(t) for P,(0)=8,.. (11)

This is the probability density that a particle is found at an
upper site of the tree n = 1 assuming that at # = O the particle
is placed at the same site.

III. SOLUTION OF THE NONRANDOM MODEL

In this section we review the solution of the Meiss-Ott
model that describes the pure system, thereby presenting
some of the ingredients that will serve us in the following
section, where we consider the random model. Let us define
the probability P, ,,(t) of a particle, initially placed at site m,
to be at site n at time 7. We define the Green’s function Gn,m (s)
as the Laplace transform of P, (1),

Gum(s) = / dte " P, ,(1). (12)
0

Our aim is to characterize the analytic structure of the Green’s
function associated with the return probability to the upper site
of the tree Gu(s). In particular we shall focus our attention
on the analytic structure in the vicinity of the point s = 0,
which governs the long-time asymptotic behavior of the return
probability (11). In this vicinity one expects G 1,1(s) to take the
form

G1.1(s) = a(s) + b(s)s” +---, (13)

where a(s) and b(s) are some analytic functions. Since the in-
verse Laplace transform of an analytic function decays in time
faster than any power law, the long-time asymptotic behavior
(10) comes from the nonanalytic contribution represented by
the second term of the expansion (13). Meiss and Ott proved
that y satisfies the dispersion equation [8]

wogy +wie;” = 1. (14)

This equation is obtained by substituting Eq. (13) into the
equation that the Green’s function Gl,l(s) satisfies. It is
rederived using a diagrammatic approach in Appendix A.

Let us examine the solutions of the dispersion equation
(14). Apart from a single purely real solution, the other
solutions of this equation appear in complex conjugate pairs.
In Fig. 3 we present some of these solutions in the complex
plain [Re(y),Im(y)]. From here it follows that the solutions
are divided into two groups. In each one of these groups,
the real parts of the solutions are approximately the same.
The difference between the solutions is mainely due to their
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FIG. 3. Solutions of the dispersion equation (14)

imaginary parts. The solution with smallest real part is
yo = 1.964 24, (15)

This solution governs the asymptotic long-time behavior.
The solutions with the next smallest real part are y; =
1.964 69 £+ i6.47555, while the next solutions are y, =
1.966 05 £ i12.951. Thus the general expansion of the Green’s
function near s = 0 is

Gra(s) = als) + ) bu(s)s™ + . (16)

The form of decay associated with complex solutions of the
form s+ is 1=V cos(y; Int + ¢), where ¢ is a constant.
Thus neglecting the difference in the real parts of the solutions,
we see that the long asymptotic behavior of the return
probability of the pure system is

P(t) = Pi(t) ~ 7" 'hy(In1), (17)

where h1(x) is nonperiodic oscillatory function whose behav-
ior depends on the initial conditions of the system. Here /;(x)
may be approximated by the leading solutions of the dispersion
equation (14), i.e.,

hi(x) & ag + a; cos(y'x + @), (18)

where g, o1, and ¢ are positive constants and y’ = 6.47555
is the imaginary part of the next-to-leading solution of the
dispersion equation (14).

IV. SOLUTION OF THE RANDOM TREE MODEL

While ensemble averaging is not required for extracting
the long-time asymptotic decay of the return probability [22],
the sample to sample fluctuations are defined only with regard
to the ensemble. In this section our goal is to calculate the
correlation function of the sample to sample fluctuations:

C(t,t")= BP()SP(t)), (19)
where
SP(1) = P(t) — (P(®)) (20

is the deviation of the return probability of the system with the
random component P(¢) from the average over the ensemble

(P(1)).
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Since we employ the ensemble averaging procedure only as
a tool for extracting the intrinsic properties of the system, we
may assume that fluctuations in the transition rates are small
o < 1 and exploit o as the small parameter of the perturbation
theory. The details of this perturbation theory are presented in
Appendix B.

