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Analysis of resonant population transfer in time-dependent elliptical quantum billiards
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A Fermi golden rule for population transfer between instantaneous eigenstates of elliptical quantum billiards
with oscillating boundaries is derived. Thereby the occurrence of both the recently observed resonant population
transfer between instantaneous eigenstates and the empirical criterion stating that these transitions occur when
the driving frequency matches the mean difference of the latter [Lenz et al., New J. Phys. 13, 103019 (2011)]
is explained. As a second main result a criterion judging which resonances are resolvable in a corresponding
experiment of certain duration is provided. Our analysis is complemented by numerical simulations for three
different driving laws. The corresponding resonance spectra are in agreement with the predictions of both criteria.
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I. INTRODUCTION

Classical driven billiards of varying geometry have been
subjected to intensive research over the past several years
[1–13]. While billiards are, in general, important models
to study aspects of nonlinear dynamics, semiclassics, or
(quantum) chaos [14,15], driven billiards additionally facilitate
the study of nonequilibrium dynamics. As one of the key
topics concerning driven billiards, Fermi acceleration (FA)
and the related conditions for its occurrence have gained much
attention [5–13]. Fermi acceleration describes the unbounded
growth of energy of particles that repeatedly interact with a
time-dependent potential that is usually modeled by a moving
billiard boundary and was originally proposed by Fermi as a
possible mechanism to explain high-energetic cosmic radiation
[16]. The infamous Fermi-Ulam model (FUM) is basically a
one-dimensional billiard with a moving boundary and it was
found that FA is present in the FUM only for nonsmooth
driving laws [17]. The general conditions for the occurrence
of FA are still under debate. Originally it was assumed that
a sufficient condition for the occurrence of FA in a driven
two-dimensional billiard is the presence of chaotic regions
in the phase space of the corresponding static billiard [13].
However, it turned out that driving an oval-shaped billiard that
has a mixed phase space in a certain mode does not lead to FA
[18]. In contrast, it was shown that the classical driven elliptical
billiard does show FA, although its static counterpart is com-
pletely integrable [5,10]. Furthermore, while correlated motion
suppresses FA for smooth driving in the FUM, it was found
that correlations can even cause exponential FA for smooth
driving laws in a related two-dimensional model [11,12].

Although it is known that periodically driven quantum
billiards with a discrete Floquet spectrum cannot exhibit FA
[19], it is natural to complement the study of the classical
dynamics of a system by analyzing its quantum behavior.
While one finds many studies to the quantum version of
the one-dimensional FUM (see Refs. [20–22], and references
therein), literature is very sparse on driven quantum billiards
of higher dimensions [23–25].

In particular, Ref. [23] presents a method to solve the
time-dependent elliptical quantum billiard. The main result
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was the numerical observation of resonances in the population
transfer probability between instantaneous energy eigenstates.
These transitions could be reproduced in an effective Rabi
model and captured by a criterion stating that resonances
occur whenever the difference of corresponding time-averaged
energy eigenvalues matches an integer multiple of the driving
frequency. However, an explanation for this criterion was not
given in Ref. [23].

Here we develop a systematic perturbative analysis of
population transfer for the system analyzed in Ref. [23]
and a generalized driving law. In this framework a Fermi
golden rule [26] is derived for elliptical quantum billiards with
oscillating boundaries that explains the key observations in
Ref. [23], i.e., the occurrence of resonant population transfer
between instantaneous eigenstates and the empirical criterion
relating these resonances with the spectrum of instantaneous
eigenstates and the driving frequency. As a second major result
we provide a criterion to decide whether a predicted resonance
can be resolved in a possible experiment of a certain duration.
Finally, the numerical studies in Ref. [23] are complemented
by a corresponding analysis of further driving laws. The
predictions derived within our perturbative analysis will be
shown to provide perfect agreement with the numerical results
in all cases.

This work is structured as follows. Section II A provides a
short summary of the solution of the time-dependent elliptical
quantum billiard as developed in Ref. [23], followed by
transformations that bring the Schrödinger equation into a
form being convenient for the application of time-dependent
perturbation theory. In Sec. II B the transition rate between
two instantaneous eigenstates per unit time is calculated in
first-order perturbation theory and an approximate population
dynamics in the near-resonance case is derived. We find a
criterion for the resolvability of predicted resonances in a
possible experiment of certain duration. Finally, in Sec. III
we present and analyze numerical results for three different
periodic driving laws.

II. TIME-DEPENDENT ELLIPTICAL BILLIARD
AND ITS ANALYTIC TREATMENT

In the following, we first summarize our approach to
a numerical solution of the time-dependent Schrödinger
equation of the elliptical billiard as presented in Ref. [23]. We
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transform the time-dependent Schrödinger equation (TDSE)
into a convenient form and finally develop a perturbative
approach for the periodically driven billiard in Sec. II B.

A. Setup

A wave function �(�x,t) in a driven elliptical billiard
obeying the TDSE

ı̇h̄∂t�(�x,t) = − h̄2

2μ
��(�x,t) (1)

is subject to Dirichlet boundary conditions �(�x,t)|∂B = 0 on
a boundary ∂B of elliptical shape:

∂B =
{

�x = (x,y)ᵀ ∈ R2

∣∣∣∣x2

a2
+ y2

b2
= 1

}
. (2)

Here the semiaxes of the elliptical boundary a and b are
assumed to be arbitrary smooth functions of time, i.e., a = a(t)
and b = b(t).

The time-dependent boundary conditions can be handled
by a coordinate transformation [23]

ρt :

(
x

y

)
�→

(
η

ξ

)
=

(
1

a(t) 0

0 1
b(t)

)(
x

y

)
(3)

that maps the time-dependent elliptical boundary onto a static
boundary of the shape of a unit circle. Applying Eq. (3) to
Eq. (1), together with a unitary transformation

U (x,y,t) = exp

[
− ı̇μ

2h̄

(
ȧ(t)x2

a(t)
+ ḃ(t)y2

b(t)

)]
, (4)

and extracting a volume-dependent prefactor
√

a(t)b(t) from
the wave function �(�x,t), we are led to an effective
Schrödinger equation (SE)

ı̇h̄∂t�(η,ξ,t) = He(η,ξ,t)�(η,ξ,t), (5)

where the effective Hamiltonian He contains time derivatives
of the prefactor

√
a(t)b(t) and of the unitary transformation U

of the left-hand side of the TDSE:

