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Wave chaos in a randomly inhomogeneous waveguide: Spectral analysis of the
finite-range evolution operator
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The problem of sound propagation in a randomly inhomogeneous oceanic waveguide is considered. An
underwater sound channel in the Sea of Japan is taken as an example. Our attention is concentrated on the
domains of finite-range ray stability in phase space and their influence on wave dynamics. These domains can be
found by means of the one-step Poincare map. To study manifestations of finite-range ray stability, we introduce
the finite-range evolution operator (FREO) describing transformation of a wave field in the course of propagation
along a finite segment of a waveguide. Carrying out statistical analysis of the FREO spectrum, we estimate
the contribution of regular domains and explore their evanescence with increasing length of the segment. We
utilize several methods of spectral analysis: analysis of eigenfunctions by expanding them over modes of the
unperturbed waveguide, approximation of level-spacing statistics by means of the Berry-Robnik distribution, and
the procedure used by A. Relano and coworkers [Relano et al., Phys. Rev. Lett. 89, 244102 (2002); Relano, ibid.
100, 224101 (2008)]. Comparing the results obtained with different methods, we find that the method based on
the statistical analysis of FREO eigenfunctions is the most favorable for estimating the contribution of regular
domains. It allows one to find directly the waveguide modes whose refraction is regular despite the random
inhomogeneity. For example, it is found that near-axial sound propagation in the Sea of Japan preserves stability
even over distances of hundreds of kilometers due to the presence of a shearless torus in the classical phase space.
Increasing the acoustic wavelength degrades scattering, resulting in recovery of eigenfunction localization near
periodic orbits of the one-step Poincaré map.
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I. INTRODUCTION

It was recognized many years ago that low-dimensional
deterministic dynamical systems can exhibit chaotic behavior,
and chaos reveals itself in physical properties. A typical
dynamical system is characterized by a mixed phase space with
the coexistence of regular and chaotic domains. If the Hamil-
tonian of the system contains a randomlike time-dependent
perturbation with broad spectrum, regular domains cannot
survive for an infinite time interval, except for some atypical
situations. However, there can be domains of finite-time sta-
bility whose lifetimes can be sufficiently large. Such domains
play an essential role in transport properties. Their influence
results in emergence of nonequilibrium quasistationary states
in many-body systems like the HMF model [1,2], transport
barriers for charged particles in weakly turbulent electric and
magnetic fields [3], or Lagrangian coherent structures like
coherent clusters for passive scalars or eddies in randomly
inhomogeneous hydrodynamic flows [4], to name a few
well-known examples. Domains of finite-time stability can be
directly found using phase-space distributions of finite-time
Lyapunov exponents [5,6]. Alternatively, one can invoke the
procedure proposed in Ref. [7] or calculate eigenfunctions of
the Perron-Frobenius operator [8,9]. Although these methods
provide good quantitative accuracy, they are purely numerical
and do not describe the origin of regular domains. A different
approach had been proposed in Ref. [10,11], where dynamics
of a randomly perturbed classical dynamical system under
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a single realization of the random perturbation was studied
using the so-called one-step (or specific) Poincaré map.
This map allows one to estimate analytically the lifetime of
stable domains using the theory of time-periodic Hamiltonian
systems. In Refs. [12,13], the one-step Poincaré map had been
generalized onto classical dynamical systems with dissipation.

Using the basic principles of the quantum-classical corre-
spondence, the concept of the one-step Poincaré map can be
generalized onto quantum systems. In this case, the role of the
one-step Poincaré map is played by the finite-time evolution
operator. In quantum systems, presence of long-living regular
domains in the classical phase space implies the existence of
wave packets which do not exhibit chaos-assisted spreading
for relatively long times. Finite-time stability manifests itself
in spectral properties of the finite-time evolution operator, in
particular, in level-spacing statistics [14]. A spatial analog of
the finite-time evolution operator, related to the problem of
wave propagation in randomly inhomogeneous waveguides,
had been introduced in Ref. [15]. This operator was referred
to as the finite-range evolution operator (FREO). According
to Ref. [15], the applicability of level-spacing statistics for
studying of transition to chaos depends on spatial structure
of the perturbation induced by random inhomogeneity. For
example, when the perturbation is smooth along the transversal
coordinate, the transformation of level-spacing statistics can
properly describe transition to chaos with increasing prop-
agation range [15]. In the opposite case of fast transversal
perturbation oscillations, analysis of level spacings can be
misleading due to proliferation of nearly degenerate levels,
whose occurrence is caused by the cascade of classical
bifurcations.
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The present paper is devoted to further development of
the approach used in Refs. [14,15]. We concentrate our
attention on analysis of FREO eigenfunctions and propose the
method which allows one to find directly waveguide modes
corresponding to regular propagation. Quantitative estimates
of wave chaos, obtained via the eigenfunction analysis, are
not affected by limitations imposed by classical bifurcations.
In addition, we use in the present work two methods of
eigenvalue analysis and compare the results obtained with
different methods.

As in Ref. [15], we consider the problem of sound
propagation in the ocean as an example. It is realized that small
sound-speed variations induced by oceanic internal waves
lead to Lyapunov instability and chaos of sound rays. In the
mathematical sense, ray chaos is an analog of classical chaos
in Hamiltonian systems. Indeed, ray motion in a waveguide
is equivalent to motion of a point particle in a potential well,
and sound-speed variations along a waveguide play the role of
a nonstationary perturbation. Reciprocal Lyapunov exponent
for chaotic rays typically is of about several tens or hundreds
kilometers [16,17], therefore, the problem of ray chaos is
mainly important for long-range sound propagation.

During the past two decades, ray chaos in ocean acoustics
has been an object of intense research, both theoretical and
experimental [18–22]. Considerable attention has been paid to
wave chaos [15,16,23–30]. The term wave chaos is related
to wave-field manifestations of ray chaos. It was found
that interference makes wave refraction more regular than
anticipated from ray modeling, albeit the influence of ray
chaos persists even for very low sound frequencies [31].
This problem becomes especially important in the light of
the growing interest to hydroacoustical tomography, i.e.,
monitoring of the environment using sound signals. The
classical scheme of tomography developed by Munk and
Wunsch [32] is based on computation of eigenrays connecting
the source and the receiver. It was shown in Ref. [33] that
ray chaos leads to exponential proliferation of eigenrays with
increasing distance. As a result, the inverse problem becomes
ill posed, impeding environment reconstruction. However,
wave-based corrections “stabilize” wave refraction, i.e., the
standard semiclassical approximation typically overestimates
ray chaos. Thus, one needs either an improved version of
the semiclassical approximation for proper computation of
eigenrays or some techniques for making implications about
eigenray stability that rely on wave modeling, taking into
account a priori the wave-based suppression of ray chaos.
In the present paper we follow the latter approach.