The correlation function (19) may be written as a double
inverse Laplace transform

c+ioo ds

c+ioo ds’ .,
C(t,t) =f —S — " 0,5, (21)
c—ioo 2mi c—ioo 2mi

where the constant ¢ in the integration contour is set to ensure
the convergence of the integral and Q(s’,s) is the disconnected
part of the correlation of the Green’s function,

0(s',5) = (G1,1(5NG1,1(5)) — (G11(8N(G11(5)), (22)

where G 1 (s") denotes the Green’s function of the random tree
model. In Appendix B it is shown that, to the lowest order in
o, Q(s's) satisfies the equation

0(s'.5) = A(s'.s) + Gf_l(s’)éil(s)[ngC—O,i)

€o

20(S, 5
ToiQ ee )| (23)

A(s”s) = ()'26%1(5’)6%’1(5‘)[1 =+ Z C()?(xj(s”s):| (24)

j=0,1

where

and «;(s’,s) is a function expressed in terms of the Green’s
function of the pure system G i(s). Its explicit form can be
found in Appendix B.

From the structure of Eq. (23) it follows that its solution
contains two contributions: the homogeneous solution and
the inhomogeneous one. Consider first the inhomogeneous
solution, which we denote by Qi,(s’s). Focusing our attention
on the terms that are relevant for the long-time asymptotic
behavior, we expand this solution in the form

Qin(s'9) = ")+ D [a" )5 + gV,

v

+ 3 s (25)

v,/

where ¢/)(s’,s) represent functions that are analytic in s and
s’ and y, are the solutions of Eq. (14). Substituting this
form in Eq. (23), it is evident that with a proper choice
of the functions ¢¥/)(s’,s) one can satisfy the equation term
by term. The first two terms of the expansion (25) are
analytic in either s or 5" and therefore do not contribute to
the long-time asymptotic behavior of the fluctuations. The
third term, near s = s’ = 0, may be written in the form of
a product xo?[Y, by(0)s”[Y_, b,(0)s"”*~ '], where b,(0)
are the expansion coefficients of the Green’s function (16)
and x is a constant that may be expressed in terms of a(0)
and the parameters (6). This implies that the contribution to
the correlation function of the fluctuations in the long-time
asymptotic limit is proportional to the product of the return
probabilities

Cin(t,t') = x o P()P(1)), (26)
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where P(t) is the return probability of the system without the
random component (see Appendix A).

Consider now the homogeneous solutions of Eq. (23),
which we shall denote by Q(s’s). The total solution of
the equation is Q(s’,s) = Qi (s's) + Q,(s’s) and its inverse
Laplace transform gives the correlation function C(¢,t’) [see
Eq. (21)]. The homogeneous solution is needed in order to
satisfy the condition

C0,t)=C(t,00=0 (27)

for any ¢ and ¢'. This is because at the initial time of evolution
8P(0) =0, as the system is prepared in such a way that
the particle is with probability one at the upper state of the
tree, 1. To obtain the long-time asymptotic behavior of the
homogeneous solution, we expand Q(s’,s) in the form

0u(s',) = vO(s"u) + 3 [u(s")stt + v (s.5)s0]
+ Z v‘(fl,(s',s)s""s”“‘“’ + e (28)

where v)(s’,s) are analytic functions at s = s’ = 0 and u,
are unknown exponents. Substituting this expansion in the
homogeneous equation obtained from Eq. (23) and solving
the resulting equation term by term, one obtains that the
contribution associated with the slowest decay exponents
[which comes from the third term in the expansion (28)] should
satisfy the dispersion equation

woes ™) + (w67 =1, (29)
0 1
where

i = % (30)

This equation, similar to Eq. (14), has many solutions for
@ that form two branches similar to those that appear in
Fig. 3. The solution with the smallest positive real part satisfies
the relation fip > o and for the parameters (6) its value is
o = 2.138 52. Other exponents belonging to the same branch
have the approximate form fig £ip, for example, uj =
3.23377 and p), = 6.46753. Since the dispersion equation
(29) constrains only the sum of exponents (30), there is appar-
ently a continuous set of solutions associated with different
values of the difference between the exponents p, — t,;
the weight of each one of these solutions is determined by
vl(ff,,(s’,s). This approach does not allow us to determine these
weights since our solution is valid in the long-time asymptotic
limit, whereas the condition (27) corresponds to short-time
dynamics. Nevertheless, we may express the homogeneous
contribution to the correlation function, in the long-time
asymptotic limit, as a sum

