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Estimating the structure of small dynamical networks from the state time evolution of one node
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We consider small dynamical networks of coupled oscillators for which the network topology is unknown and
try to use partial knowledge of the oscillators’ dynamics to estimate both the network couplings and the states of
the nodes. We focus on the case where the state time evolution from only one oscillator is available. We propose
an adaptive strategy that uses synchronization between the true network and a replica network in order to estimate
both the couplings and the states. The adaptive scheme is tested with several modules of coupled oscillators.
We consider the effects of small mismatches in the parameters of the individual oscillators and we propose an
alternative version of the strategy that is suitable to handle noise in the received signal.
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I. INTRODUCTION

In this paper our objective is to identify the temporal
structure of small networks, i.e., “modules,” of coupled
oscillators. We present an approach to estimating the strengths
of couplings between the oscillators, as well as their states,
while having limited knowledge about their dynamics. In
particular, we proceed under the assumption that the state time
evolution of only one node is available and we seek to use this
information to estimate all of the unknown coupling strengths
and states. Our approach is based on coupling an unknown
true network to a replica network whose internal parameters
can be adaptively evolved and trying to synchronize the two.
Recent work has shown that synchronization can be used as a
powerful tool to identify the dynamical equations of unknown
systems [1–7]. Along the same lines, a Bayesian approach
has been proposed in Refs. [8,9]. In contrast with previous
studies, the strategy developed in this paper uses knowledge
of the state time evolution of only one node. With only this
available information, we show that, under certain conditions,
it is possible to reconstruct all of the states of the nodes as well
as all of the unknown connection strengths of an unknown
network. The approach that we propose may be needed when
direct access to several nodes is limited. Moreover, when the
couplings are time varying, our strategy can be implemented to
reconstruct the connections as they change over time. Thus our
analysis applies to static networks but also more generally to
dynamic networks for which the strengths of the connections
evolve with time.

Our proposed problem is relevant to several fields. For
example, in computer networks and power grids, variations
in the connectivity of the network may signify the presence
of faults [10]. In consensus and formation control problems
[11,12], the strength of the connections typically varies in
time. As a result, the ability to estimate these strengths is
crucial in order to maintain connectivity within the network.
In biological networks, such as genetic or neuronal networks,
an important problem is that of reconstructing the network
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architecture and the time evolution of the connections from
existing data. For these applications, a typical limitation is the
cost and the possibility of accessing the states of the individual
nodes. The network inference problem and its application
to the genome [13–17] has received significative attention
over the past decade. References [18,19] review and compare
the more popular existing approaches. For gene expression
assayed using microarrays, it is possible that hybridization
of specific mRNA fragments is facilitated within certain
sequences in the probes, so that certain genes are more easily
detected than others [20,21]. Connectivity between neuronal
cells remains a holy grail in neuroscience but, due to the current
state of the art, only the wiring diagram of the nervous system
of the nematode, Caenorhabditis elegans, with 302 neurons,
has been fully elucidated [22]. However, knowledge of static
connectivity tomographs is not sufficient to understand the
function or complex computations of a given neural circuit.
This is because the brain is a dynamical system and it is both
the existence of a connection as well as its dynamical state that
is required for neural communication.

It has been theoretically explored in Refs. [23,24] and
experimentally tested in Ref. [25] that a sensor network can be
realized by using a set of chaotic oscillators communicating via
a wireless protocol. In the approach discussed in Refs. [23–25],
each individual node needs to independently implement an
adaptive strategy in order to maintain synchronization with
the others and to be able to sense changes in the surrounding
environment. An alternative approach has been proposed in
[26] where an adaptive strategy is implemented to estimate
the distance (i.e., the communication delay) between two
coupled mobile platforms. An open question is whether similar
strategies could be of use in the case where limited dynamical
information is available about one or few of the network nodes.
This is particularly relevant to neural systems since access is
limited to a small subset of neurons in any neural circuit.
Therefore, in this study, we discuss the applicability of our
method to small modules of neuronal oscillators as a first step
in an application to neural circuits (see Sec. VI).