He(η,ξ,t) = −h̄2

2μ

(
1

a2(t)

∂2

∂η2
+ 1

b2(t)

∂2

∂ξ 2

)

+ 1

2
μ[a(t)ä(t)η2 + b(t)b̈(t)ξ 2]. (6)

The introduction of the unitary transformation (4) ensures that
He is Hermitian. Due to the extracted prefactor

√
a(t)b(t), the

effective wave function

�(η,ξ,t) :=
√

a(t)b(t) U (ρ−1
t (η,ξ ),t)�(ρ−1

t (η,ξ ),t) (7)

is normalized to 1 on the domain boundary of the unit cir-
cle C := {�x = (x,y)ᵀ ∈ R2|x2 + y2 � 1} and the coordinate
transformation (3) makes � subject to the Dirichlet boundary
condition �(�x,t)|∂C = 0. The reader is referred to Ref. [23] for
a similar, more detailed derivation of the effective Hamiltonian
and equations of motion.

A complete set of orthonormal functions on C is given by
the eigenfunctions of the static circular billiard [27,28]

	n,m(ρ,φ) = 1√
πJm+1(km,n)

Jm(km,nρ)eı̇mφ. (8)

Here ρ and φ can be calculated from η and ξ by η = ρ cos φ

and ξ = ρ sin φ; Jm is the cylindrical Bessel function of order
m and km,n is its nth root; n and m are called the radial and
angular quantum number, respectively, for obvious reasons.
If we expand the effective wave function � in terms of the
eigenfunctions of the static circular billiard, the effective SE (5)
becomes a linear homogeneous ordinary differential equation
of first order in time and can thus be solved numerically by
standard methods [23].

A main result of Ref. [23] was the observation of resonant
population transfer between so-called instantaneous eigen-
states of

HM = −h̄2

2μ

(
1

a2(t)

∂2

∂η2
+ 1

b2(t)

∂2

∂ξ 2

)
. (9)

We understand instantaneous eigenstates as follows. The
semiaxes a and b are parameters of HM that change in time.
If we evolve our system solely by HM in the SE, start the
system in an initial state that corresponds to an eigenstate of
HM at t = 0, and change a and b sufficiently slowly, then
we define the instantaneous eigenstate of HM at time t as
the time-evolved wave function of the system at time t in
accordance with the adiabatic theorem of quantum mechanics
[29].

The Hamiltonian HM (9) is part of the effective Hamiltonian
He [Eq. (6)]. Its complementary part is

HF = He − HM = 1
2μ[a(t)ä(t)η2 + b(t)b̈(t)ξ 2]. (10)

Population transfer between instantaneous eigenstates of HM

takes place by two different mechanisms in the billiard. First, as
a and b are of course not changed sufficiently slowly, diabatic
population transfer between the instantaneous eigenstates of
HM will take place. Additionally, the Hamiltonian HF triggers
population transfer as it is nondiagonal in the basis set of
instantaneous eigenstates of HM .

Introducing the volume of the elliptical billiard V (t) =
a(t)b(t) and the ratio of the semiaxes r(t) = b(t)/a(t), HM

can be rewritten in the much more convenient form

HM = h̄2

μV (t)
M[r(t)], (11)

where we call

M(r) := −1

2

(
r

∂2

∂η2
+ 1

r

∂2

∂ξ 2

)
(12)

the Mathieu operator as its eigenfunctions are just ordinary and
modified Mathieu functions as they appear in the solutions
of the static elliptical billiard. If we label the eigenstates of
M(r) as |n; r〉 with eigenvalue qn(r), |n; r(t)〉 are of course the
instantaneous eigenstates of HM and En(t) = h̄2

μV (t)qn[r(t)] are
the corresponding instantaneous eigenvalues of HM , i.e., we
have

HM =
∞∑

n=1

|n; r(t)〉 h̄2qn[r(t)]

μV (t)
〈n; r(t)| . (13)

Note that M(r) is invariant upon the sign change of η and ξ .
One can therefore choose its eigenstates |n; r〉 such that they
are also eigenstates of the parity operators that change the sign
of η or ξ . In this context, we will refer to |n; r〉 as having even
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or odd η and ξ parity. Note that the effective Hamiltonian He

[Eq. (6)] is also invariant upon the sign change of η and ξ and
consequently couples only instantaneous eigenstates that have
the same η and ξ parity. The Hilbert space therefore splits into
four uncoupled Hilbert subspaces.

We choose the following ansatz for the effective wave
function �:

|�(t)〉 =
∑

n

cn(t)e−(ı̇/h̄)φn(t) |n; r(t)〉 , (14)

with time-dependent expansion coefficients cn(t) and

φn(t) :=
∫ t

0
dt ′En(t ′) =

∫ t

0
dt ′

h̄2

μV (t ′)
qn[r(t ′)] (15)

being the time-integrated instantaneous eigenvalues of HM .
If we put this ansatz into the the SE (5) and note that
∂t |n; r(t)〉 = ṙ(∂r |n; r〉)|r=r(t) ≡ ṙ∂r |n; r(t)〉, we get a SE for
the coefficients cn(t):

ı̇h̄∂t cn(t) =
∑
m

cm(t)e−(ı̇/h̄)[φm(t)−φn(t)][〈n; r(t)|HF (t)|m; r(t)〉

− ı̇h̄ṙ(t) 〈n; r(t)|∂r |m; r(t)〉]. (16)

For nondegenerate eigenstates |n; r〉 and |m; r〉, one can
express the second matrix element on the right-hand side of
Eq. (16) as

〈n; r|∂r |m; r〉 =
{ 〈n;r|[∂rM(r)]|m;r〉

qm(r)−qn(r) for n �= m

〈n; r|∂r |n; r〉 for n = m.
(17)

It is now interesting to notice that the representation of
M(r) in the eigenbasis of the static circular billiard (8)
〈	n′,m′ |M(r)|	n,m〉 not only is a Hermitian but a real symmet-
ric matrix [cf. Eq. (A14) in the Appendix). We can therefore
choose the expansion coefficients of the eigenstates of M(r) in
the eigenbasis of the static circular billiard, 〈	n′,m′ |n; r〉, to be
real. It follows that also the expansion coefficients of ∂r |n; r〉,
〈	n′,m′ |∂r |n; r〉, are real. Thus