Cy(t,t) = Re Z Coy (¢ TTH T T2y (3]
v,n

where ¢, , are unknown constants and /i, are the solution of
the dispersion equation (29). Here we assume that the sum
is only over the solutions with a positive imaginary part. In
particular for # = ¢ one obtains

Cu(t,t) = SP)*) ~ ot ™ hy(Int), (32)
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where hy(Inz) is an oscillatory function that similarly to
hi(t) [see Eq. (18)] may be approximated in the long-time
asymptotic limit as
ha(x) ~ doy + dy cos(2px + ¢1) + d3 cosQuax + @) + -+ -,
(33)
where d; and ¢; are constants and 4’ represents the imaginary
part of the solutions of the dispersion equation (29).
Now from Eqgs. (26) and (32) and the results presented in
Sec. V we get that the variance of the normalized fluctuations
SP(1)
(P(D)
in the long-time asymptotic limit and to the leading order in &
[where (P(t)) should be replaced by P] takes the form

Sp(t) = (34)

6p*(1) = xo’[1 + B (D], (35)
where
_ 17 hy(In1)
Bi(t) = X B(nD) (36)
and

Thus the normalized fluctuations in the return probability
decay to a constant value very slowly and in an oscillatory
manner as function of In¢. Finally, using the above results
for the homogeneous and inhomogeneous contributions to the
correlator C(t + At/2,t — At/2) and expanding it to second
order in Az/t, we obtain

At At
Clt+—t— —
(+2 2)

2
~ aZ{XMVO [h%(lnr) + ﬁmmn(%) ]

—2u I At ?
+ 172" hy(Int) + hy(Int) 5) ., (3%
where
hi(x) = yohi(x) — hE(x) + ()[R (x) = B'(x)]  (39)

and /1, (In 1) is an oscillatory function with an expansion similar
to Eq. (33) but with different coefficients. From here one
obtains the correlator of the normalized fluctuations

(op(t = 5)op(t + 5))
(8p*(1))

~1 ! tmz 40
x~ —Eﬂz()(7>, (40)

where

Yoha(Int) — ha(Int)
2xh¥(nt)
To obtain this result we take into account that /;(x) is

approximately constant and thus /;(x) may be approximated
by the first term on the right-hand side of Eq. (39).

Ba(t) =17 (41)

V. SAMPLE TO SAMPLE FLUCTUATIONS
OF THE DECAY EXPONENT

In this section we calculate the typical value of the sample
to sample fluctuation in the local behavior the decay exponent

012918-5
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y. For this purpose let us present the return probability in the
form

P(t) = (P(1))[1 4 dp(1)], (42)

where (P (1)) is the long-time asymptotic limit of the average of
the return probability over the ensemble, which to the leading
order in the disorder may be taken as the return probability
of the pure system (17). The function ép(t) = P(t)/{P(t)) —
1 is the normalized sample to sample fluctuation, which is
characterized by the correlation function (40). Assume one
wishes to extract the decay exponent y of some particular
system from the measurement of P(¢) at two time points, say,
t £ At /2, where the time difference At between the measuring
points is assumed to be smaller than #, At < ¢ [as is the general
situation when one tries to extract the limiting value of the
decay exponent from the tail of P(¢)]. Assuming that within
this range the local behavior is P(¢) o t~'~7, one obtains that

t 14 6p(t — At/2)
=1 Lo (P T2V g3
v=1ltnty n(l+8p(t+At/2)> “3)

Thus 8y = y — y can be associated with the normalized
fluctuations of the return probability §p(¢). Expanding the
above logarithm to the leading order in 6p(¢), one may express
the mean square of the fluctuations in the decay exponent in
the form

o= () [ ) -l )T}

Using Egs. (40) and (35) we obtain
(8y?) =~ xo?[Ba(t) + 2B ()], 45)

where B(t) and B,(¢t) are given by Egs. (36) and (41),
respectively. Both functions are oscillatory in In¢ and decay
as t~2¢. Thus the typical fluctuation in the value of the decay
exponent decays as §y ~ ¢t~ ¢, where € &~ 0.174. From here
one concludes that the fluctuations decay very slowly in time
and in an oscillatory manner.

