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Transitions between different condensed phases, molecular conformations, chemical compositions, or
spatiotemporal patterns play important roles in many branches of natural science and at the same time incur
serious challenges in their precise characterization. We design an approach for computing connecting orbits
bridging steady states based on the renormalization group analysis. The technique is successfully applied to
several interesting examples and good analytic results are obtained in a systematic and unified way.
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I. INTRODUCTION

Transitions between different steady states always make
a central part of system dynamics and are key to the under-
standing of many interesting physical, chemical, or biological
processes. From a dynamical systems point of view, they are all
described by connections that link equilibria in the state space.
Instantons in quantum mechanics, solitory waves in shallow
water dynamics, propagating fronts in combustion problems,
and chemical reaction paths in the transition state theory are
all closely related to these connecting orbits [1–4], among
which the heteroclinic ones often guide the transition from one
state to another. The nonequilibrium dynamics globally can be
viewed as a directed graph with vertices being the local steady
states and edges being the connecting orbits. The embedded
network structure of state transitions has been observed in
many systems, ranging from spatiotemporally chaotic fluids
to a folding protein [5–10]. How to find these connections
and determine their properties constitute an important part
of understanding global properties of heterogeneous, strongly
interacting, multiagent systems.

The most popular way of locating a connecting orbit is
through numerical computation [11–15]. Analytical approxi-
mation can sometimes be obtained with the help of asymptotic
analysis [16]. Both methods require the knowledge of the
steady states at both ends and dynamics in their neighborhoods.
Very rarely, an exact solution may be obtained through skilled
and involved analytical manipulation [17–19]. Although much
progress has been made, in general, the detection and analysis
of connecting orbits remains a challenge for researchers in
both mathematics and natural sciences, which await new tools
for an elegant solution.

The renormalization group (RG) method was first proposed
in theoretical physics for removing singularities in the pertur-
bation theory of quantum physics [20]. The idea was extended
to the asymptotic analysis of differential equations not long
ago [21,22]. Compared to the traditional asymptotic methods,
it is simple to use and has the potential to accommodate
most of the existing analysis. Much work has been done to
illuminate its mathematical significance and to simplify its
solution procedure. Until now, the method has been widely
tested in various systems and often proved to be very effective
[21,23–27].
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Previous RG schemes often result in nonlinear equations of
the same dimension as the original one. Here, we generalize
the method to the detection of one-dimensional orbits that
connect different steady states. A restrained RG scheme was
designed in literature to determine the center manifold and
the dynamics on it [28] or hyperbolic invariant manifolds
with certain constraints on the spectrum of the linearized
equation [29]. The method to be explained here has no
such constraints and works for general parameter values. It
also has the advantage that only one end point is needed
in the analysis and the other end point can be determined
by the resulting RG equation. Therefore, exploration of a
high-dimensional phase space could be concentrated on its
one-dimensional foliations by the RG analysis, which will
provide great convenience for studying transitions in many
physical systems. Moreover, an analytical approximation is
easily computed with the RG approach and exact solutions
may even be obtainable occasionally.

In this paper, we apply the new RG method to the
determination of heteroclinic orbits in differential systems.
Below is the organization of the rest of the paper. After an
explanation of the RG method and our generalization in Sec. II,
we will apply it to three typical examples in Sec. III: the
Lotka-Volterra model of competition in ecology [30], the
Gray-Scott model in chemical reaction kinetics [18], and
the Kuramoto-Sivashinsky equation [31–33] that describes
spatiotemporal pattern formation. All these systems have
different characteristics and will be used to show interesting
aspects of the RG method. In Sec. IV, the findings will be
summarized and possible future development and applications
will be mentioned.