As an example of the application of the method proposed
here, we consider a realistic model of an acoustic waveguide
in the Sea of Japan. Attention is concentrated on the track
connecting the Gamov peninsula and Kita-Yamato bank.
The length of the track is about 350 km. Our interest to
this waveguide is motivated by unusually high stability of
near-axial propagation, observed in the experiment conducted
in 2006 [34]. Similar behavior was observed in an earlier
experiment with a slightly different propagation track [35].
We carry out the statistical analysis of the FREO in order to
explore the link between the stability of signal receptions in
the experiments and the Lyapunov ray stability. It should be
mentioned that regularity of near-axial propagation contradicts

common expectations based on the experiments in the north
Pacific Ocean [36–41] and numerical simulations with the
canonical Munk waveguide [42].

The paper is organized as follows. The next section repre-
sents basic equations describing long-range sound propagation
in the ocean. In Sec. III, we describe the waveguide used in the
paper. Section IV introduces the FREO. Section V is devoted
to the classical counterpart of the FREO, namely the one-step
Poincaré map. In Sec. VI we demonstrate the approach for
statistical analysis of FREO eigenfunctions. Statistics of FREO
eigenvalues is considered in Sec. VII. In the conclusion we
summarize and discuss the results obtained.

II. GENERAL EQUATIONS

Sound speed in the deep ocean typically has a minimum
at some depth. This results in formation of a refractive
waveguide, the so-called underwater sound channel, which
prevents the contact of sound waves with the absorbing
bottom. As sound absorption within a water column is fairly
weak, an underwater sound channel enables sound propagation
over distances of thousands kilometers. The largest distance
had been achieved using explosive charges in the seminal
experiment on sound transmission from Perth to Bermuda in
1960 [43,44].

The ocean is a layered media, and its horizontal variability
is much weaker than the vertical one. This allows one to reduce
the initial three-dimensional problem of wave propagation
in an underwater sound channel to a two-dimensional one
by assuming cylindrical symmetry and neglecting azimuthal
coupling. Sound refraction is governed by spatial variability
of sound speed

c(z, r) = c0 + �c(z) + δc(z, r), (1)

where z is depth, r is the range coordinate, and c0 is
a reference sound speed. Sound-speed variations obey the
double inequality

|δc|max � |�c|max � c0. (2)

The left inequality implies that the range-dependent term can
be treated as a weak perturbation of the background sound-
speed profile. This term is mainly contributed from oceanic
internal waves. The right inequality means that variations of
the refractive index are weak, and only those waves which
propagate at small angles with respect to the horizontal plane
can avoid contact with the absorbing ocean bottom. Thus,
one can invoke the small-angle approximation, in which an
acoustic wave field is governed by the standard parabolic
equation

i

k0

∂�

∂r
= − 1

2k2
0

∂2�

∂z2
+ [U (z) + V (z, r)]�, (3)

where wave function � is related to acoustic pressure u

by means of the formula u = � exp(ik0r)/
√

r . Here the
denominator

√
r responds for the cylindrical spreading of

sound. Quantity k0 is the reference wave number related to
the sound frequency f as k0 = 2πf/c0. Functions U (z) and
V (z,r) are determined by spatial sound-speed variations. In
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the small-angle approximation they can be expressed as

U (z) = �c(z)

c0
, V (z, r) = δc(z, r)

c0
. (4)

According to (2)

|V |max � |U |max, (5)

that is, function V (z,r) can be treated as a small perturbation.
One can easily see that the substitution

k−1
0 → h̄, r → t (6)

transforms the parabolic equation (3) into the Schrödinger
equation for a particle with unit mass. This circumstance
enables study of wave propagation using the approaches
developed in quantum mechanics. In this relationship, function
U (z) serves as an unperturbed potential. As r is a timelike
variable, V (z, r) plays the role of a nonstationary perturbation.

In the short-wavelength limit k0 → ∞, solution of the
parabolic equation (3) can be expressed as a sum of rays whose
trajectories are governed by the Hamiltonian

H = p2

2
+ U (z) + V (z, r), (7)

where p = tan χ and χ is the ray grazing angle (i.e., the
angle with respect to the horizontal plane). The respective
Hamiltonian equations read

dz

dr
= ∂H

∂p
= p,

dp

dr
= −∂H

∂z
= −∂U

∂z
− ∂V

∂z
. (8)

Due to the analogy with classical mechanics, p is referred to
as ray momentum.

III. MODEL OF A WAVEGUIDE

The model of the underwater sound channel in the Sea
of Japan was elaborated using the hydrological data from the
database [45]. Function U (z) corresponding to the background
sound-speed profile was approximated by the expression

U (z) =
{

U1(z), z � z0

U2(z), z > z0
, (9)

where

U1(z) = c1

c0
e−z/z1 , U2(z) = c1

c0
e−z0/z1 + g

c0
(z − z0), (10)

c0 = 1455 m/s, c1 = 70 m/s, z0 = 250 m is the depth of
the channel axis, i.e., the depth with the minimal sound
speed, z1 = 30 m, g = 0.017 s−1 (see Fig. 1). It is assumed
that the ocean bottom is flat, and its depth h is 3 km. We
consider only the deep-water propagation, albeit the source
in the aforementioned experiments [34,35] was mounted into
the bottom in the coastal zone near the Gamov peninsula. The
shallow-water part of the waveguide was relatively short, less
than 30 km, and did not have significant bottom features which
could remarkably alter ray stability.

Expressions (9) and (10) permit analytical derivation of
some basic model characteristics in the absence of horizontal
inhomogeneity. In particular, ray cycle length, i.e., horizontal
distance between two successive upper (or lower) ray turning
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FIG. 1. (a) Unperturbed sound-speed profile, (b) the first empir-
ical orthogonal function of the sound-speed perturbation (solid) and
its smoothed approximation (dotted) used in ray calculations (see
Appendices A and B for details).

points, can be determined as

D(E) = 2z1

√
2

E
ln(

√
ε + √

ε − 1) + 2c0
√

2Emin

g

√
ε − 1,

(11)

where E is the analog of energy, determined as

E = p2

2
+ U (z), (12)

ε = E/Emin, Emin = (c1/c0) exp(−z0/z1). Ray cycle length
is the analog of oscillation period in classical mechanics.
Figure 2 represents dependence of ray cycle length on the
initial ray momentum for the source located at the channel
axis z = 250 m. Initial momentum p0 depends on E as
p0 = ±√

2(E − Emin). In a range-independent waveguide
D(−p0) = D(p0), therefore, we present in the figure only the
branch corresponding to positive p0. It should be mentioned
that function D(p0) has two extrema in Fig. 2, the sharp
maximum and the smooth minimum. The latter one can
give rise to a so-called weakly divergent beam [46–49]. Its
low divergence is associated with approximate equality of
cycle length values for rays forming the beam. It will be
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FIG. 2. Ray cycle length vs initial ray momentum for the source
located at the channel axis.

demonstrated in Sec. V that the local minimum of D(p0) plays
a significant role in ray stability.