VI. NUMERICAL STUDY

In this section we present our numerical study, which has the
following goals: first, to verify our analytical solution; second,
to show that the results that we obtain in the limit 0 < 1
are insensitive to the magnitude of the random component
of the transition rates; and third, to compare our results with
those obtained from the exact dynamics of an ensemble of
symplectic maps.

Our numerical study of the random tree model is performed
directly for the survival probability F(¢) rather than the
return probability P(¢). The computations are performed using
1000 realizations of the ensemble of random tree model with
nine generations. The random variables &, ,, are chosen from
a uniform distribution.

The relation (9) implies that F'(¢) behaves in a way similar
to P(t). In particular one expects that

F(t) =t "h(In?t), (46)

where similar to Eq. (17), the function i(Int) is an oscillatory
function whose expansion is the same as that of z;(Inf) but
with different coefficients. Yet formula (18) describes the

PHYSICAL REVIEW E 87, 012918 (2013)
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FIG. 4. Numerical (black dots) and analytical (solid line) results
for the function h(t), which dictates the oscillatory nature of the
survival probability (46).

behavior in the very-long-time asymptotic behavior, while
within the time limits where our calculation is reliable one
has to take into account also terms associated with the second
branch of solutions of the dispersion equations (14) that are
associated with faster decaying rates (see the right branch of
solutions in Fig. 3).

The numerical calculation of A (In ¢) for the pure tree model
is presented by the black dots in Fig. 4. This solution is
obtained by calculating the normal modes of the tree model
and expanding the solution in these modes. The solid line in
this figure represents the analytical solution described by the
function

o] —y! ”
h(x) ~op + - + otV cos(y) x + @)

+ o3t 772 cos(yy x + $a), 47)

where y/ £iy/ =1.9646+£i6.4755 and y,Liy/ =
2.4097 £i3.223 are the slowest oscillatory solutions of the
dispersion equation (14) and the term «; /¢ comes from the
linear in s term of the expansion of the function a(s) of the
Green’s function (13). The parameters «; and ¢; are fitting
parameters. The analytical solution gives an excellent fit to
the numerical data except at very large times where numerical
errors are large. Notice that the amplitude of the oscillatory
component of i(¢) is very small; thus to a good approximation
it may be considered to be constant.

Let us consider the behavior of (§y?). From formula (45),
expressions (36) and (41), and taking into account that to
a good approximation 4(¢) may be replaced by a constant, it
follows that #2€ (§’%) may be expanded in terms of the solutions
w' £ iu” of the dispersion equation (29), namely,

PUSy?) =770y vt i cos(uInt — ¢)).  (48)
J

The black dots in Fig. 5 represent the numerical calculation
of this function for the case where o = 0.04, while the solid
line is the analytical expression (48) in which we take the four
slowest oscillatory solutions of Eq. (29) and use v; and ¢;
as fitting parameters. The very good agreement between the
numerical and analytical results shown in Fig. 5 proves that the
typical amplitude of the fluctuation §y decays as t~¢, where €
is given by Eq. (37). It also shows that the oscillatory behavior
of (§y?) is dictated by the oscillatory solutions of Eq. (29).
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FIG. 5. Alog-log plot of the numerical (black dots) and analytical
(solid line) results for the oscillatory factor of the sample to sample
fluctuations of the decay exponent (48).

Our analytical results have been derived for weak disorder.
In this limit the strength of the random component in the
transition rates appears only through the prefactor that controls
the magnitude of the fluctuation [see Eq. (45)], while the
functional dependence on time is independent of o and
depends only on the intrinsic properties of the pure Meiss-Ott
model. Our numerical comparison, shown in Fig. 5, has been
also performed for weak disorder o = 0.04. It is, however,
worthwhile to clarify to what extent these results depend on
the value of o. To this end we compute (§y?) for various
values of o between 0.04 and 0.2. (Notice that the higher
value is not far from the upper limit of the widest possible
uniform distribution for which o = 1/+/12 =~ 0.29.)

The functions 12¢ (8y%) /o2 are presented in Fig. 6. The fact
that they almost collapse on the same graph implies that our
results are almost independent of the strength of the random
component of the transition rates.