II. RENORMALIZATION GROUP METHOD
FOR DIFFERENTIAL EQUATIONS

Here, we will explain how the RG is applied to the solution
of differential equations and what our extension is. Suppose
that we have a set of n-dimensional differential equation

ẋ = Lx + εN (x), (1)

where x = (x1 ,x2, . . . ,xn)t ∈ Rn and L is an n × n matrix.
N (x) ∼ O(|x|2) is the nonlinear term which is assumed to be
analytic in the neighborhood of x = 0. ε is a small parameter
which signifies the magnitude of the nonlinear term. Suppose
L is diagonalizable, e.g., L = diag(λ1 ,λ2 , . . . ,λn) a diagonal
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matrix, where λi’s are eigenvalues of L. Below, we will first
make an naive expansion and then derive the RG equation.

We may make the expansion

x = u0 + εu1 + ε2u2 + · · · . (2)

By substituting Eq. (2) into Eq. (1) and comparing different
orders of ε, we obtain

u̇0 = Lu0

u̇1 = Lu1 + N (u0)

u̇2 = Lu2 + N2(u0,u1)

... , (3)

where N2(u0,u1) = ∇N (u0) · u1 denotes the second order
nonlinear driving. The first equation in Eq. (3) is linear and its
solution is

u0(t,t0) = eL(t−t0)A, (4)

where A = A(t0) is a constant vector of integration and t0 is the
initial time, which upon a substitution into the second equation
of Eq. (3) results in

u1(t,t0) = eL(t−t0)
∫ t

t0

e−L(τ−t0)N [eL(τ−t0)A]dτ, (5)

where u1(t0,t0) = 0 has been assumed for convenience. With L

being diagonal, each component of u1(t,t0) may be computed
separately. The integration in Eq. (5) gives exponential
functions unless resonance terms happen to exist, in which
case powers of (t − t0) will appear.

In a similar way, higher-order terms such as u2 ,u3 may
be computed. Substituting these results into Eq. (2), we get
the naive perturbation expansion. If all the eigenvalues of L

satisfy Re(λi) � 0, then this expansion can be very efficient
unless there are resonances which bring in the powers of t − t0
and invalidate the perturbation expansion when t − t0 is not
small. We need the RG technique to get better approximation.
The series expansion Eq. (2) gives x = x̃[t ; t0,A(t0)]. The RG
equation is a set of equations for dA(t0)/dt0, which can be
derived from the renormalization equation [21,34]

dx̃[t ; t0,A(t0)]

dt0

∣∣∣∣
t=t0

= 0. (6)

If x̃[t ; t0,A(t0)] is an exact solution, the resulting evolution
equation for A(t0) is also exact. An order εm approximation
for dA(t0)/dt0 is derived if x̃[t ; t0,A(t0)] is accurate up to
order εm [25]. Note that this statement is true as long as t is
close to t0. Once the equation for A(t0) is solved, the solution
of the original equation, Eq. (1), can be well approximated by
x(t0) ≈ x̃[t0; t0,A(t0)]. The nice feature of this form of solution
is that the substitution t → t0 removes the divergent resonance
terms.

Note that Eq. (6) is linear in the n unknowns dA(t0)/dt0,
which can easily be computed from the n equations. We are
mostly interested in the dynamics on a submanifold, which
may be described by less than n independent variables. As
a consequence, less than n free parameters A(t0) is at our
disposal due to the constraint. If previous strategy is used to
arrive at a similar equation to Eq. (6), an awkward situation
arises that there are more equations than unknowns. When a
center manifold exists and all eigenvalues have nonpositive real

parts, a certain scheme is designed to adapt the RG technique to
the description of the dynamics on the manifold [35]. Below,
we are going to introduce a new strategy to derive the RG
equation on a generic invariant submanifold. Without loss of
generality, we will concentrate on the 1D submanifold. Higher-
dimensional ones can be treated in a similar way.

Suppose that we are interested in the dynamics on the
submanifold corresponding to the eigenvalue λ1, lying in the x1

direction in an infinitesimal neighborhood of the origin. Then
the initial vector A should be taken as A = (A1, 0, 0, . . . ,0)t ;
i.e., only the first component is retained. Subsequent iterations
for higher-order terms in the series Eq. (2) remain the same for
the first component but have to be modified for others. As an
example, the ith (i �= 1) component of u1 can be computed as

u1,i(t,t0) = eλi (t−t0)
∫ t

e−λi (τ−t0)N (eL(τ−t0)A)dτ, (7)

where
∫ t denotes integration without a constant term. As

mentioned before, the integration result should be exponential
or power functions of t − t0. This integration strategy can be
easily applied to higher-order terms.