In the present work we consider sound-speed perturbation
solely contributed from oceanic internal waves. Processing the
hydrological data for the Sea of Japan, it was found that the
sound-speed perturbation can be fairly expressed as

V (z, r) = b1(r)Y1(z), (13)

where b1(r) is a random function and Y1(z) is the first
orthogonal empirical function depicted in Fig. 1(b). For
simplicity, it is assumed that b1(r) is a stochastic process with
the exponentially decaying autocorrelation function

〈b1(r)b1(r ′)〉 = exp(−|r − r ′|/r̄), (14)

where the correlation length r̄ is taken to be 10 km, which is
typical for the deep ocean [50]. The model of the sound-speed
perturbation is described in detail in Appendix A.

IV. FINITE-RANGE EVOLUTION OPERATOR

The FREO had been introduced for studying wave propa-
gation in a randomly inhomogeneous waveguide in Ref. [15].
Its quantum-mechanical analog was earlier considered in
Ref. [14]. Basically, a FREO is an element of one-parameter
group generated by the operator in the right-hand side of
Eq. (3). Consider a solution �(z, r) of the parabolic equation
(3) complemented with the standard boundary conditions

�|z=0 = 0,
d�

dz

∣∣∣∣
z=h

= 0 (15)

and the initial condition �(z, r = 0) = �̄(z), where �̄(z)
belongs to L2[0,h] and satisfies (15). The FREO Ĝ(τ ) then
is defined on the subspace of L2[0,h] [restricted by (15)] as

Ĝ(τ )�̄(z) ≡ �(z, r)|r=τ . (16)

By definition, the FREO describes transformation of a wave
field in the course of propagation along a finite waveguide
segment of length τ . Each realization of inhomogeneity
produces its own realization of the FREO. Our interest is
concerned with statistical properties of the FREO and their
connection to classical ray stability.

Note that the choice of the hard wall boundary condition
at the bottom (15) is typical for the deep-ocean acoustics
problems when the attention is restricted to the trapped modes,
whose propagation is not affected by the bottom interaction.
Under these conditions, no energy is absorbed by the bottom.
Hence, if the attenuation in the sea water is negligible (this is
true for the sound frequencies of our interest) and refraction
index in (3) has no imaginary part, then the FREO is a unitary
operator.

The FREO can be represented as a matrix in the basis of
normal modes φn(z) satisfying the Sturm-Liouville problem

− 1

2k2
0

∂2φn(z)

∂z2
+ U (z)φn(z) = Enφn(z) (17)

with boundary conditions (15). Matrix elements of the FREO
are given by

Gmn(τ ) =
∫ h

0
φm(z)Ĝ(τ )φn(z) dz. (18)

Thus, the matrix elements Gmn are complex-valued amplitudes
of modal transitions. For the range-independent waveguide, the
matrix of FREO is diagonal with |Gmm| = 1.

Eigenvalues and eigenvectors of the FREO obey the
equation

Ĝ�m(z, r) = gm�m(z, r). (19)

Due to unitarity, eigenvalues gm can be recast as

gm = e−ik0εm, εm ∈ �. (20)

Since eigenvalues of the FREO belong to the unit circle in the
complex plane, the FREO corresponds to the circular ensemble
[51]. The FREO has much in common with the Floquet
operator governing wave propagation in a range-periodic
waveguide [25,27] and quantum dynamics in time-periodic
systems. For instance, quantity εm is the analog of quasienergy
in quantum mechanics.

Note that eigenvalues of Ĝ(τ ) may be easily computed
using its matrix representation Gmn(τ ). To accomplish this,
one has to clip a finite block of this (infinite) matrix corre-
sponding to the trapped modes, neglecting their interaction
with high-order modes. This simplification is reasonable and
does not affect accuracy of the eigenvalues computation (and
the numerics confirms that) since the prevailing small-angle
propagation corresponds to the low-order modes.

V. ONE-STEP POINCARÉ MAP

Chaos is a phenomenon with a classical origin, therefore,
it is reasonable to consider the classical (i.e., ray-based)
counterpart of the FREO. A finite-range (or finite-time)
evolution operator can be thought of as a quantized one-step
Poincaré map (this map is also referred to as the specific
Poincaré map) [10]. An important advantage of the one-step
Poincaré map is the opportunity to give a simple analytical
description of the transition to chaos. The ray analog of the
map is as follows [11]:

pi+1 = p(r = τ | pi,zi), zi+1 = z(r = τ | pi,zi), (21)
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where p(r = τ | pi,zi) and z(r = τ | pi,zi) are the solutions
of ray equations (8) with initial conditions p(r = 0) = pi ,
z(r = 0) = zi . Values of p and z, calculated at the i-th step of
mapping become the initial conditions for the (i + 1)-th step.
This procedure is equivalent to the usual Poincaré map [52]
for a range-periodic waveguide with the ray Hamiltonian

H̄ = p2

2
+ U (z) + Ṽ (z, r). (22)

Here Ṽ (z, r) is periodic function in r ,

Ṽ (z, r ′ + nτ ) = V (z, r ′), 0 � r ′ � τ (23)

(here n is an integer). As it follows from (23), Ṽ (z, r) is a
sequence of identical pieces of V (z, r), where each of them has
the length τ . Thus, we replace the original randomly perturbed
Hamiltonian system by an equivalent periodically perturbed
one. This replacement is valid as long as we restrict ourselves
by considering dynamics within the range interval [0 : τ ].

Due to the analogy with the usual Poincaré map, the main
property of the one-step Poincaré map can be formulated as
follows: each point of a continuous closed ray trajectory of
the map (21) corresponds to a starting point of the solution
of (8), which remains stable in the Lyapunov sense until the
range r = τ . The inverse statement is not, in general, true.
Hence, the one-step Poincaré map provides a sufficient but
not necessary criterion of stability. The main drawback of the
one-step Poincaré map is that it typically underestimates the
area of regular motion because the criterion of stability it relies
on is very restrictive.

The basic properties of the map (21) can be described in
terms of the theory of time-periodic Hamiltonian systems.
To simplify the analysis of the ray equations, we apply the
canonical transformation to the action-angle variables (I,ϑ).
The ray action is determined by the formula

I = 1

π

∫ zmax

zmin

√
2[E − U (z)] dz, (24)

where zmin and zmax are the upper and lower ray turning points,
respectively, and E is determined by (12). The angle variable
ϑ canonically conjugated to the action (24) is given by

ϑ = ∂

∂I

∫ z

z′
p dz, (25)

where z′ is one of the ray turning points. Ray action measures
steepness of a ray trajectory and enters into the Einstein-
Brillouin-Keller quantization rule

k0Im = m − 1/2, m = 1,2, . . . , (26)

establishing the link between normal modes of the unperturbed
waveguide and satisfying the Sturm-Liouville problem [(15)
and (17)] and modal rays. Here Im is the action of a modal ray,
and both ray turning points are assumed to be inside the water
column, that is, rays undergo total internal reflection due to
smooth vertical gradient of the refractive index n = c0/c(z, r).