Finally, it is instructive to compare our results with those of
the true dynamics of mixed chaotic systems. For this purpose
we study an ensemble of chaotic maps obtained by adding a
small random component to the standard map

Ly = I, + K sin(6,) + R(6,), 6u+1 =6, + I, ymod(2m).

(49)

Here K is the kicking strength and R() is a
Gaussian random function with zero mean and periodic

10.0

100 1000 104 10° 100

FIG. 6. (Color online) A log-log plot of the functional behavior
of the sample to sample fluctuations of the random tree model for
various values of the disorder strength.

PHYSICAL REVIEW E 87, 012918 (2013)

5x1074

1075, \ , ,
10? 10° 10* 10°
t

FIG. 7. A log-log plot of the relative fluctuations in the distribu-
tion of Poincaré recurrences of the random standard map model (49)
versus time.

correlation

’ 2
(RORO) =53 exp <—(991#) . (50)
m

The constant & controls the strength of the random contribution
and [ is the correlation length of R(6). Thus each realization
of R(6) corresponds to a slightly different symplectic map,
which may be viewed as a different member of the random
tree model. Although in this model the random component
affects large scales differently from small scales, one expects
that averaging over this ensemble is similar to averaging over
the transition rates of the random tree model. This is because,
in the long-time asymptotic limit, two-dimensional symplectic
maps are believed to behave in a universal manner.

For the numerical computation we choose 6 = 0.21 x
1073, which is much smaller than the largest value of K for
which the unstable fixed point at / = 0 and 6 = 7w remains
unstable. The initial points of the various trajectories of
the particles are chosen to be in the vicinity of this fixed
point (within a square of size 107% x 107°) and the particle
is assumed to leave the system when it crosses the line
I = 0. We choose kicking strength K = 0.971 635406 and
correlation length / = 0.2 and the calculation is performed
using quadruple precision. The map was iterated up to 5 x 10°
iterations, which is the range within which the results agree
with those obtained by double precision. For each realization
of the random function R(@), the survival probability was
calculated using 2 x 10° trajectories. The correlations of the
fluctuation have been obtained by averaging over 260 different
realizations of the random component.

In Fig. 7 we present the results for the fluctuations in the
decay exponent (8)?) as a function of In¢. This graph shows
an oscillatory behavior of the fluctuations but with no apparent
decay, namely, € ~ 0.

VII. CONCLUSION

In this work we have extended the rate equation approach of
Meiss and Ott in order to calculate the functional behavior of
the sample to sample fluctuations in the local decay exponent
y of the survival probability. Our calculations were conducted
within the leading-order perturbation theory in the strength
of the random component. In this limit, it has been shown
that apart from the amplitude of the fluctuations in y, their
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functional dependence on time is dictated by the intrinsic
parameters of the Meiss-Ott model. Moreover, our numerical
study shows that this conclusion is valid also at strong disorder.
Our approach cannot give the typical value of the random
component o . However, numerical evidence from the study of
mixed chaotic systems suggests that it is of order unity. If we
also assume that the typical magnitude of the fluctuations in y
is characterized by the decay exponent € = 0.174, then even
after 10 iterations the typical fluctuation in y is of order of
one-tenth.

Moreover, our numerical study of the ensemble of sym-
plectic maps (49) does not show any sign of decay of the
fluctuations. Namely, within the limits of reliable numerical
calculation it is difficult to obtain the asymptotic value of the
decay exponent yy (as also evident from Fig. 1). One may
speculate that this is because the assumption that the random
component in the transition rates is uncorrelated is not correct
and its effect cannot be considered to be perturbative. For
instance, it is plausible that strong and correlated random
components may confine the dynamics, in the long-time
limit, to a very small number of branches of the tree model.
This implies that self-averaging is not effective and therefore
fluctuations in the normalized return probability p(¢) do not
decay in time or, in other words, € >~ 0. This result is also
obtained for a very asymmetric random tree model where
class transitions are much smaller than the level transition
go/e1,wp/w; — 0. In this very asymmetric model € — 0 and
therefore y does not decay in time. An extension of our
analytical approach that takes into account optimal fluctuations
of the disorder may be used to treat more realistic models of
mixed chaotic systems.