〈n; r|∂r |n; r〉 =
∑
n′,m′

〈n; r|	n′,m′ 〉 〈	n′,m′ |∂r |n; r〉 (18)

is also real. In contrast, due to normalization of the eigenstates
|n; r〉, expression (18) has to be purely imaginary and is
therefore identical zero. Noting that

∂rM(r) = ∂2

∂η2
− 1

r2

∂2

∂ξ 2
= 1

r

(
r

∂2

∂η2
− 1

r

∂2

∂ξ 2

)

= M(ı̇r)

ı̇r
(19)

further simplifies Eq. (17). From now on we will restrict
ourselves to periodic driving laws, i.e., a(t + 2π

ω
) = a(t)

and b(t + 2π
ω

) = b(t), and restrict our analytical treatment
to cases where all populated instantaneous eigenstates are
nondegenerate. Unpopulated energy levels may of course still
exhibit crossings. Note that the restriction to periodic driving
laws and nondegenerate eigenstates also includes all cases that
are discussed in Ref. [23] and is not as restrictive as it might
seem at first: The following analysis will show that one can
control very precisely which eigenstates will get populated
upon driving by choosing suitable driving parameters. Also,

the occurrence of crossings itself is solely determined by
the parameter r [compare Eqs. (11)–(13)] and can thus be
controlled: To make sure that populated eigenstates do not
become degenerate upon driving one just has to choose the
driving such that no values of r are assumed that make two of
these eigenstates degenerate. Correspondingly, the occurrence
of crossings in the spectrum of instantaneous eigenstates can
be controlled via the driving amplitude, the initial eccentricity
of the ellipse, and of course the driving mode. In contrast to the
analytical treatment, our numerical simulations work equally
well for cases of populated degenerate eigenstates and have
been checked for convergence in all cases.

We introduce a rescaled dimensionless time τ := ω
2π

t and
finally put Eqs. (17) and (19) back into Eq. (16):

ı̇∂τ cn(τ ) =
∑
m

cm(τ )e−(2πı̇/h̄ω)[φm(τ )−φn(τ )]

× ω

2πh̄
〈n; r(τ )|HF (τ )|m; r(τ )〉

+
∑
m�=n

cm(τ )e−(2πı̇/h̄ω)[φm(τ )−φn(τ )]

× ṙ(τ )

r(τ )

〈n; r(τ )|M[ı̇r(τ )]|m; r(τ )〉
qn[r(τ )] − qm[r(τ )]

. (20)

We point out that the modulus of the first term in Eq. (20)
depends linearly on the driving frequency ω while the modulus
of the second term is independent of ω. We therefore expect the
first term to be dominant for large driving frequencies, while
the second one should be dominant for small driving frequen-
cies and should especially couple neighboring instantaneous
eigenstates due to the denominator qn[r(τ )] − qm[r(τ )].

Obviously, due to periodic driving, all terms on the right-
hand side of Eq. (20) but the coefficients cm(τ ) and the
phase factors exp{−2πı̇[φm(τ ) − φn(τ )]/h̄ω} are one-period
functions in τ . It is therefore possible to represent them by
discrete Fourier transforms. Before we do so, we split φm(τ ) −
φn(τ ) into a nonperiodic part h̄νmnτ := [φm(1) − φn(1)]τ and
a one-periodic part h̄�νmn(τ ):

φm(τ ) − φn(τ ) = h̄νmnτ + h̄�νmn(τ ). (21)

We then combine the one-periodic phase factor
exp[−2πı̇�νmn(τ )/ω] with the other one-periodic terms on
the right-hand side of Eq. (20) and Fourier transform the
results:

ω

l=∞∑
l=−∞

Fnm
l e−2πı̇lτ

= e−(2πı̇/ω)�νmn(τ ) ω

2πh̄
〈n; r(τ )|HF (τ )|m; r(τ )〉 , (22)

l=∞∑
l=−∞

Dnm
l e−2πı̇lτ

=
{

e−(2πı̇/ω)�νmn(τ ) ṙ(τ )
r(τ )

〈n;r(τ ) |M[ı̇r(τ )] | m;r(τ )〉
qn(r(τ ))−qm[r(τ )] for n �= m

0 for n = m.

(23)

Before we put Eqs. (22) and (23) back into the SE (20),
it is useful to perform a unitary transformation cn(τ ) =
exp(−ı̇ωF nn

0 τ )bn(τ ). Note that we do not include Dnn
0 in
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the unitary transformation as it is zero by definition (23)
and that Fnn

0 is completely independent of ω. This unitary
transformation, together with Eqs. (22) and (23), leads via
Eq. (20) to a SE for the coefficients bn:

ı̇ḃn(τ ) =
∑
m,l

m �= nforl = 0

e2πı̇θnm
l τ

(
ωFnm

l + Dnm
l

)
bm(τ ), (24)

where we have defined the abbreviation

θnm
l := νnm

ω
+ ω

2π

(
Fnn

0 − Fmm
0

) − l. (25)

Note that the solution of Eq. (24) determines the complete
physics of periodically driven elliptical quantum billiards.

B. Perturbative analysis

We will now use time-dependent perturbation theory
(TDPT) to find an approximate solution of Eq. (24) in first
order. To do so, we formally affix a parameter λ to Fnm

l and
Dnm

l to keep track of the order of perturbation and will set λ to 1
at the end of our calculation: Fnm

l = λFnm
l and Dnm

l = λDnm
l .

An expansion of bn(τ ) in λ gives bn(τ ) = ∑∞
p=0 λpb

(p)
n (τ ). As

λ should track the order of perturbation, it is natural to choose
the initial values of b

(p)
n as b

(p)
n (0) = δp,0bn(0). Inserting this

ansatz into Eq. (24) and equating equal powers of λ yields up
to first order

ı̇ḃ(0)
n = 0 ⇒ b(0)

n = const = bn(0), (26)

ı̇ḃ(1)
n =

∑
m,l

m �= nfor l = 0

e2πı̇θnm
l τ

(
ωFnm

l + Dnm
l

)
bm(0) (27)

⇒ b(1)
n (τ ) =

∑
m,l

m �= nfor l = 0

e2πı̇θnm
l τ − 1

2πı̇θnm
l

× (
ωFnm

l + Dnm
l

)
bm(0). (28)