The transformed ray Hamiltonian is written as

H̄ = H0(I ) + Ṽ (I,ϑ,r). (27)

Ray equations in terms of the new variables look in the
following way:

dI

dr
= −∂H

∂ϑ
= −∂Ṽ

∂ϑ
,

dϑ

dr
= ∂H

∂I
= ω(I ) + ∂Ṽ

∂I
, (28)

where ω = 2π/D, D is ray cycle length (11).
Perturbation Ṽ (I,ϑ) can be expanded into a double Fourier

series

Ṽ = 1

2

∞∑
k,k′=1

Vk,k′ei(kϑ−k′�r) + c.c., (29)

where � = 2π/τ . Inserting (29) into (28), we obtain

dI

dr
= − i

2

∞∑
k,k′=1

kVk,k′ei(kϑ−k′�r) + c.c.,

(30)
dϑ

dr
= ω + 1

2

∞∑
k,k′=1

∂Vk,k′

∂I
ei(kϑ−k′�r) + c.c.

If the condition

k′D(I = Ik,k′) = kτ (31)

is fulfilled, there occurs resonance in Eqs. (30). The pair of
integers k′ and k determines multiplicity of resonance k:k′.
Resonances occur at certain values of the action Ik,k′ , which
correspond to the resonant tori. Ray dynamics in a small
vicinity of a resonant torus corresponding to some pair (k,k′)
can be described using the resonance approximation [52],
when one leaves only resonant terms in the right-hand side
of (30). It should be mentioned that any resonant torus with
multiplicity k:k′ simultaneously corresponds to an infinite
number of resonances with multiplicities (jk):(jk′), where
j is an integer. However, resonance Fourier amplitudes Vk,k′

rapidly decrease with increasing k and k′; therefore, only few
low-order resonances influence significantly ray dynamics.
Consequently, we can take into account only some finite
number of dominant resonances. For further simplification,
we employ the following procedures:

(1) As Ṽ is a smooth function of z in the underwater sound
channel considered, the derivative dṼ /dI is small compared
with ω, and the sum in the second equation of (30) can be
dropped out.

(2) Near resonance, spatial frequency ω can be expanded as

ω =
{

ω(Ik,k′) + ω′
I�I, ω′

I �= 0

ω(Ik,k′) + ω′′
II�I 2/2, ω′

I = 0
, (32)

where ω′
I ≡ dω/dI and ω′′

II ≡ d2ω/dI 2. Here we assume that
ω′

I and ω′′
II do not vanish simultaneously.

The cases of ω′
I �= 0 and ω′

I = 0 correspond to nondegener-
ate and degenerate resonances, respectively. First, we consider
the nondegenerate case. Introducing new variables,

�I = I − Ik,k′ , ψ = kϑ − k′�r, (33)
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and expressing Vk,k′ as |Vk,k′ | exp(iζk,k′), we can rewrite (30)
as

d(�I )

dr
=

L∑
l=1

lk|Vlk,lk′ | sin(lψ + ζlk,lk′) = −∂H̃

∂ψ
,

(34)
dψ

dr
= kωI�I = ∂H̃

∂(�I )
,

where L is the number of dominant resonances and

H̃

k
= ω′

I

(�I )2

2
+ Ũ . (35)

The potential part in the right-hand side of (35) is given by

Ũ =
L∑

l=1

|Vlk,lk′ | cos(lψ + ζlk,lk′). (36)

Maximal value of �I on the separatrix is determined by

�Ik,k′
max = 2

√
Ũmax

|ω′
I |

, (37)

where Ũmax is the absolute maximum of Ũ . �Ik,k′
max can be

regarded as the half-width of the resonance k:k′.
If L = 1, then Ũmax = |Vk,k′ |, and H̃ turns into the universal

Hamiltonian of nonlinear resonance [16,52]. In that case,
the phase-space portrait of Eqs. (34) contains the domain of
finite motion enclosed by the separatrix and corresponding to
trapping into resonance. The terms with l > 1 may deform
the pendulum-like phase-space portrait and, moreover, result
in the presence of additional separatrices inside the domain
of finite motion. The latter phenomenon can occur when the
perturbation oscillates with depth [11].

In the degenerate case ω′
I = 0 the Hamiltonian H̃ reads

H̃

k
= ω′′

II

(�I )3

6
+ Ũ , (38)

and the resonance half-width is determined by the formula [53]

�Ik,k′
max =

(
12Ũmax

|ω′′
II |

)1/3

. (39)

Transition to global chaos in the one-step Poincaré map
happens when neighboring dominant resonances overlap. The
criterion of overlapping is the well-known Chirikov criterion,

�Im,m′
max (τ ) + �In,n′

max (τ )

δI (τ )
� 1. (40)

Here δI is the distance between neighboring dominant res-
onances m:m′ and n:n′ in the action space. Far enough from
degenerate tori, variability of δI with τ for τ > D is described
by the equation

δI (τ ) = 2π

ω′
I τ

, (41)

that is, increasing of τ enhances resonance overlapping.
However, the Chirikov criterion fails in the vicinities of
degenerate resonances [54,55]. It is recognized that degenerate
(or shearless) tori, corresponding to zeros of the derivative ω′

I ,
can possess extraordinary persistence to chaos [53,56–59]. In
underwater acoustics, shearless tori give rise to the so-called

weakly divergent beams [46], i.e., the ray bundles with
low geometrical divergence. In the model we consider, the
derivative ω′

I has two isolated zeros corresponding to extrema
of the function D(p0) depicted in Fig. 2. Both zeros correspond
to almost horizontal rays with low values of the action, that is,
there may be a small but long-living island of stability, whose
evanescence cannot be described by means of the Chirikov
criterion.

Differences in phase-space patterns corresponding to dif-
ferent realizations of the perturbation are associated with
phase and amplitude fluctuations of Fourier amplitudes Vk,k′ .
However, the contribution of these fluctuations is limited,
therefore, the ratio of the phase-space volumes corresponding
to regular and chaotic motion is mainly controlled by τ and
weakly varies from one realization to another (see below
for an illustration). This property allows one to consider
the one-step Poincaré map as a useful tool for studying
randomly driven dynamical systems of various physical origins
[11–13].

The above expectations are confirmed by computations
of phase portraits via the one-step Poincaré map. Figure 3
illustrates phase-space portraits corresponding to three differ-
ent realizations of the sound-speed perturbation. Each of the
phase-space portraits represents a mixed phase-space structure
consisting of regular and chaotic domains. Phase portraits
with the same τ mainly differ only in angular locations of
regular islands, whereas their overall structure is very similar.
The main regular domain is placed near the point z = z0,
p = 0 and corresponds to flat rays intersecting the horizontal
plane with the smallest angles. Resonance overlapping is
enhanced as τ grows, and stable islands eventually submerge
into the chaotic sea. However, a small region of stability
near z = z0, p = 0 survives for distances of hundreds of
kilometers, transforming into a chain of islands. This chain
corresponds to the smooth minimum of the function D(p0)
(see Fig. 2), i.e., it corresponds to a weakly divergent beam that
maintains stability. Hence, formation of a persistent weakly
divergent beam can be considered as a possible mechanism
responsible for unusual stability of near-axial rays, observed in
experiments [34,35].