In the approximate solution series Eq. (2), only one constant
A1 is at our disposal, so that we cannot directly use Eq. (6) any
longer. In fact, we may use its first component,

dx̃1[t ; t0,A1(t0)]

dt0

∣∣∣∣
t=t0

= 0, (8)

to derive the RG equation for dA1(t0)/dt0. How about other
component equations? Surprisingly, they are all satisfied by
the solution of this one RG equation!

The assertion can be proven by mathematical induction.
According to Eq. (1) and our integration procedure Eq. (7), it
is easy to write down an integral equation for its ith (i �= 1)
component:

xi[t ; t0,A1(t0)] = εeλi (t−t0)
∫ t

e−λi (τ−t0)N{x[τ ; t0,A1(t0)]}dτ.

(9)

Suppose that Eq. (6) is satisfied up to order εm for every
component with a solution of dA1(t0)/dt0 accurate up to order
εm. We may take t0 derivatives on both sides of Eq. (9) and
impose t → t0

∂xi[t ; t0,A1(t0)]

∂t0

= ε

∫ t

e−λi (τ−t)∇N{x[τ ; t0,A1(t0)]}∂x[τ ; t0,A1(t0)]

∂t0
dτ

∼ O(εm+1). (10)

That is, Eq. (6) is satisfied up to order εm+1 for i �= 1. For i = 1,
we directly solve the first component of Eq. (6) for dA1(t0)/dt0
with the accuracy of order εm+1. So, for this particular solution
of dA1(t0)/dt0, Eq. (6) is satisfied up to order εm+1. It is easy
to check that our assertion is true for m = 1. By induction, it
is true for all values of m.

In the current paper, we do not prove the convergence of
the solution series. However, in Chiba’s recent papers [28,29],
the convergence of the RG method and the diffeomorphism
of the compact normally hyperbolic invariant manifold
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between the approximate and the exact dynamics are proven
for sufficiently small ε under quite general conditions.

III. APPLICATIONS

Below, the new method is applied to three examples that are
specifically chosen because they demonstrate different aspects
of the method: one from biophysics—the Lotka-Volterra
model of competition; one from chemical physics—the Gray-
Scott model of cubic autocatalytic chemical reactions; and
one from pattern formation study—the Kuramoto-Sivashinsky
equation. In the first example, the RG technique determines
both the end points and the connections of a nonlinear ODE
at the same time with the knowledge of the starting point. The
second example shows that the method is applicable to systems
with multiple stable and unstable directions, and it is even
possible to obtain exact solutions through the RG analysis.
The third example shows that the current RG computation can
be easily applied to spatially extended systems. In addition to
the three examples presented here, the method has been applied
to quite a few other examples, including Lorenz equation with
equal success, which shows its general validity.

A. The Lotka-Volterra model of competition

Here, we use the classic Lotka-Volterra model of com-
petition as an example to explain our technique. The model
describes the competition between the rabbits and the sheep
fed on the grass of the same lawn. Each species would follow a
logistic growth in the absence of the other, but the competition
for food occurs when a rabbit meets a sheep. Mathematically,
the model can be expressed as

ẋ = x(3 − x − 2y)
(11)

ẏ = y(2 − x − y),

where x ,y are the rabbit number and the sheep number,
respectively.

Equation (11) has four equilibria P1 = (0,0), P2 =
(0,2), P3 = (1,1), P4 = (3,0). Five connecting orbits exist
between these points, but it seems hard to obtain exact analytic
expressions for orbits connecting to the saddle point P3.
Numerical computation give the three heteroclinic orbits that
connect P3 to other equilibria, shown in Fig. 1(a) (solid line).