In all of the above applications, it is important to be
able to estimate the state of the network, i.e., the existence
of connections between any pair of nodes, and their time
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FIG. 1. (Color online) The figure shows a network characterized
by a tree-like structure. We are able to control one node in the
network and to sense the activity from a node downstream. The path
of connections from the actuator to the sensor is highlighted in red
(shown in dark gray). We show that our technique will be able to
estimate connection strengths along this path.

evolution. The goal of the present paper is to provide a
framework within which we demonstrate the possibility to
infer the structure of a dynamical network, even when
information about only one node is available. While a broad
literature exists on estimating the topology of an unknown
network from knowledge about the state time evolution of all
of its nodes [27–33], to the best of our knowledge, the problem
where only one node can be sensed has not been addressed.
Keeping in mind the challenges in solving this problem for the
case of networks of arbitrary size and complexity, we show
that a solution exists for small networks formed of one or
more (coupled) unidirectional chains.

The general problem discussed in this paper is illustrated
in Fig. 1. We consider an arbitrary large complex network of
coupled nodes. Each node in the figure is a dynamical system
(an oscillator) and an arrow connects i → j if the dynamics of
node i affects that of node j . Two of the nodes are chosen to
be the source and the destination of a given path. An actuator
is placed on the source node and a detector on the destination
node. The path of connections from the actuator to the sensor
is highlighted in red in Fig. 1. Our proposed goal is to be able
to estimate the states of the nodes along the path from the
source to the destination and the strengths of the couplings
along that path. Different paths might be estimated by moving
the position of the sensor and of the actuator over the network,
with this type of approach being possibly easier to implement
than trying to estimate the whole structure of the network at
once. Note also that the treelike structure might be induced by
the presence of the actuator if there is sufficient force exerted.
For example, we propose that the scheme in Fig. 1 could be
implemented for a sensor network where, by forcing one node
and by recording the output of another node, the temporal
evolution of the set of connections between the two can be
reconstructed.

II. MODEL AND ADAPTIVE STRATEGY

As a first example of interest, we consider a chain of
unidirectionally coupled oscillators. Chains of oscillators

FIG. 2. (Color online) The top part of the figure shows a
unidirectional chain of N coupled oscillators and the bottom part
a replica chain (whose nodes are represented as dotted circles). The
first oscillators of the real and replica chains are forced by the same
input signal. A sensor is placed on the N th oscillator of the original
chain. The gray dotted line represents knowledge of the output time
evolution of the N th node that will be used by the adaptive strategy.
The goal of the adaptive strategy is to synchronize the original and
the replica chain by adapting the coupling strengths ε̂i of the replica
until they converge onto the true εi .

can describe many processes in nature, e.g., the undulatory
locomotion of fish such as the lamprey or dogfish, peristalsis
in the vascular and intestinal smooth muscles, communication
of fireflies, and synchronization of emerging oscillations in a
particular pathway of sensory processing in the cortex (see
reviews in Refs. [34–36]).

This problem is represented in Fig. 2, where a chain of
N unidirectionally coupled oscillators is shown. The first
oscillator is forced by the input uk , while the output of the
N th oscillator at the end of the chain is sensed.

The dynamics of a chain of unidirectionally coupled
oscillators can be described by the following set of equations:

νk+1
1 = F

(
νk

1

) + εk
1u

k, (1a)

νk+1
i = F

(
νk

i

) + εk
i G

(
νk

i−1

)
, i = 2, . . . ,N, (1b)

where νk
i is the n-dimensional state of node i at time k, F :

Rn → Rn describes the dynamics of an uncoupled system, uk

is a driving signal, εk
i is the strength of the coupling from node

(i − 1) to node i, i = 2, . . . ,N , εk
1 is the coupling strength of

the signal driving node 1, and G : Rn → R is a scalar output
function.