1. Population transfer probability

We are now able to calculate the population transfer
probability between two instantaneous eigenstates that will
lead to a systematic understanding of resonant population
transfer as it was observed in Ref. [23]. For this purpose
we assume that the wave function |�〉 was initially in the
(undriven) eigenstate |k; r〉 and then calculate the evolution
of the population of the eigenstate |n; r〉 (n �= k). Population
transfer in first order gives

p1
nk(τ ) := ∣∣b(1)

n (τ )
∣∣2

=
∑
l,l′

e2πı̇θnk
l τ − 1

2πθnk
l

e−2πı̇θnk
l′ τ − 1

2πθnk
l′

× (
ωFnk

l + Dnk
l

)(
ωF ∗nk

l′ + D∗nk
l′

)
. (29)

We would like to calculate a population transition rate
per unit time from Eq. (29), which is defined as
�1

nk := limτ→∞ p1
nk(τ )/τ . Note that (e2πı̇θnk

l τ − 1)/2πθnk
l =

ı̇eπı̇θnk
l τ sin(πθnk

l τ )/πθnk
l grows linearly with τ for θnk

l = 0
while it oscillates periodically with an amplitude 1/πθnk

l

(which is independent of τ ) for θnk
l �= 0. Due to θnk

l − θnk
l′ =

l′ − l, we can therefore neglect all terms in Eq. (29) with l �= l′
for τ being sufficiently large

�nk
1 := lim

τ→∞
p1

nk(τ )

τ

= lim
τ→∞

∑
l

sin2 πθnk
l τ

τ
(
πθnk

l

)2

∣∣ωFnk
l + Dnk

l

∣∣2

=
∑

l

δ
(
θnk
l

) ∣∣ωFnk
l + Dnk

l

∣∣2
. (30)

By applying appropriate transformations, we have handled
the time-dependent boundary conditions of the billiard by
introduction of a time-dependent external potential. This
enabled us to derive Eq. (30), which is a Fermi golden rule [26]
for driven elliptical quantum billiards. It states that efficient
population transfer in first order between the instantaneous
eigenstates |k; r〉 and |n; r〉 is only possible for θnk

l = 0. We
can now use Eq. (25) to calculate corresponding resonance
frequencies

ωnk,l
res =

l ±
√

l2 − 4νnkδF
nk
0

2δF nk
0

, (31)

where 2π · δF nk
0 := Fnn

0 − Fkk
0 has been defined. Numerical

experience shows that δF nk
0 is usually a very small quantity.

The “+” term in Eq. (31) thus corresponds to a very large
resonance frequency. Restricting ourselves to not too strongly
driven billiards, we will neglect this term from now on. If we
develop the “−” term in Eq. (31) about δF nk

0 ≈ 0 and use the
definition of νnk in Eq. (21) above, we find

lωnk,l
res = νnk =

∫ 1

0
En(τ ′) − Ek(τ ′)dτ ′. (32)

Thus, only when the one-period average difference of two
instantaneous energy eigenvalues matches an integer multiple
of the driving frequency can resonant population transfer
between the corresponding instantaneous eigenstates occur.
This is precisely the empirically found criterion in Ref. [23]
and has herewith a theoretical basis. The result justifies to call
the Fourier summation index l “photon process order” of a
population transfer in analogy to the interaction of light and
matter.

2. Applicability of first-order TDPT

Not all predicted resonance frequencies (31) are of equal
importance with respect to their experimental observation and
we will now derive a criterion to discriminate them. In the
resonant case θnk

l = θnk
l′ = 0, Eq. (29) reduces to

p1
nk = τ 2

∑
l

∣∣ωFnk
l + Dnk

l

∣∣2
. (33)

The reader is reminded that Eq. (33) only holds for n �= k,
while for n = k, p1

kk = 0 holds as θkk
l = 0 implies l = 0

and this case just had been excluded from the summation
in Eq. (28). Consequently, the instantaneous eigenstate |k; r〉
gets exclusively depopulated in first-order TDPT. We can
therefore calculate the time τint at which the population pk of
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the instantaneous eigenstate |k; r〉 gets negative and therefore
unphysical:

pk(τint) = 1 −
∑
θnk
l ≡0

p1
nk(τint)

!= 0 (34)

⇒ τint = 1√∑
θnk
l ≡0

∣∣ωFnk
l + Dnk

l

∣∣2
. (35)

The summation index θnk
l ≡ 0 in Eqs. (34) and (35) means that

it should only be summed over states n and photon process
orders l that satisfy the resonance condition θnk

l ≡ 0. This
means in all practical examples that the sum only consists of
a single term.

The term τint is a measure of how fast a population
probability transfer takes place. It is thus reasonable that we
will not be able to fully resolve resonances that correspond
to an interaction time τint that is much larger than the
actual run-time τrun of a possible experiment. In this case,
population transfer will have been stopped before the maximal
theoretically possible amount of population probability will
have been transferred from one instantaneous eigenstate to the
other and our ability to resolve a resonance in corresponding
observations is diminished.

In contrast, we understand that the transition rate (30)
has been calculated in the limit τ → ∞ and the included δ

function is the result of a convergence process. In order to
have the system meet the predictions of first-order TDPT, τint

should be large enough such that a delta function δ(θ ) is a
good approximation of sin2 πθτ/τ (πθ )2 as it appears in the
derivation of Eq. (30). Obviously, such a criterion depends on
the density of the θnk

l about θ = 0. We therefore define a lower
threshold

τlow := max
|θnk

l |�=0

1∣∣θnk
l

∣∣ , (36)

where only θnk
l should be considered in Eq. (36), whose

corresponding resonant probability transitions (i.e., for the
case θnk

l = 0) have interaction times of the order of magnitude
of τrun such that they are relevant for the experiment.
In summary, we expect predicted resonances to be fully
resolved if

τlow � τint < τrun (37)

holds. The discussion of concrete driving laws in Sec. III shows
that this criterion is in excellent agreement with our numerical
simulations.

3. Rotating wave approximation

Interestingly, Eq. (37) justifies a rotating wave approxima-
tion in Eq. (24) [30]. This allows us to calculate approximate
population dynamics of the system that, in contrast to Eq. (29),
conserve the total population probability.

For simplicity, we will assume that there is only one θnk
l

close to zero. A rotating wave approximation simply sets all
other terms in Eq. (24) that do not contain this θnk

l to zero as
they are comparatively fast oscillating; thus we are left with

with an effective two-level system

ı̇ḃn(τ ) = e2πı̇θnk
l τ

(
ωFnk

l + Dnk
l

)
bk(τ ),

(38)
ı̇ḃk(τ ) = e−2πı̇θnk

l τ
(
ωFkn

l + Dkn
l

)
bn(τ ).