In fact, the RG technique can be effectively used to give
analytic approximations of these heteroclinic orbits. To study
the behavior of Eq. (11) around the saddle P3, we take
a coordinate transformation x = 1 −

√
2
3z +

√
2
3w, y = 1 +√

1
3z +

√
1
3w, such that the stable and the unstable directions

of P3 go along the z and the w axis. Next, we carry out the
usual perturbative expansion procedure by first assuming

z = εz1 + ε2z2 + ε3z3 + · · · ,
(12)

w = εw1 + ε2w2 + ε3w3 + · · ·
and substituting it into the equation satisfied by z(t) and w(t).
By a comparison of different orders of ε, we have

L ◦ z1 ≡
(

1 −
√

2 + d

dt

)
z1 = 0

M ◦ w1 ≡
(

1 +
√

2 + d

dt

)
w1 = 0 (13)

L ◦ z2 = F2(z1,w1)

M ◦ w2 = G2(z1,w1) (14)

· · · , (15)

where F2 ,G2 are polynomial functions of their arguments.
The linear operators L ,M are defined in Eq. (13) and keep
popping up in later equations. The general solution of Eq. (13)
is

z1(t) = a(t0)e(
√

2−1)(t−t0), w1(t) = b(t0)e−(1+√
2)(t−t0), (16)

where [a(t0) ,b(t0)] is the initial position. Here comes the leap.
With a suitable choice of the initial position, we may stay on
a submanifold. For example, if we set b(t0) = 0, then we will
work on the unstable manifold of the original saddle P3, which
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FIG. 1. The connecting orbits in (a) the Lotka-Volterra model (solid lines, the true heteroclinic orbits; dotted lines, the heteroclinic orbits
obtained through RG) and (b) the Gray-Scott model.
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is one-dimensional. Substituting this solution into Eq. (14),
we get a solution of z2, w2, again with two arbitrary constants,
which could be chosen such that z2(t0) = 0 and that no terms
proportional to exp[−(1 + √

2)(t − t0)] appear. Repeating this
process, we get approximations of higher orders:

z = εa(t0)e(
√

2−1)(t−t0) +
√

3ε2a2(t0)

6
(
√

2 − 1)

× [e2(
√

2−1)(t−t0) − e(
√

2−1)(t−t0)] + · · · (17)

w =
√

3ε2a2(t0)

102
(1 + 3

√
2)e2(

√
2−1)(t−t0) + · · · . (18)

Following the standard procedure, we take derivative of
Eq. (17) with respect to t0 and let t → t0, arriving at an equation
for da(t0)/dt0, which results in

da(t0)

dt0
= a

[√
2 − 1 − 17

√
3(3 − 2

√
2)

102
εa − 7 + 4

√
2

102
ε2a2

]
.

(19)

Similar result may be obtained from Eq. (18), which justifies
the consistency of our scheme. So, from the commonly used
local perturbation series expansion Eq. (12), an RG equation
for the amplitude is obtained. The strength of Eq. (19) is that
it captures well the dynamics of the original Eq. (11) in an
much extended region. This can be clearly seen in comparison
with numerical computation results though rigorous proofs
like those given by Chiba [28,29] are still lacking. Through
application to different systems, we found that this practice
seems valid in the case that the connecting orbit is not
geometrically intricate.

With ε = 1, Eq. (19) has three stationary points, a1 ≈ 0,

a2 ≈ −2.037, a3 ≈ 1.638, which can be transformed back
to (1,1), (2.908, − 0.003), (−0.113,2.105) in the original
x-y phase space, apparently corresponding to the equilibria
P3, P4, P2, respectively. Considering this fairly low order of
the approximation, the five percent error in the position is
not bad. If we use higher-order approximation, more accurate
results can be achieved. In Fig. 1(a), these equilibria plus P1 are
marked with circles. The approximate heteroclinic connections
(dotted line) obtained with the RG procedure are seen to be
very close to the true ones (solid line). Moreover, an analytic
approximation of the connections can be obtained by solving
Eq. (19) with quadrature, if necessary. Therefore, through the
RG, we can approximate very well the heteroclinic connections
and the dynamics on them.