It should be emphasized that stability of flat rays is not
typical for sound propagation in the deep ocean. Numerous
experiments on long-range sound propagation in the northeast-
ern Pacific Ocean (see, for instance, Refs. [36–40]) indicate on
strong irregularity of flat near-axial rays, associated with ray
chaos [17,60]. The “deterministic” mechanism of near-axial
chaos is ray scattering on vertical resonances caused by
small-scale depth oscillations of the sound-speed perturbation
[27,29,31]. These oscillations result from higher modes of
an internal-wave field. In the Sea of Japan, the contribution
of the higher modes is weak, therefore, the sound-speed
perturbation can be fairly described by Eq. (13), where depth
dependence is given by a smooth function Y1(z). This means
that there is no scattering on vertical resonances in the
waveguide considered, and we observe a qualitatively different
scenario of ray chaos, associated with overlapping of nonlinear
ray-medium resonances (31). It should be noted that weakness
of higher internal-wave modes is a peculiar feature of the Sea of
Japan, caused by the specific form of the buoyancy frequency
profile.
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FIG. 3. Ray phase-space portraits constructed via the one-step Poincaré map (21). Each column corresponds a single realization of the
sound-speed perturbation. Value of τ is indicated in the left lower corner.

VI. EIGENFUNCTION STATISTICS

As shown in the preceding section, phase space of ray equa-
tions in a randomly inhomogeneous waveguide may contain
domains of finite-range stability. On a wave level, information
about such domains is hidden in subtle correlations between
neighboring elements in the matrix of the FREO. Indeed,
efficient description of a random system anyway requires

statistical approach. However, simple averaging of the FREO
matrix should smooth out the traces of regular domains.
According to the results of ray modeling, regular domains
in oceanic waveguides can persist over ranges of hundreds
kilometers and, therefore, their influence has to be taken into
account. This problem can be resolved when one performs
statistical sampling over realizations of FREO eigenfunctions.
In this case, the information about regular domains is stored
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by certain eigenfunctions which can be identified according to
some criteria.

There are many ways to identify of “regular” or “chaotic”
eigenfunctions (see, for instance, Refs. [61,62]). In the present
work we use only one of them, which seems to be convenient
for the statistical analysis. Each eigenfunction can be expressed
as a superposition of normal modes as follows:

�m(z) =
∑

n

cmnφn(z), (42)

where cmn is the m-th component of n-th eigenvector of
the matrix Ĝ, φn(z) is the n-th normal mode. Ray chaos
corresponds to intense energy exchange between normal
modes [23,29,42]; therefore, a “chaotic” eigenfunction is a
compound of many modes. The stronger the chaos, the larger
the number of contributing modes. Hence, we can characterize
“chaoticity” by estimating participation ratio (PR) in the
expansion (42) [63]. The PR of the n-th eigenfunction is
calculated as

ν =
(

M∑
m=1

|cmn|4
)−1

, (43)

where M is the number of trapped modes. The PR is equal
to 1 in an unperturbed waveguide and grows as scattering
intensifies.

Analysis of eigenfunctions has some advantages over the
analysis of eigenvalues. The main advantage is the possibility
to associate each eigenfunction with some set of normal
modes and, thereby, associate it with a certain geometry of
propagation. To facilitate this association, we can use the
parameter μ [25] defined as

μ =
M∑

m=1

|cmn|2m. (44)

In an unperturbed waveguide, only one normal mode con-
tributes to each eigenfunction, and μ coincides with the
number of this mode.

Taking into account the quantization rule (26), we obtain
the formula

〈I 〉 = μ

k0
+ 1

2k0
, (45)

which gives the mean action corresponding to an eigen-
function. According to (45), the parameter μ determines
the phase-space location of the eigenfunction and can serve
as its identificator. Figures 4 and 5 illustrate eigenfunction
distributions in the μ-ν plane, where ν is the PR (43) for the
frequencies 500 and 100 Hz, respectively.

Let us, first, consider Fig. 4, corresponding to the fre-
quency of 500 Hz. Energy transfer between different modes
is relatively weak for small values of τ , therefore, the
distribution is mainly concentrated near ν = 1. We want to
focus attention on the dense spots elongated in the ν direction.
They correspond to eigenfunctions reflecting mode-medium
resonance [23] being the wave counterpart of the ray-medium
resonance (31) and mathematical analog of the quantum
nonlinear resonance [64]. Indeed, an isolated ray-medium
resonance produces oscillations of ray action inside the in-
terval I0 − �Imax � I � I0 + �Imax, where I0 is a resonance
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FIG. 4. Distribution of eigenfunctions in the μ-ν plane, where
the parameter μ is given by (44) and ν is the participation ratio (43).
Distance values: (a) τ = 10 km, (b) τ = 35 km, (c) τ = 100 km,
(d) τ = 350 km. The sound frequency is 500 Hz.

action and �Imax is resonance width in the action space. In
the case of nondegenerate ray-medium resonance, �Imax is
determined by (37). According to the principle of ray-mode
duality, these oscillations of action correspond to coherent
transitions between the normal modes whose numbers satisfy
the inequality

m0 − �m � m � m0 + �m, (46)

where m0 = k0I0 + 1/2, �m = k0�Imax. Resonance-induced
modal transitions give rise to eigenfunctions with μ  m0

and ν varying from 1 to �m. As long as resonance values
of the action, being determined by τ , are the same for all
realizations of the perturbation, these eigenfunctions form
vertically elongated concentrations of points (hereafter we
shall refer to them as “stripes”) in the μ-ν plane. Location
of mode-medium resonances along the μ axis can be found
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FIG. 5. The same as described in the caption to Fig. 4 but for the
frequency of 100 Hz. (a) τ = 10 km, (b) τ = 35 km, (c) τ = 100 km,
and (d) τ = 350 km.
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using the formula

k′D(I = 〈I 〉) = kτ, (47)

where 〈I 〉 is linked to μ by (45). For instance, the left stripe
in Fig. 4(a) corresponds to D = 30 km and the resonance 3:1,
the right one corresponds to D = 40 km and resonance the
4:1, and the unique resolved stripe in Fig. 4(b) corresponds to
D = 35 km and the resonance 1:1.

Stripes induced by mode-medium resonance disappear
with increasing τ due to overlapping of mode-medium
resonances and delocalization [23,64]. Delocalization leads to
abrupt growth of PR. It eventually subjects all eigenfunctions
in the interval between μ  100 and μ  300, resulting
in the “boomerang” pattern in the μ-ν plane, as illustrated
in Fig. 4(d). The left and right ends of the “boomerang”
are formed by weakly scattered eigenfunctions. The left end
corresponds to the almost horizontal near-axial propagation,
that is, its regularity can be associated with long-living stable
islands in the one-step Poincaré map.