The behavior of such a system is very well understood.
A discussion in terms of Bloch equations is for instance
given in Ref. [31]. Equations (38) in particular explain why
the population dynamics in Ref. [23] are reminiscent of
Rabi oscillations. The effective Rabi frequency �eff can be
calculated (see, e.g., Ref. [31]) to be

�eff =
√(

2πθnk
l

)2 + 4
∣∣ωFnk

l + Dnk
l

∣∣2

=
√(

2πθnk
l

)2 + 4
1

τ 2
int

, (39)

which yields a beating period TB of the population dynamics

TB := 2π

�eff
= πτint√

1 + (
πθnk

l τint
)2

. (40)

In summary, if we assume the system to have initially been in
state k, the population dynamics of state n is given by

pn(τ ) = sin2
(

πτ
TB

)
1 + (

πθnk
l τint

)2 . (41)

III. NUMERICAL RESULTS AND DISCUSSION

In this section we will present full numerical simulations
of driven elliptical billiards and analyze the results with the
developed perturbation theory of Sec. II B. Details of the
numerical calculation of the predicted quantities can be found
in the Appendix. All numerical calculations have been run for
τrun = 100 periods of driving and h̄ and μ have, without loss
of generality, been set to 1. We will always drive the semiaxis
a(t) harmonically, i.e.,

a(t) = a0 + A sin(ωt), (42)

and adjust b(t) such that the billiard is driven in different ways,
as will be specified later. To be able to compare the different
driving laws, we have chosen to keep the following parameters
fixed:

a0 := a(t = 0) = 1, A = 0.1, b0 := b(t = 0) =
√

0.51.

(43)

These parameters are the same as in Ref. [23].
The energy E(τ ) will be a key observable for the analysis

of the billiard dynamics. It is calculated from the expectation
value of the Hamiltonian H = − h̄2

2μ
� as it appears in Eq. (1):

E(τ ) = 〈�(τ )|− h̄2

2μ
�|�(τ )〉. (44)

If we apply again the coordinate transformation (3) and the
unitary transformation U [Eq. (4)], the energy reads

E(τ ) = 〈�(τ )|U †(τ )HM (τ )U (τ )|�(τ )〉, (45)

where HM (τ ) is given by Eq. (9). We can therefore calculate
E(τ ) by determining the population pn(τ ) of the eigenstates
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of U †(τ )HM (τ )U (τ ) in |�(τ )〉, weighting these populations
with the respective eigenvalues En(τ ) of U †(τ )HM (τ )U (τ ),
and sum the results:

E(τ ) =
∑

n

En(τ )pn(τ ). (46)

Note that, due to U being a unitary transformation, the energy
eigenvalues En(τ ) of U †(τ )HM (τ )U (τ ) are actually identical
to the instantaneous eigenvalues En(τ ) of HM (τ ).

From now on we refer to the instantaneous eigenstates
of U †(τ )HM (τ )U (τ ) as energy eigenstates. We understand
in particular that the instantaneous eigenstates |n; r(τ )〉 of
HM (τ ) are in general not identical to the energy eigenstates, but
unitarily transformed energy eigenstates, given by U † |n; r(τ )〉.
Note that U is also invariant upon the sign change of η

and ξ such that an instantaneous eigenstate |n; r(τ )〉 and its
corresponding energy eigenstate U † |n; r(τ )〉 have the same η

and ξ parity.
We will initialize the system in the fourth energy eigenstate

(at τ = 0) and calculate the populations pn(τ ) upon driving.
Note that in Ref. [23] instantaneous eigenstates |n; r(τ )〉 were
used as initial states and for population analyses.

Interestingly, we find that the overlap |〈 n; r(τ )|
U (τ )|n; r(τ )〉|2 of all relevant instantaneous eigenstates
|n; r(τ )〉 with their respective energy eigenstates is greater
than 94.5% for the parameter regimes analyzed later in
Sec. III. We thus expect that the energy eigenstates are
similar to the instantaneous eigenstates and also show similar
population dynamics. Consequently, we will from now on
disregard the differences between |n; r(τ )〉 and the energy
eigenstates U † |n; r(τ )〉 when analyzing the billiard dynamics
perturbatively and will subsequently refer to |n; r(τ )〉 simply
as energy eigenstates. This approximation enables us to
predict the seemingly complicated population dynamics of the
energy eigenstates by our perturbation theory for instantaneous
eigenstates. Although the population dynamics of the energy
eigenstates are not expected to be qualitatively different, some
predictions may be compromised quantitatively. For instance,
due to the different actions of U †(τ ) on different |n; r(τ )〉,
shifts of the resonance frequencies (31) are to be expected.
However, as U [Eq. (4)] approaches unity for vanishing
ω, these shifts will rather be observed for larger resonance
frequencies. We will also find that the resonance shifts become
more negligible for higher-order photon processes.

In the approximation of instantaneous eigenstates |n; r(τ )〉
being energy eigenstates, a transition to a higher excited state
increases the energy E(τ ) [Eq. (46)] while a transition to a
lower excited state decreases it. We can therefore determine
if a population transition occurs at a certain driving frequency
ω upon simulation time τrun by calculating the maximal and
minimal energies of the billiard as a function of ω.

A. Axis-ratio-preserving driving law

In the following, we provide numerical solutions for various
driving laws and analyze them with the developed perturbation
theory of Sec. II B. A simple but illustrative driving law is
the so-called axis-ratio-preserving driving law, which merely
rescales the billiard by varying its volume V (τ ) while keeping
the ratio of the semiaxes r(τ ) constant for all times upon
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FIG. 1. (Color online) Energy eigenvalues En(τ ) of eigenstates
|n; r(τ )〉 with even η- and ξ -parity eigenvalues for the axis-ratio-
preserving driving law. The instantaneous shape of the ellipse at five
different values of τ is drawn below the energy eigenvalue curves.
The parameters are a0 = 1, b0 = √

0.51, and A = 0.1.

driving. As a(t) is given by Eq. (42), we find b(t) = r0a(t) and
choose r0 = √

0.51 to satisfy Eq. (43).
The axis-ratio-preserving driving law has the nice property

that the instantaneous eigenstates |n; r(τ )〉 become time
independent due to fixed r(τ ) = r0, while the eigenvalues
En(τ ) stay time dependent, as can be seen from Eq. (13).
Their variation is solely given by the global prefactor 1/V (τ ),
which particularly prevents crossings of energy eigenvalues.
Figure 1 shows a sample of eigenvalue curves for one period of
driving. The fourth energy eigenstate has even η and ξ parity.
Thus, only energy eigenstates in the corresponding sub-Hilbert
space couple to the chosen initial state.