In order to be able to identify the unknown couplings,
we introduce a replica chain with coupling strengths that can
be adaptively modified and we seek to synchronize this with
the true chain. The equations for the replica network are the
following:

ν̂k+1
1 = F

(
ν̂k

1

) + ε̂k
1u

k, (2a)

ν̂k+1
i = F

(
ν̂k

i

) + ε̂k
i G

(
ν̂k

i−1

)
, i = 2, . . . ,N, (2b)

where ν̂k
i is the n-dimensional state of node i at time k, and

ε̂i , i = 1, . . . ,N are estimates at the replica system of the true
couplings εi , i = 1, . . . ,N . In Fig. 2, the nodes of the replica
chain are represented as dotted circles. We assume that the
only available information about the dynamics of the original
network is the state time evolution of the N th node. The gray
dotted line represents this information that will be used by our
adaptive strategy in order to estimate the εi .
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We observe that for ε̂i = εi , i = 1, . . . ,N , the replica
chain may synchronize to the original chain by virtue of the
common driving input, uk . This means that |νk

i − ν̂k
i | → 0, for

i = 1, . . . ,N . Hence, we seek to use synchronization between
the original and the replica system to dynamically estimate
the unknown εi , i = 1, . . . ,N . In particular, in what follows
we modulate the coupling strengths of the replica network
until they converge onto those of the original network and
synchronization is achieved.

We note here that the εi in Eq. (1a) to be estimated are
functions of the time k. However, one of our underlying
assumptions is that the εk

i evolve on a time scale Tε that is
much longer than the time scale Tν on which an individual
system evolves, i.e.,

Tν � Tε. (3)

Our adaptive strategy then can be implemented over a time
scale over which the unknown εk

i are nearly constant. The
specificity of our approach lies in the fact that knowledge
about the state time evolution of only one system is exploited
to estimate all of the couplings in the chain, i.e., we attempt
to estimate εi , i = 1, . . . ,N based on the sole knowledge of
νk

N . In order to do that we introduce an appropriately defined
potential,

ψk = [
G

(
νk

N

) − G
(
ν̂k

N

)]2
, (4)

under the assumption that the quantity

I k ≡ G
(
νk

N

)
(5)

is the only available information from the original network. We
see that ψk is zero when ν̂k

i = νk
i and ε̂k

i = εk
i , i = 1, . . . ,N .

Hence, in what follows we seek to minimize the potential
(4). Our strategy consists of evolving the ε̂k

i i = 1, . . . ,N in
order to minimize the potential. To this aim, we introduce the
following gradient descent relations,

ε̂k+1
i = ε̂k

i − γi

∂ψk′

∂ε̂i

= ε̂k
i + 2γie

k′
DG

∂ν̂k′
N

∂ε̂i

, (6)

i = 1, . . . ,N , where ek = [G(νk
N ) − G(ν̂k

N )], DG is the Jaco-
bian of the function G, and γi is a positive scalar. Note that
Eq. (6) applies to the potential ψ being evaluated at a generic
time k′. We proceed under the assumption that for k′ close to k

minimizing ψk′
is approximately the same as minimizing ψk .

From Eq. (2) we see that

ν̂k+2
i = F

(
ν̂k+1

i

) + ε̂iG
[
F

(
ν̂k

i−1

) + ε̂i−1G
(
ν̂k

i−2

)]
, (7)

i = 3, . . . ,N and for r being a positive integer, we have

ν̂k+r
i = F

(
ν̂k+r−1

i

) + ε̂iG
[
F

(
ν̂k+r−2

i−1

)
+ ε̂i−1G

( · · · + ε̂i−r+1G
(
ν̂k

i−r

))]
(8)

i = (r + 1), . . . ,N . We find that the most convenient way of
implementing Eq. (6) is the following:

ε̂k+1
i = ε̂k

i − γi

∂ψ (k+N−i+1)

∂ε̂i

= ε̂k
i + 2γie

(k+N−i+1) ∂ν̂
(k+N−i+1)
N

∂ε̂i

= ε̂k
i + 2γie

(k+N−i+1)

⎡
⎣ N∏

j=(i+1)

ε̂jDG

⎤
⎦ G

(
ν̂k

i−1

)
.