B. The Gray-Scott model

The Gray-Scott model represents the cubic autocatalytic
chemical reactions for two chemical species A and B, which
take place in a confined region of space [18]: � → A,A +
2B → 3B,B → C. The stationary patterns are described by
the following equations:

u′′ = uv2 − λ(1 − v)
(20)

γ v′′ = v − uv2,

where u ,v are concentrations of the two chemicals A ,B in a
dimensionless form. The primes represent spatial derivatives
d/dx. Equation (20) has two heteroclinic orbits when γ = 2/9
and λ = 9/2. At this parameter value, Eq. (20) has three
equilibria, P1 = (1,0), P2 = (1/3,3), P3 = (2/3,3/2), and we
will discuss the possible connections between P1 and P2.
In fact, the phase space of Eq. (20) is 4D. If we introduce
p = u′, w = v′, then the 4D dynamical system is

u′ = p, p′ = uv2 − λ(1 − v),

v′ = w, w′ = v − uv2. (21)

A perturbation expansion is carried out around the equilibrium
P1. Equation (21) at P1 possesses linear stability exponents
±3

√
2/2, both being doubly degenerate, which suggests that

the equilibrium P1 has a 2D stable and a 2D unstable manifold.
We may work on the stable manifold and have to use two
parameters, r0(x0), r1, to parametrize the initial position, where
r1 is used to select the filament that embeds the heteroclinic
connection on the 2D stable surface and r0(x0) is used to
parametrize the connection.

The remaining two arbitrary parameters in solution of
the ε1 equation are used to remove terms proportional
to exp(3

√
2/2t). In the solution of the later higher-order

equations, two of the four arbitrary parameters in each order
are used to do this removal and the other two are used to keep
un(x0) = 0, vn(x0) = 0 for n � 2. With there considerations,
we obtain

u = 1 + ε

(
−

√
2r0f (x,x0)

3

)

+ ε2 4

243
[f 2(x ,x0) − f (x,x0)]r2

0 r2
1 + · · ·

p = εf (x ,x0)r0 − ε2 2
√

2

81
[2f 2(x,x0) − f (x ,x0)]r2

0 r2
1 + · · ·

v = ε

(
−

√
2r0r1f (x,x0)

3

)

− ε2 2

27
[f 2(x ,x0) − f (x ,x0)]r2

0 r2
1 + · · ·

w = εf (x,x0)r0r1 − ε2

√
2

9
[2f 2(x,x0) −f (x,x0)]r2

0 r2
1 + · · · ,

(22)

where

f (x ,x0) = exp

[
−3

√
2

2
(x − x0)

]

is the generic linear contraction on the stable manifold.
The RG equation for r0(x0) is given by setting

∂u(x,x0)/∂x0 = 0 followed by taking x → x0, where u(x,x0)
is the first of Eq. (22). By solving the resulting equation, we
obtain

dr0(x0)

dx0
= − 3√

2
r0 + 2

27
εr2

0 r2
1 + r0

21870

× [−45
√

2r2
1 (9 + 2r1)ε2r2

0 + 8r3
1 (9 + 2r1)ε3r3

0

]
+ · · · . (23)
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Here comes a very interesting observation: if we set r1 = −9/2
in Eq. (23), all the terms of order higher than ε1 vanish! In
fact, this statement can be easily proved by going to a few
higher-order terms. So, by setting r1 = −9/2, we sit on the
right filament for the connection, which is described exactly
by the following equation (with ε = 1):

dr0(x0)

dx0
= − 3√

2
r0 + 3

2
r2

0 . (24)

Similar equations could be obtained if any other component
of Eq. (22) was used for the derivation. The 1D dynamical
system Eq. (24) has a stable fixed point r0 = 0 and an unstable
fixed point r0 = √

2, corresponding to the equilibria P1, P3,
respectively.

It is easy to solve Eq. (24) to arrive at

r0(x0) =
√

2

2

(
1 − tanh

3x0

2
√

2

)
, (25)

where we have fixed the arbitrary constant in the integration.
Therefore, utilizing Eq. (22), an exact analytic solution of
Eq. (20) is obtained

u(x) = 1 −
√

2

3
r0(x) = 1

3

(
2 + tanh

3x

2
√

2

)
(26)

v(x) = 3√
2
r0(x) = 3

2

(
1 − tanh

3x

2
√

2

)
.