In Fig. 2 the dependence of the maximal and minimal
energies that has been reached upon driving as a solution of the
TDSE in Eq. (1) is plotted depending on the driving frequency
ω. We clearly see sharp peaks and dips at certain driving
frequencies. The vertical lines represent our predictions of
resonance frequencies according to Eq. (31). Note that the
observed resonances deviate slightly from the predicted ones,
especially for larger driving frequencies. This is due to the
unitary transformation U [Eq. (4)] that has been neglected in
our considerations, i.e., we apply perturbation theory only to
the instantaneous eigenstate |n; r(τ )〉 that is most populated in
the energy eigenstate U †(τ ) |n; r(τ )〉. Besides this anticipated
small deviation, we find very good agreement of the numerical
calculations with our predictions. All resonances with a
comparatively small interaction time τint have been resolved,
while resonances with very large interaction times could not be
observed. Naturally, for interaction times that are longer than
(half) the run-time of an experiment τrun, a full population
transition from the initial state to some other energy eigenstate
cannot happen according to Eq. (41). This is the reason why
some peaks in Fig. 2 that correspond to transitions to the same
energy eigenstate possess different heights. It is interesting
to note that, although the run-time τrun of our numerical
simulations was only 100 periods of driving, resonances that
correspond to an interaction time of up to 2000 periods of
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FIG. 2. (Color online) Dependence of the maximal and minimal
energies on the driving frequency ω for the axis-ratio-preserving driv-
ing law. The vertical lines show all predicted resonance frequencies
(31) with an interaction time τint of less than 2000. The darker the
lines are, the longer the corresponding interaction time is. Numerical
values can be taken from Table I. The parameters are the same as in
Fig. 1.

driving could still be partly resolved in Fig. 2. Table I provides
numerical values for all predicted resonance frequencies be-
tween 0 and 16 that have an interaction time of less than 2000. It
also shows that the lower threshold τlow is always much smaller
than the corresponding interaction time τint such that the first
part of Eq. (37) is fulfilled and TDPT of first order is applicable.

One might wonder about a structure of several small
peaks, especially for frequencies ω � 10.5. We assume that
these smaller, not predicted peaks correspond to transitions
of second order where population is first transferred to one
excited state and then from this state again transferred to yet
another energy eigenstate. This is supported, for instance,
by a population analysis in Fig. 3 for the small peak at
ω = 10.81. We see that the mean (or envelope behavior)

TABLE I. Numerical values for all predicted resonance frequen-
cies between the values 0 and 16 with an interaction time τint less than
2000. Information is provided on the corresponding lower threshold
τlow, the quantum number of the coupling instantaneous eigenstate n,
and the photon process order l of the resonance.

ωn4,l
res τint τlow State n Order l

3.966 304 0.181 1 3
5.030 328 0.482 7 2
5.122 1014 0.493 10 4
5.944 39.4 0.271 1 2
6.829 133 0.657 10 3
7.720 1098 0.743 13 4
10.09 40.5 0.970 7 1
10.24 17.3 0.985 10 2
10.29 144 0.990 13 3
11.84 4.91 0.540 1 1
15.11 1647 1.77 22 4
15.44 18.7 1.48 13 2

20 40 60 80 100
0

0.5

1

τ

P
op

ul
at

io
n

 

 

state 1 state 4 state 10

FIG. 3. (Color online) Population dynamics pn(τ ) for the axis-
ratio-preserving driving law at ω = 10.81. The parameters are the
same as in Fig. 1.

population of the energetic ground state decreases while the
population amplitude of the tenth energy eigenstate increases.
This may be interpreted as an interaction of these two states
that consecutively leads to a transfer of population that was
initially transferred to the ground state and is then pushed to the
tenth energy eigenstate. Such a process is not included in the
time-dependent perturbation theory of first order in Sec. II B
and the dynamics visualized in Fig. 3 are a precursor to the
breakdown of this simple theory for higher driving frequencies
where indirect transitions become more and more important.

It is also interesting that the resonance at ω ≈ 15.17 that
corresponds to a four-photon transition from the initial state
to the 22nd energy eigenstate is so well resolved, although
the interaction time of this resonance is much larger than the
interaction time of several resonances that are much worse
resolved (see Fig. 4). The reason for this is that the 22nd
energy eigenstate has a much higher energy eigenvalue than,
for instance, the seventh energy eigenstate. Thus the energy is
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FIG. 4. (Color online) Population dynamics pn(τ ) for the axis-
ratio-preserving driving law at ω = 15.17. The parameters are the
same as in Fig. 1.
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TABLE II. Analog to Table I, but for the breathing driving law.

ωn4,l
res τint τlow State n Order l

2.584 589 0.254 7 4
3.446 150 0.339 7 3
3.972 309 0.178 1 3
5.128 1207 0.504 10 4
5.170 40.0 0.508 7 2
5.954 39.9 0.268 1 2
6.836 151 0.672 10 3
7.807 361 0.728 13 4
10.25 18.8 1.01 10 2
10.35 11.0 1.02 7 1
10.41 63.7 0.970 13 3
11.86 4.90 0.534 1 1
13.18 1284 3.29 20 4
15.21 1019 1.87 22 4
15.62 11.2 1.44 13 2

significantly increased for already a small amount of
transferred population probability from the initial state to
the 22nd energy eigenstate. As can be seen in Fig. 4, the
population of the 22nd energy eigenstate is still less than 0.5
after 100 periods of driving, in agreement with our estimate
of the interaction time.