Eigenfunction distribution in the μ-ν plane for the fre-
quency of 100 Hz has a more complicated structure. It is
exceptionally regular for τ = 10 km and τ = 35 km, as
shown in Figs. 5(a) and 5(b). Mode-medium resonances reveal
themselves as “stalagmites.” Each stalagmite is drawn by
a family of distinct weakly biased vertical lines. Contours
of the most pronounced stalagmite for τ = 35 km, corre-
sponding to the resonance 1:1, are somewhat disordered and
smeared.

It should be emphasized that some traces of stalagmite-like
patterns survive, even for distances of hundreds kilometers,
despite global overlapping of ray-medium resonances. Per-
sistence of stalagmites for large τ indicates on the presence
of eigenstates localized near periodic orbits of the one-step
Poincaré map. It can be thought of as the suppression of delo-
calization associated with overlapping of mode-medium reso-
nances, that is, global ray chaos due to resonance overlapping
is not reflected in wave patterns. The most likely mechanism
responsible for the suppression of delocalization and recovery
of stalagmites is the dynamical localization [51,65], when
destructive interference limits wave-packet diffusion in phase
space. Dynamical localization can be considered an analog of
Anderson localization. Recovery of stability in the vicinities of
overlapped ray-medium resonances had been earlier reported
in Ref. [27] for range-periodic waveguides.

Besides stalagmites, Figs. 5(a) and 5(b) illustrate the
patterns in the form of “bridges.” For instance, a pronounced
“bridge” in the left part of Fig. 5(a) connects the points μ = 5,
ν = 1 and μ = 30, ν = 1. The eigenfunctions producing the
“bridges” consist of normal modes satisfying the condition

k0(Em − En) = 2πl

τ
, m > n. (48)

The aforementioned “bridge” in Fig. 5(a) satisfies (48) with
m = 30, n = 5, and l = 9. Condition (48) is equivalent to
quantum resonance between two energy levels. Bridges appear
when resonance (48) is well isolated, i.e., the modes m and n

are not coupled with other modes. The formation of bridges is
described in Appendix C. Isolation of resonance (48) becomes
violated with increasing τ , therefore, the correlation between ν
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FIG. 6. Fraction of strongly localized eigenfunctions as function
of distance. The criterion of strong localization is the inequality ν � 2.

and μ ceases, and ordered “bridges” transform into disordered
clouds of points.

In practice, it is useful to know the fraction of the
eigenfunction ensemble corresponding to regular propagation.
Taking into account the correspondence between rays and
modes established by the WKB theory (26), this quantity can
be regarded as some analog of regular phase-space volume vr

considered in the preceding section. It can be estimated by
means of the cumulative distribution function

F (ν) =
∫ ν

1
ρ(ν ′) dν ′, (49)

where ρ(ν ′) is the probability density function of ν. We can
conditionally distinguish two regimes of localization: strong
localization and moderate localization. Strong localization
implies that the eigenfunction of FREO is close to one
of normal modes of the unperturbed waveguide. To select
strongly localized eigenfunctions, we can use the inequality
ν � 2. Dependence of F (2) on the horizontal distance τ

is depicted in Fig. 6. Evidently, the fraction of strongly
localized eigenfunctions is much larger for f = 100 Hz than
for higher frequencies. The curves corresponding to the higher
frequencies are close to each other. They drop down in the
range of small τ and then the decrease of F (2) becomes
powerlike and very slow. The heavy tail in the dependence of
F (2) on τ is linked to the presence of the long-living islands
of stability in the neighborhood of the weakly divergent beam;
otherwise one would expect F (2) to vanish rapidly. Markedly,
the fraction of eigenfunctions with strong localization is
larger and decays much more slowly than it is anticipated
by classical ray calculations via the one-step Poincaré map.
This can indicate the significance of wave-based effects like
the dynamical localization, as well as violation of the Chirikov
criterion in the presence of shearless tori.

In the regime of moderate localization, mode coupling can
be sufficiently strong, but an eigenfunction occupies relatively
small phase-space volume, that is, the PR is limited. We use the
inequality ν � 0.1M as the criterion of moderate localization.
As demonstrated in Fig. 7, almost all eigenfunctions corre-
sponding to the frequency of 100 Hz are moderately localized.
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It indicates the confinement of chaos-assisted diffusion due
to dynamical localization. For higher frequencies, the impact
of dynamical localization is weaker, and the fraction of
moderately localized eigenfunctions significantly decreases
with τ .

VII. LEVEL-SPACING STATISTICS

It was long ago recognized that wave chaos reveals itself in
the statistics of level spacings. A level spacing is defined as

s = k0M(εm+1 − εm)

2π
, m = 1,2, . . . ,M, εM+1 = ε1 + 2π

k0
,

(50)

where εm increases with increasing m and M is the total
number of eigenvalues for a single realization of the FREO,
equal to the number of trapped modes.

Level-spacing statistics can be studied in terms of the
random matrix theory [51]. Regular dynamics implies that the
matrix of the FREO consists of separate independent blocks. In
this case, level sequences from different blocks are statistically
independent, therefore, the resulting level-spacing distribution
obeys the Poisson law,

ρ(s) ∼ exp(−s). (51)

Under conditions of ergodic chaos, all normal modes are
coupled to each other. This results in repulsion of neighboring
levels, and this phenomenon is closely related to spectral
splittings induced by tunneling [66]. In this case, level-spacing
statistics is described by the Wigner surmise

ρ(s) ∼ sζ exp(−Cs2), (52)

where constants ζ and C depend on symmetries of the FREO.
As the FREO does not possess the symmetry r → −r , it
corresponds to the circular unitary ensemble (CUE) with ζ = 2
and C = 4/π [14].

The most interesting case is a mixed phase space, with
the coexistence of regular and chaotic domains. Level-spacing
statistics then should be described by some combination of

Poisson and Wigner laws. In the short-wavelength limit one
can use the Berry-Robnik distribution [67]

ρ(s) =
[
v2

r erfc

(√
π

2
vcs

)
+

(
2vrvc + π

2
v3

c s

)

× exp

(
− π

4
v2

c s
2

)]
exp(−vrs), (53)

where vr and vc are relative phase-space volumes corre-
sponding to regular and chaotic ray motion, respectively,
vr + vc = 1. In (53), it is assumed that the phase space consists
of only two distinct domains: one regular and one chaotic.
In the limiting cases vr = 1 and vc = 1, the Berry-Robnik
formula (53) reduces to the Poisson distribution and the Wigner
distribution for the orthogonal ensemble (ζ = 1), respectively.
The Berry-Robnik distribution undergoes a smooth transition
from the Poisson law to the Wigner law as vr decreases from 1
to 0. It should be taken into account that Wigner distributions
for orthogonal (ζ = 1) and unitary (ζ = 2) ensembles are not
identical; they are roughly similar, though. Therefore, one can
use (53) only as some rough approximation for the circular
unitary ensemble. This is not a unique shortcoming of the
analysis via formula (53); the Berry-Robnik distribution is
based on the assumption of the total statistical independence
of the matrix blocks corresponding to regular and chaotic
dynamics. This assumption is completely fulfilled only in the
semiclassical limit. As wave corrections grow, independence
degrades due to regular-to-chaotic tunneling [68]. Hence,
the Berry-Robnik formula cannot work perfectly for low-
frequency sound propagation.