Let us finally remark that the tree model of Meiss and Ott
represents an uncontrolled phenomenological approximation
of the exact dynamics that is based on the assumption that
within the phase space region associated with a given state,
the relaxation is much faster compared to the transition time to
other states. The status of the validity of this assumption, how-
ever, is unclear [23]. Nevertheless, our analysis corresponds
to a worst-case scenario where self-averaging is effective
and even in this case we obtain that the fluctuations in the
return probability decay extremely slowly in time. Thus the
convergence of the survival probability F(¢) to its asymptotic
value is very slow. This explains the wide range of results
for the decay exponent y obtained by numerical studies
[5-16,18] in the past three decades.
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APPENDIX A: DERIVATION OF EQ. (14)

In this Appendix we derive the dispersion equation (14),
which determines y; as well as the other exponents of the
relaxation modes shown in Fig. 3. For this purpose we first
derive an exact equation of the Green’s function G (s)

PHYSICAL REVIEW E 87, 012918 (2013)

FIG. 8. Diagrammatic expansion of the Green’s function of the
Meiss-Ott tree model.

and then show that a solution of the form (13) leads to the
dispersion equation.

From the master equation (3) and the definition of the
Green’s function (12) we obtain

DI + wn)8jn — AW 1 m(s) = 8jm.  (Al)

where

n = W (A2)
k

and A is a dummy parameter introduced for the expansion of

the Green’s function as a perturbation series and should be set

to one at the end of the calculation. In particular to the zeroth

order in A, G,,,m(s) ~ 8,(5)8,.m, where

1

_ A3
s+ 14w, (83)

&n(s) =
Now let us expand the Green’s function Gn,m (s) to all orders
in A. The diagrammatic representation of this expansion is
presented in Fig. 8. Here the thick line represents the exact
Green’s function, thin lines represent the zeroth-order Green’s
function g, ,(s), and wiggly lines represent the product
W m Wi— . Notice that in this expansion wiggly lines cannot
cross because there are no loops on Cayley trees. Thus one may
write an equation for the Green’s function G ;(s),

G1.1(s) = &1(5) + &1() Z W1—>1jG(11j),1j(S)W1j—>1Gl,l(S),
j=0,1

(A4)
where the sum over j is the over the nearest-neighbor sites 10
and 11 and G(llj.{l ;(s) denotes the Green’s function on site 1
assuming that if the particle reaches site 1 it disappears. From
the self-similarity of the Cayley tree it follows that G(llj) 1;(9)
and G 1(s) are related by a simple rescaling of time

~ Wise ~ Wis 1 .
G(llj)]j(s) = 1=>¢ G1'1< 1=¢ S) = —Gll(i) (AS)
’ Wiis Wiisi &) &g

Thus the Green’s function satisfies the equation

- s - s\ =~
[S + 1+ wy+w —woGr1 (—> —w1Gi (—)}Gu(s)
€0 €1

=1 (A6)

Now substituting Eq. (13) into Eq. (A6) gives, in a straightfor-
ward manner, the equation for a(0),

[1 + @ + @1 — wa(0) — w1a(0)]a(0) =1, (A7)
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whose solution is
a(0) = 1. (AB)

Now substituting Gm(s) = 14 b(0)s” + - - -, one obtains the

equation
s\’ s\’
b(O)I:sy - a)()(—) — (—) ] =0,
&0 €1

which is equivalent to the dispersion equation (14).

(A9)

APPENDIX B: DISORDER DIAGRAMMATICS

In this appendix we compute the correlation function of two
Green’s functions G x(s). Our main focus is the disconnected
part of the correlator (22) and we limit our considerations to
the the lowest-order perturbation theory in o, for which the

(]

- Uz[wkzﬁn&,mak.m + Wk~>m Wmﬁksn,l((sn,m + Bl,k) + Wiﬁlsn,ksk,m]-

Notice also that this expression satisfies the relation

(B4)

which follows immediately from the definition (B2).