B. Other driving laws

We have seen in the preceding section that the predictions
of TDPT work very well for the axis-ratio-preserving driving
law. To illustrate the general applicability of the perturbation
theory of Sec. II B under the given assumptions, we will
analyze two further driving laws. The so-called breathing
driving law b(t) = a(t) − a0 + b0, where a(t) is again given
by Eq. (42), was already discussed in Ref. [23]. Figure 5
shows the eigenvalues of energy eigenstates with even η and
ξ parity for one period of driving. We see that crossings of
energy eigenvalues are, in contrast to Fig. 1, now possible
as r(t) is no longer kept constant. The eigenvalues of the

0 0.5 1
0

50

100

150

E
ne

rg
y

τ

 

 state 1
state 4
state 7
state 10
state 13
state 18
state 20
state 22
state 29
state 30
state 34
state 39
state 41
state 43

FIG. 5. (Color online) Energy eigenvalues En(τ ) of eigenstates
|n; r(τ )〉 with even η and ξ parity for the breathing driving law. The
parameters are the same as in Fig. 1.
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FIG. 6. (Color online) Analog of Fig. 2 for the breathing driving
law. Numerical values can be taken from Table II. The parameters are
the same as in Fig. 1.

lowest excited states are, however, very similar to the ones in
Fig. 1 and consequently the resonances in Fig. 6 (compare also
Table II) resemble the ones in Fig. 2. In Fig. 6 more resonances
can be resolved due to a sufficiently small interaction time
τint. This observation can be understood as follows: While
for the axis-ratio-preserving driving law the transition matrix
Dnm

l [Eq. (23)] is identical to zero due to ṙ(t) = 0, this is
not the case for the breathing driving law. The additionally
resolved resonances for the breathing law thus correspond to
Landau-Zener transitions with ṙ(t) being the Landau-Zener
velocity [32]. This role of Dnm

l triggering Landau-Zener
transitions will be even more pronounced for the next driving
law that is presented.

The so-called volume-preserving driving law is just the
opposite of the axis-ratio-preserving driving law. It keeps the
volume V (t) of the billiard fixed while varying the ratio of
the semiaxes r(t). Thus b(t) depends on a(t) [Eq. (42)] as

0 0.5 1
0

50

100

150

E
ne

rg
y

τ

 

 state 1
state 4
state 7
state 10
state 13
state 18
state 20
state 22
state 29
state 30
state 34
state 39
state 41
state 43

FIG. 7. (Color online) Energy eigenvalues En(τ ) of eigenstates
|n; r(τ )〉 with even η- and ξ -parity eigenvalues for the volume-
preserving driving law. The parameters are the same as in Fig. 1.
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FIG. 8. (Color online) Analog of Fig. 2 for the volume-preserving
driving law. Numerical values can be taken from Table III. The
parameters are the same as in Fig. 1.

b(t) = a0b0/a(t). Figure 7 shows the corresponding energy
eigenvalues. We see that the fourth and seventh energy
eigenvalues get close upon driving such that we expect that
the transition matrix Dnm

l [Eq. (23)] couples these states
strongly. We point out that we can arbitrarily control how
close these eigenvalues get upon driving by choosing r(t)
appropriately. As Dnm

l [Eq. (23)] depends on ω only through
the phase factor e−(2πı̇/ω)�νmn(τ ), we expect it to be slowly
varying with ω, thus setting an upper bound on the interaction
time (35) of resonant population transitions between the
fourth and seventh energy eigenstates even for small ω and
corresponding large photon process orders l.

This expectation is fully confirmed by Fig. 8. All resolved
resonances with ω < 5.5 correspond exclusively to transitions
between the fourth and seventh energy eigenstates. As U

[Eq. (4)] gets close to identity for small driving frequencies ω,
the induced resonance shift is negligible. One might wonder
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FIG. 9. (Color online) Population dynamics pn(τ ) for the volume-
preserving driving law at ω = 3.32. The parameters are the same as
in Fig. 1.

why most of the resonances at small driving frequencies
have numerically not been fully resolved even though their
interaction time is short enough. In review of Eq. (32), we
understand that a detuning in the driving frequency is also
multiplied by the photon process order l. Thus one has to adjust
the driving frequency very carefully to resolve a multiple-
photon resonance. Note that Fig. 8 consists of 2500 data points,
each requiring a full simulation of the quantum dynamics,
yielding a total numerical effort of about 25 two-day runs on a
computer cluster with 100 cores and 2.4 GHz each. We assume
that using an even finer frequency grid in Fig. 8 would allow
one to resolve even more of the predicted resonances.

Finally, population analyses close to the resonance fre-
quencies confirm the Rabi-like behavior of the population
dynamics as predicted by Eq. (41). This can be especially well
illustrated for resonances with small interaction times. As an
example, Fig. 9 shows almost perfect Rabi-like population
dynamics of the fourth and seventh energy eigenstates in the
nearly resonant case of a three-photon process at ω = 3.32.
A comparison of the observed beating periods with the
corresponding interaction times τint in Table III gives, even
quantitatively, very good agreement, as predicted by Eq. (40).

TABLE III. Analog to Table I, but for the volume-preserving
driving law.

ωn4,l
res τint τlow State n Order l

0.3682 1985 0.0367 7 3
0.3823 1889 0.0381 7 2
0.3976 1975 0.0397 7 4
0.4733 1176 0.0472 7 2
0.4970 842 0.0496 7 3
0.5232 741 0.0522 7 4
0.5522 712 0.0551 7 1
0.5847 525 0.0583 7 2
0.6213 303 0.0620 7 3
0.6627 185 0.0661 7 1
0.7100 124 0.0708 7 4
0.7647 88.6 0.0763 7 2
0.8284 63.7 0.0826 7 3
0.9037 45.0 0.0902 7 2
0.9941 31.3 0.0992 7 4
1.105 22.0 0.110 7 2
1.243 15.7 0.124 7 3
1.420 11.5 0.142 7 4
1.657 8.51 0.165 7 1
1.989 6.42 0.199 7 2
2.487 4.95 0.248 7 3
3.317 3.94 0.332 7 1
4.982 3.31 0.500 7 4
5.905 411 0.271 1 2
6.228 1134 0.555 13 3
7.795 691 0.691 13 2
8.559 875 1.98 20 4
9.926 28.9 1.01 10 2
10.04 2.97 1.02 7 3
10.28 347 2.33 20 4
10.42 218 0.912 13 1
11.74 5.06 0.538 1 2
12.86 136 2.83 20 3
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We point out that as we can tune the strength of the transition
matrix Dnm

l by choosing how close the energy eigenvalues get
upon driving, we can also tune the interaction time τint in the
regime of weak driving where it is mainly determined by Dnm

l .
Hence we can in principle also control the beating period of
the present effective two-level Rabi system.