Another problem arises when perturbation of the waveguide
oscillates quickly with depth [15]. On the ray level, these
oscillations lead to strong chaos accompanied by extensive
splittings of periodic orbits of the map (21) due to bifurcations.
Due to the link between periodic orbits and energy spectra,
cascades of bifurcations give rise to clusters of nearly degen-
erate levels. Under these conditions, level-spacing statistics
does not obey universality conjecture [69], and the Berry-
Robnik formula becomes inapplicable. The applicability can
be partially recovered with increasing wavelength, when
contributions of individual orbits within a cluster interfere,
and level splitting is suppressed [15,27]. Fortunately, the
Sea of Japan is a rare example of an oceanic environment
where sound-speed perturbation does not exhibit fast depth
oscillations due to a specific hydrological structure, and the
impact of ray bifurcations is relatively weak.

Function (53) should describe level-spacing statistics for
single realizations of the FREO. Very unfortunately, this
is problematic because one encounters insufficiency of the
statistical ensemble. Indeed, long-range sound propagation is
feasible only with low acoustic frequencies of tens or hundreds
of hertz. In this frequency range, number of trapped modes
does not exceed several hundreds of hertz. To resolve this
problem, we consider the ensemble-averaged level-spacing
distribution

ρ(s, τ ) = lim
N→∞

1

N

N∑
n=1

Pn(s, τ ), (54)

where Pn(s, τ ) is a level-spacing distribution corresponding
to the n-th realization of FREO. Fitting the function ρ(s, τ )
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FIG. 8. Fraction of the phase-space volume corresponding to
regular motion vs distance τ for various frequencies.

with the Berry-Robnik distribution (53), one can estimate the
number of regularly propagating modes for various values of
τ and thereby track the transition to chaos with increasing τ .
However, it should be noted that formula (54) enables accurate
estimate of vr only if fluctuations of vr are weak; otherwise,
one should take into account nonlinearity of ρ as a function of
vr in (53).

We calculated the ensemble-averaged level-spacing distri-
bution ρ(s,τ ) using the formula (54) and fitted it, for each value
of τ , by means of the Berry-Robnik distribution (53). Thus,
we obtained dependence of the regular phase-space volume vr

on distance τ . As is shown in Fig. 8, vr rapidly decreases in
the first 100–150 km, reflecting the shrinking of the regular
domains due to overlapping of classical resonances. It then
becomes almost constant. This may indicate the influence of
the long-living stable islands in the vicinity of the weakly
divergent beam. Notably, the curves corresponding to 250,
360, and 500 Hz are very close to each other, whereas the curve
corresponding to 100 Hz lies above them and undergoes strong
fluctuations which persist even with increasing number of
realizations. It should be mentioned that the above estimates of
vr have limited accuracy because the assumptions underlying
the formula (53) are satisfied only approximately. Therefore,
the results obtained using the Berry-Robnik distribution are
rather qualitative than quantitative, especially for low sound
frequencies.

In addition, we used the method of spectral analysis,
developed by A. Relano and coworkers in Ref. [70]. In this
method, one, first, constructs a series

δn =
n∑

i=1

(si − 〈s〉), (55)

where n = 1,2, . . . ,N − 1, and N is the total number of
eigenvalues. Then, making a discrete Fourier transform,

δ̄k = 1√
N

∑
n

δn exp

(
2πikn

N

)
, (56)

one finds the power spectrum

S(k) = |δ̄k|2. (57)
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Generally, an ensemble-averaged spectrum obeys a power
law,

〈S(k)〉 ∼ k−α. (58)

Relano and coworkers found that regular dynamics corre-
sponds to α = 2, and global chaos results in α = 1. In the
mixed regime, α takes on an intermediate value between
1 and 2 [71]. Figure 9 demonstrates that α decreases with
increasing τ for the frequencies of 360 and 500 Hz, indicating
gradual transition to chaos. However, α varies relatively slowly
and remains near the middle value 1.5 for all distances
considered, despite the marked changes in the classical phase-
space portrait (see Fig. 3). Analogous dependencies for the
frequencies of 100 and 250 Hz exhibit strong fluctuations and,
therefore, are not presented in the figure. This implies that the
method developed in Refs. [70,71] provides good agreement
only for relatively short wavelengths which are not relevant
for long-range sound propagation.

VIII. CONCLUSION

In the present paper we examine the influence of finite-range
ray stability on wave dynamics in a randomly inhomogeneous
waveguide by means of the quasideterministic approach,
involving resonances, periodic orbits, phase-space portraits,
and so on. Our approach is based on spectral analysis of the
finite-range evolution operator. We utilize various methods
of spectral analysis and compare the results obtained. For
instance, we consider distribution of eigenfunctions in the μ-ν
space and approximate level-spacing statistics by means of the
Berry-Robnik distribution and study eigenvalues series using
the method developed by A. Relano and coworkers [70,71].
Comparing the results obtained with different methods, we
conclude that the method based on eigenfunction analysis
is the most favorable method. Its important advantage is the
possibility to study separately scattering of different modes of
a waveguide and find out the modes corresponding to regular
propagation. A detailed view of the eigenfunction distribution
in the μ-ν space suggests that the mechanism of the chaos onset
with increasing distance can be associated with overlapping
and delocalization of mode-medium resonances. The approach
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based on the statistical analysis of level spacings by means of
the Berry-Robnik formula gives a qualitative description of
the transition but does not ensure quantitative agreement. The
Relano method also gives the qualitative description but cannot
make any quantitative estimates due to its semiempirical
nature.

We consider the underwater sound channel in the Sea
of Japan as an example. Our analysis shows that almost
horizontal near-axial sound propagation preserves regularity
over distances of hundreds kilometers. There are two factors
responsible for near-axial stability. The first factor is the
peculiar hydrological structure in the region considered,
resulting in the absence of vertical oscillations of the sound-
speed perturbation. This circumstance leads to a qualitatively
different scenario of ray chaos, as compared with the well-
known acoustic experiments in the northeastern Pacific Ocean
[36–40]. The second factor is the formation of the weakly
divergent beam supported by long-living stable islands in
classical phase space. A weakly divergent beam occurs in
the vicinity of the shearless torus. Nondispersive motion of
quantum wave packets near shearless tori was observed in
Refs. [54,72]. In the present paper we show that shearless
tori can enhance wave coherence, even in the presence of
random inhomogeneity, and result in powerlike decreasing of
the fraction of regular eigenfunctions.