Due to the time reversal invariance of Eq. (20), the inversion
x → −x in the solution Eq. (26) gives a second heteroclinic
connection with the opposite direction.

In Fig. 1(b), the spatial profiles of the two stationary
solutions u(x), v(x) are shown. The concentration of the two
chemical species is localized to different parts of the available
space.

C. The Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky equation was first derived as
a generic phase equation for nonlinearly coupled oscillators
[32] and also describes a plethora of physics phenomena
[33,36–38]. It is a paradigm for studying nonlinear dynamics
involving the spatial degrees of freedom [39–41]. An interest-
ing one-dimensional version of it could be written as

ut = (u2)x − uxx − νuxxxx, (27)

where ν > 0 is the super-viscosity parameter. Equation (27)
is invariant under the transformation x → −x, u → −u. If
periodic solutions on the interval x ∈ [0 ,2π ] are considered,
we may use the Fourier representation

u(t,x) = i

∞∑
k=−∞

ake
ikx . (28)

For the antisymmetric solution u(t, − x) = −u(t,x), ak is
real and a−k = −ak . In this antisymmetric solution space, the
Kuramoto-Sivashinsky equation becomes

ȧk = (k2 − νk4)ak − k

∞∑
m=−∞

amak−m. (29)

We may use only ak with k > 0 as the state variable.

We are about to study the behavior of Eq. (29) in the
neighborhood of the origin—the trivial equilirium. If ν � 1, it
can be proved that the origin is a global attractor of Eq. (29).
When ν goes below 1, a supercritical bifurcation occurs in the
direction of the Fourier component a1, where two equilibria
are born and connected to the origin through a heteroclinic
orbit. We would like to derive an analytic expression of the
newly born equilibria and the heteroclinic orbit with the RG
analysis.

As before, we first do the usual perturbation analysis by
assuming

ak = εak,1 + ε2ak,2 + ε3ak,3 + · · · . (30)

The substitution of Eq. (30) into Eq. (29) results in a hierarchy
of equations for ak,n by comparing different orders of ε. As
before, if we are only interested in the 1D unstable manifold
of the origin when ν < 1, we may set

a1,1(t,t0) = r(t0)e(1−ν)(t−t0), ak,1 = 0 for k > 1, (31)

where r(t0) is the renormalization parameter. When solving
for ak,n with n � 2, the arbitrary constants are determined
by imposing two conditions: (1) a1,n = 0; (2) only integer
powers of exp[(1 − ν)(t − t0)] are admitted in the solution.
The RG equation (with ε = 1) for r(t0) is obtained from
da1(t,t0)/dt0|t=t0 = 0:

dr0

dt0
= (1 − v)r0 + 2r3

0

1 − 7ν
− 6r5

0

(1 − 7ν)2(−1 + 13ν)
+ · · · .

(32)

From Eq. (32), it is easy to see that when ν > 1, r0 = 0 is
the only fixed point, which is stable. At ν = 1, a supercritical
bifurcation happens at which the connecting orbit is born.
However, as shown in Fig. 2(a), even at the parameter value
ν = 0.5, which already deviates quite far away from the
bifurcation point, the RG approximation (circles) seems to
match the benchmark numerical solution (solid line) very
well. The 1D manifold makes a nontrivial curve in the phase
space. Also, the magnitude of the Fourier components seems
to decrease very rapidly with increasing wave number, which
validates our computation with only a few modes and is
attributed to the ironing effect of the fourth-order damping
term in Eq. (27). Figure 2(b) portrays the time evolution of
the physical variable u(x,t). As the uniform solution is not
stable any longer, the solution leaves for a spatially modulated
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0

−0.04
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0.02
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1
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a 3

FIG. 2. (Color online) The heteroclinic connections in the
Kuramoto-Sivashinsky Eq. (27) at ν = 0.5 represented (a) by
the projection onto the first three Fourier modes and (b) by the time
evolution of the physical variable u(x,t). The solid lines mark the
true heteroclinic orbits and the circles depict the heteroclinic orbits
obtained through RG.
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pattern dominated by a sinusoidal function. In principle, both
the final steady state and the evolution can be approximated
analytically with our RG equation.