IV. SUMMARY

A time-dependent perturbative approach for elliptical quan-
tum billiards with oscillating boundaries has been developed.
As our major results we have obtained a Fermi golden rule
predicting the driving frequencies yielding resonant population
transfer between instantaneous eigenstates as observed in
Ref. [23] and a criterion allowing one to decide which of
these resonances are observable in a corresponding experiment
of certain duration. Extensive numerical simulations have
been performed for three different driving laws, which are
in excellent agreement with our predictions. Particularly for
the volume-preserving driving law, due to the change of
the billiard geometry upon driving, Landau-Zener transitions
have been observed to take place. Depending only weakly
on the driving frequency, these transitions allow for resonant
population transfer also for very weak driving. We have shown
that the billiard dynamics can be reduced in this regime to an
effective two-level system with in principle arbitrarily tunable
oscillation period. Further interesting phenomena beyond the
scope of our perturbative description can be expected in the
numerically challenging regime of strong driving.

ACKNOWLEDGMENT

B.L. thanks the Landesexzellenzinitiative Hamburg “Fron-
tiers in Quantum Photon Science,” which is funded by the
Joachim Herz Stiftung, for financial support.

APPENDIX: MATRIX ELEMENTS

We introduce the matrices

f̂ 1 =
∑

n,m,n′,m′
|	n,m〉δm,m′f 1

nmn′ 〈	n′,m′ |, (A1)

f̂ 2 =
∑

n,m,n′,m′
|	n,m〉δm,m′f 2

nmn′ 〈	n′,m′ |, (A2)

f̂ 3 =
∑

n,m,n′,m′
|	n,m〉δ(m−2),m′f 3

nmn′ 〈	n′,m′ |, (A3)

f̂ 4 =
∑

n,m,n′,m′
|	n,m〉δ(m−2),m′f 4

nmn′ 〈	n′,m′ |, (A4)

f̂ 5 =
∑

n,m,n′,m′
|	n,m〉δ(m+2),m′f 5

nmn′ 〈	n′,m′ |, (A5)

f̂ 6 =
∑

n,m,n′,m′
|	n,m〉δ(m+2),m′f 6

nmn′ 〈	n′,m′ |, (A6)

with matrix elements

f 1
nmn′ = −k2

m,n

4
δn,n′ , (A7)

f 2
nmn′ = 1

2Jm+1(km,n)Jm+1(km,n′)

×
∫ 1

0
Jm(km,nr)Jm(km,n′r)r3dr, (A8)

f 3
nmn′ = k2

m−2,n′

4Jm+1(km,n)Jm−1(km−2,n′ )

×
∫ 1

0
Jm(km,nr)Jm(km−2,n′r)r dr, (A9)

f 4
nmn′ = 1

4Jm+1(km,n)Jm−1(km−2,n′ )

×
∫ 1

0
Jm(km,nr)Jm−2(km−2,n′r)r3dr, (A10)

f 5
nmn′ = k2

m+2,n′

4Jm+1(km,n)Jm+3(km+2,n′ )

×
∫ 1

0
Jm(km,nr)Jm(km+2,n′r)r dr, (A11)

f 6
nmn′ = 1

4Jm+1(km,n)Jm+3(km+2,n′ )

×
∫ 1

0
Jm(km,nr)Jm+2(km+2,n′r)r3dr, (A12)

where Jm is again the cylindrical Bessel function of order
m and km,n is its nth root. We have a convenient form
of representing HM [Eq. (9)], M(r) [Eq. (12)], and HF (τ )
[Eq. (10)] in the eigenbasis {|	n,m〉}n,m [Eq. (8)] of the static
circular billiard:

HM = g1(τ )f̂ 1 + g3(τ )(f̂ 3 + f̂ 5), (A13)

M(r) = −
(

r + 1

r

)
f̂ 1 −

(
r − 1

r

)
(f̂ 3 + f̂ 5), (A14)

HF (τ ) = g2(τ )f̂ 2 + g4(τ )(f̂ 4 + f̂ 6). (A15)

Diagonalizing M(r) yields the instantaneous eigenstates |n; r〉
and their eigenvalues qn(r). One could in principle calculate
the energy eigenvalues En(τ ) = h̄2

μV (τ )qn[r(τ )] from the qn(r),
but it turns out that diagonalizing HM directly increases the
numerical precision of the energy eigenvalues. Note that the
time-dependent factors gi(τ ) as well as the matrix elements
f i

nmn′ are the same as in Ref. [23]. However, the matrix
elements f i

nmn′ have been reduced to a much simpler form,
using orthonormality relations of the Bessel functions

g1(τ ) = −h̄2

μ

(
1

a(τ )2
+ 1

b(τ )2

)
, (A16)

g2(τ ) = μ[a(τ )ä(τ ) + b(τ )b̈(τ )], (A17)

g3(τ ) = −h̄2

μ

(
1

a(τ )2
− 1

b(τ )2

)
, (A18)

g4(τ ) = μ[a(τ )ä(τ ) − b(τ )b̈(τ )]. (A19)

Further note that the sign of g3(τ ) is inverted in comparison
with Ref. [23]. We can now calculate the transition matrix
elements Dnm

l [Eq. (23)] and Fnm
l [Eq. (22)]:

Dnm
l = vnm

1,l + vnm
2,l , (A20)

Fnm
l = vnm

3,l + vnm
4,l , (A21)
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vnm
1,l = −ı̇

∫ 1

0
dτ e2πı̇lτ e−(2πı̇/ω)�νmn(τ )

(
r − 1

r

)

× ṙ

r

〈n; r|f̂ 1|m; r〉
qn(r) − qm(r)

, (A22)

vnm
2,l = −ı̇

∫ 1

0
dτ e2πı̇lτ e−(2πı̇/ω)�νmn(τ )

(
r + 1

r

)

× ṙ

r

〈n; r|f̂ 3 + f̂ 5|m; r〉
qn(r) − qm(r)

, (A23)

vnm
3,l = 1

2πh̄

∫ 1

0
dτ e2πı̇lτ e−(2πı̇/ω)�νmn(τ )g2(τ ) 〈n; r|f̂ 2|m; r〉,

(A24)

vnm
4,l = 1

2πh̄

∫ 1

0
dτ e2πı̇lτ e−(2πı̇/ω)�νmn(τ )g4(τ )

× 〈n; r|f̂ 4 + f̂ 6|m; r〉. (A25)

After calculating these quantities and diagonalizing M(r)
and HM , it is straightforward to reproduce the theoretical
predictions contained in this work.
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