Consider now the disconnected part of two Green’s func-
tions (22). The general diagrams describing the leading-order
expansion of the average (G 1(s')G1.1(s)) (up to o?) are
shown in Fig. 9(a). Here solid lines represent the exact Green’s
function of the system without the random component, while
dashed lines stand for pairs of random components of the
transition rates given by Eq. (B3).

The first tree diagrams shown in Fig. 9(a) represent the
disconnected part of the correlator (G 1){(s")G.1(s)), which
is of no interest here and therefore, to the leading order in o,
the connected part of the correlator

/ /
O(s's) = (6G1,1(s)3G1,1(s)) (BS)
1S 1 1 1 1 ne 1 1 1 L oam 1
() < > ~ + e A |
g7 1 1 1 1’71 m 1 1 k‘l 1
L nml 1 nm1 1L 1vamvl 1 11 vvg nmq vvil
(b) o= g,«g +§§/;,,§ Fees
[ Tk v kivid Tvvd k1400l
1 1 1 1 111 1j1 1
© D>
I 1 I A R R VAR TN
A(s,'s)
FIG. 9. Diagrammatic ~ expansion = of the  correlator

(G1.1(s")G.1(s)). The dashed line crossed by a segment stands for a
sum over all diagrams containing one or more inner indices equal to
the index that appears near the segment.
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result is independent of the precise distribution of the random
variables &, ,,.

Taking into account the random component of the transition
rates, we may write the equation for the Green’s function in
the form

Z [G;in(s) + En,m](;m,k(s) = 8n,k’

m

(BI)

where

[a]

n,m — <Z Wnﬁlén,l)&l,m - Wmansm,n (BZ)
i

is the addition to Eq. (Al) that comes from the random
component of the transition rates.

From the definition of §,,, [see Eq. (8)] we have (&, ,,) =0
and

( n,k El,m) = 02 < Z W,,2_>U8n,k8k,tn8n,l + Wn—)lWl—>n(8n,k81,m + 6],k(Sn,m) + sz_msk,man,l)

(B3)

is given by the diagram shown in Fig. 9(b). The expansion on
the right-hand side of this panel refers to the point along the
tree at which the random contribution is taken into account.
The first diagram, which will be denoted henceforth by A(s’s),
corresponds to the case where the random contribution is taken
into account along a bond from site 1 to one of its nearest-
neighbor sites. The next diagram represents the case where
disorder is taken between site j and its nearest-neighbor sites
and so on. Figure 9(c) shows the resummation of all these
diagrams. From here it follows that

(8G1,1(8N8G1,1(5))
= A6+ Y GG W
j=0,1

X Wi 1(8G1j1;(s18G1j1j(5). (B6)

Within the leading order in o one may assume that the
Green’s functions satisfy the same scaling relation (AS5) and

1Ll 1111 11 11
+Z o+ o+ +

j=01 | 1 1 11 11 [ER VA O 11 U1

IRV 11 11 11t 111
* R e

[ I | 1 11

L1 Ut

YEVE! VR UV

1l 1 111 11 11 L 111 L U1
R
1111 11 11 |V TA RV VA 1 111

FIG. 10. Diagram A(s's).
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therefore

, 1 s’ s
(0G1,1j(s)8G1j,1j(s)) = 8—?<5Gl,1(8—j)5G1,1(8—j>>-
(B7)

Substituting this relation in Eq. (B6) and using definition (BS5),
one obtains Eq. (23).

Finally let us calculate the diagram A(s’,s) whose explicit
expansion is shown in Fig. 10. Here solid lines stand for the
exact Green’s function of the pure system, while dashed lines
represent the disorder. Taking into account the relations

~ ~ ~(1) “ig ¢ ’
Gr1j(s) = Gl,l(S)Wlﬁlelj,lj(S) = ;GI,I(S)GI,I <e_> )
J J
(B8)

PHYSICAL REVIEW E 87, 012918 (2013)

. - ~ ~ . s
Giji(s) = G(llj),]j(s)wljalGl,l(s) = G1,1(5)G1,1 <8—)
j
(B9)

and using formula (B3) to evaluate the contribution that comes
from the disorder line leads to Eq. (24) with

, ~ s ~ s ~ s’
a;(s’,s) = [Gl,l(_) + G1,1<—> - 1] [G1,1(—>
€j €j €j
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