(9)

From the latter equation we note that in order to implement the
adaptive strategy, knowledge of e(k+N−i+1) is required. Yet, for
N not being too large and the individual error e(k+N−i+1) not
evolving too fast, we can assume that e(k+N−i+1) ∼= ek . Using
this approximation, we get

ε̂k+1
i

∼= ε̂k
i + 2γie

k

⎡
⎣ N∏

j=(i+1)

ε̂jDG

⎤
⎦G

(
ν̂k

i−1

)
. (10)

A. Numerical experiment

We consider, first, a unidirectional chain of N = 3 coupled
oscillators. To test our measure, we implement the neuronal
model described in Refs. [37,38] as the function F , for which
n = 2, νk = (xk,yk)T ,

F (νk) =
{

xk+1
i = (

xk
i

)2
exp(yk

i −xk
i ) + d

yk+1
i = ayk

i − bxk
i + c

. (11)

This equation results in chaotic dynamics for the following
choices of parameters: a = 0.89, b = 0.18, c = 0.28, and d =
0.03 [37]. We choose the function G to be

G(νk) =
[

1 0
0 0

]
νk. (12)

In our first experiment, we set the drive uk = 1 +
sin(0.06πk) and the initial conditions for xk

i ,y
k
i and x̂k

i ,ŷ
k
i to

be random numbers drawn from a uniform distribution in the
interval [0,1], i = 1, . . . ,N . The initial guesses ε̂0

i are random
numbers drawn from a uniform distribution in the interval
[0.10,0.40]. The true εi are time-varying functions,

εk
i = ε̄i + 0.05 sin(4 × 10−6πk), (13)

where ε̄1 = 0.3, ε̄2 = 0.2, and ε̄3 = 0.4.
The results of our numerical simulations are shown in

Figs. 3 and 4. Figure 3 shows x̂k
2 versus xk

2 at the beginning and
at the end of the run. As can be seen, for large-enough k, x2

and x̂2 synchronize. Though not explicitly shown, all of the x̂k
i

converge on the time evolutions of the true xk
i , i = 1, . . . ,N .

Figure 4 shows ε̂k
i versus εk

i for i = 1, . . . ,3, with all of our
estimates tracking the time evolution of the true couplings.

In our second experiment, we set the drive uk = xk , where
xk is obtained by iterating the equation for a neuron model
[37,38],

xk+1 = (xk)2 exp(yk−xk ) + 0.03
(14)

yk+1 = 0.89yk − 0.18xk + 0.28.

The initial conditions for xk
i ,y

k
i and x̂k

i , ŷk
i are random

numbers drawn from a uniform distribution in the interval
[0,1], i = 1, . . . ,N . We set the initial guesses ε̂0

i to be random
numbers drawn from a uniform distribution in the interval
[0.10,0.50]. The true εi are time-varying functions,

εk
i = ε̄i + 0.05 sin(4 × 10−5πk), (15)

where ε̄1 = 0.3, ε̄2 = 0.2, and ε̄3 = 0.4. We set γi = 10−3,
i = 1, . . . ,N .

The results of our numerical simulations are shown in
Figs. 5 and 6. Figure 5 shows x̂k

2 versus xk
2 at the beginning
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FIG. 3. (Color online) Top figure: xk
2 (solid line) and x̂k

2 (dashed line) at the beginning of the simulation. Bottom figure: xk
2 (solid line) and

x̂k
2 (dashed line) at the end of the simulation.

and at the end of the run. As can be seen for large-enough k, x2

and x̂2 synchronize. Though not explicitly shown, all of the x̂k
i

converge on the time evolutions of the true xk
i , i = 1, . . . ,N .

Figure 6 shows ε̂k
i versus εk

i for i = 1, . . . ,3, with all of our
estimates tracking the time evolution of the true couplings.

1. Dependence on N

We tested our adaptive strategy for unidirectional chains of
increasing length N . For each run we chose the εi to be constant
over the time of the simulation and equal to N equally spaced
numbers in the interval [0.2,0.5]. The initial conditions for ε̂i

were chosen as ε̂0
i = εi + ηi , where ηi is a random number

drawn from a uniform distribution in the range [−0.05, +
0.05]. We ran the simulations for a long time from k = 0
to k = 5 × 106 and recorded the final normalized estimation
error,

	 = ((k2 − k1)N )−1
k2∑

k=k1

N∑
i=1

∣∣εi − ε̂k
i

∣∣
|εi | , (16)

where we set k1 = 4.5 × 106 and k2 = 5 × 106. For all our
simulations we chose γ1 = · · · = γN = 10−4. Figure 7 shows
	(N ) versus N = 2,3, . . . ,6. As can be seen, the performance
of our adaptive strategy degrades as the length of the chain N

increases.