IV. SUMMARY

In this paper, an extension of the RG method is proposed and
successfully used for the determination of connecting orbits
in the phase space. The new scheme concentrates on the RG
analysis of dynamics on the 1D submanifold, and the resulting
RG equation is proved to be consistent among all components
of the vector field. The method was applied to three typical
physical systems: the Lotka-Volterra model of competition, the
Gray-Scott model, and the Kuramoto-Sivasshinsky equation.
In the first model, the RG equation is derived around a saddle
and the other equilibrium and dynamics on it is computed with
good precision. In the second example, an exact solution is
derived in spite of the occurrence of degnerate eigendirections.
The last model is a nonlinear partial differential equation that
possesses an infinite-dimensional phase space. The RG method
is able to well describe the transition from a homogeneous state
to a spatially modulated state despite the high dimensionality.
From all these examples, it is reasonable to believe that this
RG scheme should be able to be applied to other strongly
nonlinear heterogeneous systems and to the study of state
transition.

The convergence property of the solution series determines
the validity and quality of our finite RG expansion truncation.
In our first example, if the RG equation is kept only to
the first order, the result would be incorrect. Apparently,
a first-order approximation is not enough to represent the
whole connecting orbit and the associated dynamics, though
it is still valid near the origin a = 0. In the examples we
tried, second- or third-order approximation usually gives good
representation of the orbit. Higher-order approximation often
leads to higher accuracy. Still, in our first example, the third-
order approximation gives (−0.07, 2.04) as the coordinate
of P2 as compared to (−0.113, 2.105) in the second-order
approximation. The third-order approximation also generates
a fake fixed point. However, it is far away from the origin
and the expansion loses its validity there. The two points
that are immediate neighbors of the origin continue to give
good approximation. Therefore, a qualitative knowledge of
the orbit structure in phase space provides much convenience
and guidance for the application of the current RG technique.

In our series solution of the nonlinear equation, we have
adopted a particular set of initial conditions, which serves
mainly to simplify the later arguments and is by no means
unique. As a matter of fact, there is much room left for us to
choose the form of the series solution that is most suitable to
a particular problem. However, the number of free parameters
should be determined by the dimension of the submanifold and
is independent of the choice of the series solution. With this
freedom, the RG equation and the final form of the solution
could be different for different choices, which may be good to
represent different solution curves. One thing to be noticed is
that in our scheme secular terms might not appear in the naive
series solution.

Still there are problems that await a solution. In all these
examples, the eigenvalue of the linearized dynamics associated
with the connecting orbit has no imaginary part; i.e., the solu-
tion is nonoscillatory. Only in this case is the 1D approximation
of the dynamics a valid representation. In practice, many
connecting orbits approach the steady state in an oscillatory
way. How to adapt the current scheme to treating oscillatory
orbits is an interesting problem. Also, in all the above examples
except the second one, the eigen-directions corresponding to
the connection were known a priori. We still do not have much
of an idea what to do if this information is missing. The second
example may give a hint, but more systematic techniques are
needed in order to treat the general case. In all the examples, the
asymptotic states are equilibria, while connecting orbits may
exist between other higher-dimensional invariant sets, such
as periodic orbits, invariant tori, or even strange attractors.
Further extension of the current RG technique is needed to
accommodate all these different cases.

There seems no obstacles to generalize the current tech-
nique to the treatment of dynamics on invariant submanifolds
of dimensions higher than one. The argument in Sec. II can
be similarly applied to the derivation of the RG equation.
This may enable systematic and efficient dynamics reduction
or approximation of invariant submanifold in many nonlinear
systems that appear in various branches of natural science.
According to Ref. [26], the method can also be extended to the
treatment of discrete dynamics.
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