III. A PARALLEL CONFIGURATION

As a second example, we consider the network layout
represented in Fig. 8, where the actuator is connected to the
sensor through two or more independent unidirectional paths.
As can be seen from the figure, a common driver independently
forces two unidirectional chains of oscillators which come
together in the sensed node. In this example, four connections
will have to be estimated: ε01, ε02, ε13, and ε23.

The dynamics of the network configuration in Fig. 8 can be
described by the following set of equations:

νk+1
i = F

(
νk

i

) + εk
0iu

k, i = 1,2. (17a)

νk+1
3 = F

(
νk

3

) + [
εk

13G
(
νk

1

) + εk
23G

(
νk

2

)]
. (17b)

FIG. 4. (Color online) Time evolution of εk
i (solid lines) and of ε̂k

i (dashed lines).
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FIG. 5. (Color online) Top figure: xk
2 (solid line) and x̂k

2 (dashed line) at the beginning of the simulation. Bottom figure: xk
2 (solid line) and

x̂k
2 (dashed line) at the end of the simulation.

The equations for the replica network are as follows:

ν̂k+1
i = F

(
ν̂k

i

) + ε̂k
0iu

k, i = 1,2. (18a)

ν̂k+1
3 = F

(
ν̂k

3

) + [
ε̂k

13G
(
ν̂k

1

) + ε̂k
23G

(
ν̂k

2

)]
, (18b)

where ν̂k
i is the n-dimensional state of node i at time k, and ε̂ij

are estimates at the replica system of the true εij . Following the
same approach presented in Sec. II, we obtain the following
adaptive strategy:

ε̂k+1
0i

∼= ε̂k
0i + 2γ ekDGε̂k

i3u
k, i = 1,2, (19a)

ε̂k+1
i3

∼= ε̂k
i3 + 2γ ekG

(
ν̂k

i

)
, i = 1,2. (19b)

We set the initial conditions for xk
i ,y

k
i and x̂k

i ,ŷ
k
i to be random

numbers drawn from a uniform distribution in the interval
[0,1], i = 1, . . . ,N . The initial guesses ε̂0

ij were chosen as
ε̂0
ij = ε̄ij + ηij , where ηij is a random number drawn from a

uniform distribution in the range [−0.03, + 0.03]. The true εij

are time-varying functions,

εk
ij = ε̄ij + 0.05 sin(4 × 10−6πk), (20)

where ε̄01 = 0.3, ε̄02 = 0.2, ε̄13 = 0.5, and ε̄23 = 0.4. We set
γ = 10−4.

The results of our numerical simulations are shown in
Fig. 9, where the estimates ε̂k

ij are shown versus εk
ij for (i,j ) =

(0,1),(0,2),(1,3),(2,3), with all of our estimates tracking the
time evolution of the true couplings.

We note here that estimating the εij corresponds to finding
an estimate adjacency matrix Ê = {ε̂ij }, i,j = 1, . . . ,N that
approximates the true adjacency matrix E = {εij }. While for
the example of the unidirectional chain there exists only one
possible graph representation of the matrix E, for the parallel
configuration considered in this section there are two: one
for which the labeling of the nodes is the same in E as in
Ê and one for which node 1 → 2 and node 2 → 1. Indeed,
we sometimes observed in simulation that ε̂01 converged on
ε02, ε̂02 converged on ε01, ε̂13 converged on ε23, and ε̂23

converged on ε13 (not shown). We found this result satisfying

FIG. 6. (Color online) Time evolution of εk
i (solid lines) and of ε̂k

i (dashed lines), i = 1, . . . ,N .

012915-5



AUTARIELLO, DZAKPASU, AND SORRENTINO PHYSICAL REVIEW E 87, 012915 (2013)

FIG. 7. We test the adaptive strategy for unidirectional chains of increasing length N . The figure shows the estimation error 	 defined in
Eq. (16) versus N .

since our goal was to obtain a correct representation of the
original matrix, independent of the labeling of the nodes. More
generally, our aim could be recast as that of seeking a matrix
Ê such that Ê = PEP where P = {pij } is any permutation
matrix with pNN = 1.

A. A more complex configuration

We attempted to apply an approximate version of the
adaptive strategy to a more complex configuration, in which the
dynamics of the two chains in Fig. 8 are mutually coupled. In
particular, we considered the case when two extra connections
are added to the network layout in Fig. 8, namely one
connection from node 1 to node 2 with associated strength
ε12 and one connection from node 2 to node 1 with associated
strength ε21. The dynamics for such a network is described by
the following set of equations:

νk+1
i = F

(
νk

i

) + εk
0iu

k + εk
jiG

(
νk

j

)
, i = 1,2, (21a)

νk+1
3 = F

(
νk

3

) + [
εk

13G
(
νk

1

) + εk
23G

(
νk

2

)]
, (21b)

where the subscript j = (3 − i). The equations for the replica
network are as follows:

ν̂k+1
i = F

(
ν̂k

i

) + ε̂k
0iu

k + ε̂k
j iG

(
ν̂k

j

)
, i = 1,2, (22a)

ν̂k+1
3 = F

(
ν̂k

3

) + [
ε̂k

13G
(
ν̂k

1

) + ε̂k
23G

(
ν̂k

2

)]
, (22b)

where again j = (3 − i). For this case, there are six unknown
coupling strengths: ε01, ε02, ε12, ε21, ε13, and ε23. Following the
same approach presented in Sec. II, we obtain an approximate

version of the adaptive strategy:

ε̂k+1
0i

∼= ε̂k
0i + 2γ ekDGε̂k

i3u
k, i = 1,2, (23a)

ε̂k+1
i3

∼= ε̂k
i3 + 2γ ekG

(
ν̂k

i

)
, i = 1,2, (23b)

ε̂k+1
ij

∼= ε̂k
ij + 2γ ekDGε̂k

j3G
(
ν̂k

i

)
, i = 1,2, j = (3 − i).

(23c)

We performed experiments similar to the one presented in the
first part of Sec. III but we considered the presence of the other
two couplings, ε12 and ε21, which we attempted to estimate.
For simplicity, we set the εij to be constant over the time scale
of the simulation. The results of this numerical experiment
are described in Fig. 10, where we show that by iterating the
adaptive strategy, the estimates ε̂12 and ε̂21 converge on the
true values of ε12 and ε21, respectively.

IV. EFFECTS OF NOISE ON THE ADAPTIVE STRATEGY

In this section we focus on the chain of unidirectionally
coupled oscillators studied in Sec. II and we consider the
presence of noise in the communication channel between the
true and the replica chains. We assume additive noise and we
replace the received signal I k in (5) by

I k = G
(
νk

N

) + rσρk, (24)

where ρk is a zero-mean independent random number of
unit variance drawn from a Gaussian distribution, σ is the
numerically computed standard deviation of G(νk

N ), and r is
multiplicative factor.

To facilitate adaption when noise is present in the received
signal, we propose an alternative formulation of our adaptive
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FIG. 8. (Color online) The top part of the figure shows a network
of coupled oscillators in a parallel configuration, i.e., for which
the actuator is connected to the sensor through two independent
unidirectional paths. The bottom part of the figure shows a replica
network (whose nodes are represented as dotted circles). The
oscillators labeled 1 and 2 of the original and replica networks are
forced by the same input signal. A sensor is placed on the third
oscillator of the original network. The gray dotted line represents
knowledge of the output time evolution of the third node that will be
used by the adaptive strategy. The goal of the adaptive strategy is to
synchronize the original and the replica network on the same time
evolution by adapting the coupling strengths ε̂ij of the replica until
they converge onto the original εij .

strategy for which the potential (4) is replaced by

〈ψk〉z, (25)

FIG. 10. (Color online) Time evolution of εk
ij , the assumed

constant (solid lines), and their estimates ε̂k
ij (dashed lines).

where the symbol

〈Ak〉z = (1 − z)
∞∑

j=0

zjAk−j (26)

and z is a smoothing factor that determines the temporal extent
over which the averaging is performed. The time window
over which this exponentially weighted moving averaging is
performed is (1 − z)−1 samples. Note that based on the above
definition, 〈Ak+1〉z = z〈Ak〉z + (1 − z)Ak .

We require (1 − z)−1 to be larger than Tν , the characteristic
time scale over which an uncoupled system evolves, and to be
smaller than Tε , the time scale over which the true couplings
evolve, i.e.,

Tν < (1 − z)−1 < Tε. (27)

Note that 〈ψk〉z � 0. Moreover, 〈ψk〉z = 0 only if ν̂k
i =

νk
i and ε̂i = εi , i = 1, . . . ,N . Thus, in what follows we seek

to minimize the potential (25). We introduce the following

FIG. 9. (Color online) Time evolution of εk
ij (solid lines) and of ε̂k

ij (dashed lines).
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FIG. 11. Final estimation 	 versus r for both the cases of z =
0.95 and z = 0.99.

gradient descent relations:

ε̂k+1
i = ε̂k

i − γi

∂

∂ε̂i

〈ψk′ 〉z (28)

i = 1, . . . ,N , γi > 0. With this modification, Eq. (10) for the
evolution of the ε̂i is replaced by

ε̂k+1
i = ε̂k

i + 2γiξ
k
i , (29a)

ξk+1
i = zξk

i + (1 − z)ek

⎡
⎣ N∏

j=(N−i+1)

ε̂jDG

⎤
⎦G

(
ν̂k

N−1

)
,

(29b)

i = 1, . . . ,N . Figure 11 shows the performance of our adaptive
strategy [Eqs. (1), (2), and (29)] as the noise coefficient r is
increased. We set N = 3. For each run we choose the εi to
be constant over the time of the simulation and equal to N

equally spaced numbers in the interval [0.2,0.5]. We plot the
final estimation error 	 versus r for both cases where z = 0.95
and z = 0.99. As can be seen, for r not being too large, the
adaptive strategy is able to reconstruct all of the unknown
couplings in the presence of noise.

V. ROBUSTNESS OF THE ADAPTIVE STRATEGY WITH
RESPECT TO MODEL MISMATCHES

In this section, we test our strategy in the case that our
model equations do not exactly match those characterizing
the dynamics of the true network. In particular, we assume
that the parameters for each individual neuron slightly deviate
from the true ones. To this aim, we replace the set of equations
(2) describing the replica network by the following set of
equations:

ν̂k+1
1 = F̃

(
ν̂k

1

) + ε̂k
1u

k, (30a)

ν̂k+1
i = F̃

(
ν̂k

i

) + ε̂k
i G

(
ν̂k

i−1

)
, i = 2, . . . ,N, (30b)

FIG. 12. Final estimation error 	 versus the parameter-mismatch
coefficient α. Each point in the figure is an average over 20 different
realizations of the estimation strategy.

where the function F̃ is an imperfect model of the true function
F , i.e.,

F̃ (νk) =
{

xk+1
i = (

xk
i

)2
exp(yk

i −xk
i ) +d ′

yk+1
i = a′yk

i − b′xk
i + c′ , (31)

with parameters a′ = a(1 + βa), b′ = b(1 + βb), c′ = c(1 +
βc), d ′ = d(1 + βd ), with (βa,βb,βc,βd ) being random num-
bers drawn from a Gaussian distribution with a 0 mean and
standard deviation α.

Figure 12 shows the performance of our adaptive strategy,
Eqs. (1), (10), and (30), as the parameter-mismatch coefficient
α is increased. We set N = 3. For each run we choose εi to be
constant over the time of the simulation and equal to N equally
spaced numbers in the interval [0.2,0.5]. We plot the final
estimation error 	(α), averaged over many realizations, versus
α. Note that by increasing α, we introduce model mismatches
in all of the parameters of all the oscillators in the chain. As
can be seen, for α not being too large, the adaptive strategy is
still able to provide good estimates of the unknown couplings
in the presence of model mismatches.

VI. DISCUSSION: AN APPLICATION
TO NEURONAL NETWORKS

In this section, we comment on the possible application of
our technique to estimating synaptic strengths within small
neuronal networks, which remains an outstanding problem
in neuroscience. According to the current state of the art,
experiments can be carried out to both sense and control single
neurons [39,40]. However, the possibility of sensing multiple
neurons is typically limited by technological constraints.
We are particularly interested in the application of our adaptive
strategy to neural systems as these circuits pose a unique
challenge in the elucidation of connectivity. Not only is access
to the circuit limited by technological constraints but the
connectivity is an activity-dependent dynamical process.
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In order to begin to link form with function within a
neural system, knowledge about its connectivity pattern is
the first important step. The field of connectomics involves
the elucidation of the structural connectivity profile for a
given neural system [41]. Imaging of the brain anatomy
to obtain the architecture of this complex circuit will help
to provide insights into behavior as well as identify loci
of a particular neuropathology. Structural connectivity can
span a wide spatial range with cell-to-cell connectivity maps
comprising the microscopic scale and on the macroscopic
scale, connectivity maps between assembles of neurons or
between specific anatomical regions [42–45]. In particular,
at the microscopic scale, connectivity between cells remains
a holy grail in neuroscience but, due to the current state of
the art, only the wiring diagram of the nervous system of the
nematode Caenorhabditis elegans, with 302 neurons, has been
fully elucidated [22].

However, knowledge of static connectivity tomographs
is not sufficient to understand the function or complex
computations of a given neural circuit. The brain is a dynamical
system and it is both the existence of a connection as well as
its dynamical state that is required for neural communication.
This points out the importance of developing tools to detect
and monitor the time evolution of the connectivity patterns
between neurons. Measuring the strength of synapses and how
they change over time is a necessary component of understand-
ing neural function. This task is more challenging because
complete knowledge of the dynamics of any given circuit
is not known. Experimentally, assessing synaptic strength is
typically performed using single electrodes, thereby placing a
limit on the overall number of synapses that can be measured.

We find two main limitations to the possibility of applying
our technique to neural networks: (i) in experiments, only
approximate synchronization between a true neuron and a
model neuron has been achieved and (ii) neural networks are
typically characterized by a degree of complexity that is higher
than that of the simple modules considered in this paper. While
the first problem points out the importance of developing tools
that are robust with respect to model uncertainties, the second
problem suggests that our technique could be successfully
applied to an in vitro network of cultured neurons synthetically
coupled as in Ref. [46]. Our capability of estimating the
parameters and the states of an experimental realization similar
to that proposed in Ref. [46] would allow us to produce a
proof-of-principle demonstration of the possibility of applying
our technique to networks of neurons.

While the current state of our strategy is not ready for a
practical implementation, we speculate that future analytical
and computational refinement in conjunction with the testing

of an experimental application will achieve this goal. A
representative sensor-actuator system in the brain is the class
of nociceptors, sensory neurons that respond to mechanical,
chemical, and thermal stimulation, and their corresponding
output neurons that adjust or modulate their dynamics in
response to the sensor. Taking this as a model, we believe
it is possible that a future realization would combine visual
and dynamical techniques to improve the resolution needed to
describe the dynamic network connectivity structure as well
as to shed light on its time evolution.

VII. CONCLUSION

In this paper we considered small networks (modules)
of coupled oscillators with the goal of estimating all of the
unknown network couplings, using limited, i.e., localized,
information on the state time evolution from only one
oscillator.

We proposed an adaptive strategy that uses synchronization
between an original true network and a replica network
in order to estimate the couplings and the states of the
oscillators. We tested our approach over different modules of
coupled oscillators, including small unidirectional chains and
a configuration of two (coupled) chains in parallel. We also
proposed an alternative formulation of the adaptive strategy
that is suitable to handle noise in the received signal and tested
the strategy with respect to small mismatches in the parameters
of the individual oscillators. The novelty of our approach is
demonstrated by the fact that it can reconstruct the structure
of an unknown complex network from dynamical information
even when partial knowledge of its nodes’ time evolutions is
available.

A limitation is represented by the possibility of extending
our approach to larger networks, which are characterized by a
larger parameter search space. Though it is both possible and
desirable that other methods will outperform ours in achieving
this goal, we expect that being able to correctly estimate the
structure of an unknown large network from limited dynamical
information will remain an outstanding task, irrespective of the
specific approach used. In this regard, our method based on
estimating single modules of oscillators from a large network
and recombining them to obtain a picture of the original
network may prove useful even when alternative approaches
are attempted.
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