It should be mentioned that the classical description by
means of the one-step Poincaré map plays an important
role our approach. Although the one-step Poincaré map does
not yield accurate quantitative estimates for low-frequency
sound propagation, it provides a classical interpretation of
basic FREO spectral properties. For example, the stripes
and “stalagmites” in Figs. 4 and 5 are directly linked to
resonances of the map. In fact, we can consider the FREO as
the quantized one-step Poincaré map, and this analogy implies
a deterministic scenario of transition to chaos in randomly
inhomogeneous waveguides, associated with overlapping of
classical resonances and corresponding delocalization of their
wave-based counterparts. From this viewpoint, it is noteworthy
to focus attention on the recovery of “stalagmites” with
decreasing sound frequency. This phenomenon corresponds
to localization of eigenfunctions in the vicinities of classical
resonances which are completely overlapped in the ray limit.
Recovery of stalagmites can be considered as a specific
manifestation of dynamical localization. It infers that low-
frequency waves in randomly inhomogeneous waveguides can
exhibit intermittent behavior instead of diffusive spreading.

We suppose that applicability of the approach presented in
this paper is not limited to problems of wave propagation in
random media. An analog of the FREO can be readily used
for studying of noise-induced quantum transport and related
phenomena. We suggest that a combination of deterministic
and statistical approaches should provide an insightful view on
details of dynamics, especially in the presence of intermittency
or synchronization.
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APPENDIX A: SOUND-SPEED PERTURBATION

The model of the internal-wave-induced sound-speed per-
turbation was built up in several steps. First, we computed
the range-averaged profile of buoyancy frequency, using the
hydrological data [45]. We then calculated realizations of
the sound-speed perturbation using the method proposed
in Ref. [73]. In order to facilitate numerical simulation,
the perturbation was expanded over empirical orthogonal
functions [74]

δc(z, r) = 〈δc(z)〉 +
∑

n

bn(r)Yn(z). (A1)

Empirical orthogonal functions Yn(z) are the eigenvectors of
the covariance matrix K̂ with elements

Kij = 1

L

L∑
l=1

[δcl(zi) − 〈δc(zi)〉][δcl(zj ) − 〈δc(zj )〉], (A2)

where index l numbers L statistically independent realizations
of δc(z), {zi} is a vector of depth values, and the angular
brackets denote ensemble average. As δc is caused by internal
waves, one can set 〈δc〉 = 0. Eigenvalues of the matrix K̂ quan-
tify contributions from the corresponding eigenvectors in the
expansion (A1). It was found that the contribution of the first
orthogonal function prevails (about 70%), and one can fairly
represent the sound-speed perturbation as the product (13).

Realizations of b1(r) can be computed via the formula
b1 = √

2r̄η, where η is a solution of the Ornstein-Uhlenbeck
stochastic differential equation in the Stratonovich sense,

dη

dr
= −1

r̄
η(r) + 1

r̄
ξ (r). (A3)

The method of numerical solution of this equation is described,
for instance, in Ref. [75]. Here ξ is a Gaussian white noise
satisfying

〈ξ (r)〉 = 0, 〈ξ (r)ξ (r ′)〉 = δ(r − r ′). (A4)

The resulting function b1(r) satisfies 〈b2
1(r)〉  1.

APPENDIX B: SOME REMARKS ON NUMERICAL
SIMULATION

In ray calculations, the jump of the derivative dU/dz at
z = z0 leads to fast growth of numerical error. Therefore, we
replaced the expression (9) for U (z) by the smoothed function

U (z) = U1(z) + 1

2

[
1 + tanh

z − z0

�

]
U2(z), (B1)

where � = 1 m.
The first empirical orthogonal function of the perturbation

Y1(z) involves steplike changes in the depth interval from 100
to 300 m. These changes are caused by the depth discretization
of the hydrological data and physically irrelevant. Wave
modeling is insensitive to them, but ray-based calculations
can be significantly affected. Therefore, ray calculations were
carried out with the smoothed first empirical orthogonal
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function given by

Y1 = Aya exp
( − yn

a

) + B exp
( − y2

b

)
, (B2)

where A = 0.0027, ya = z/za, n = 1.1, za = 24 m, B = 2 ×
10−5, yb = (z − zc)/zb, zb = 50 m, zc = 200 m.

Each realization of the FREO is represented as a matrix
in the basis of normal modes being solutions of the Sturm-
Liouville problem (17) with the boundary conditions (15).
Only purely water modes which propagate without reaching
the bottom are taken into account. They are selected using the
criterion Em < U (z = h), where Em is the m-th eigenvalue of
the Sturm-Liouville problem (17). This criterion ensues from
the WKB approximation for normal modes [23]. Number of
trapped modes M depends on sound frequency. It is equal to
72 for f = 100 Hz, 179 for f = 250 Hz, 259 for f = 360 Hz,
and 361 for f = 500 Hz. Statistical ensembles of the FREOs,
corresponding to the frequencies of 250, 360, and 500 Hz,
are calculated with 100 realizations of the perturbation. The
ensemble corresponding to 100 Hz is calculated with 500
realizations. For each realization, we construct a family of
the FREOs Ĝ(τ ), where τ = 5,10,15, . . . ,350 km.

APPENDIX C: BRIDGELIKE PATTERNS

Each realization of the FREO can yield eigenfunctions
manifesting resonance (48). If resonance (48) corresponding

to some numbers (l, m, n) is localized, i.e., the modes
m and n are not affected by other resonances, then the
respective eigenfunction is a superposition of normal modes m

and n,

�res(z)  cmφm + cnφn, |cm|2 + |cn|2  1. (C1)

As this takes place, the ratio of amplitudes |cm|/|cn| is
determined by the phase of the resonance harmonics of the
perturbation. For the perturbation (13), the complex-valued
amplitude of the l-th resonance harmonics reads

Bl = 1

τ

∫ τ

0
b1(r) exp

(
−i

2πlr

τ

)
dr. (C2)

The phase of the resonance harmonics is a random quantity
with a uniform probability density in the range [0 : 2π ]. Each
value of the phase uniquely determines the values of μ and ν

via the formulas

μ = |cm|2m + |cn|2n, (C3)

ν = (|cm|4 + |cn|4)−1. (C4)

It turns out that quantities μ and ν are correlated for each
eigenfunction corresponding to localized resonance (48). This
results in formation of “bridges” in the μ-ν plane.

[1] H. Morita and K. Kaneko, Phys. Rev. Lett. 96, 050602 (2006).
[2] R. Bachelard, C. Chandre, D. Fanelli, X. Leoncini, and S. Ruffo,

Phys. Rev. Lett. 101, 260603 (2008).
[3] S. S. Abdullaev, Phys. Rev. E 84, 026204 (2011).
[4] K. V. Koshel’ and S. V. Prants, Phys. Usp. 49, 1151 (2006).
[5] S. Prants, M. Budyansky, V. Ponomarev, and M. Uleysky, Ocean

Model. 38, 114 (2011).
[6] C. Conti, D. Rossinelli, and P. Koumoutsakos, J. Comput. Phys.

231, 2229 (2012).
[7] H. Kantz and P. Grassberger, Physica D 17, 75 (1985).
[8] G. Froyland, K. Padberg, M. H. England, and A. M. Treguier,

Phys. Rev. Lett. 98, 224503 (2007).
[9] G. Froyland and K. Padberg, Physica D 238, 1507 (2009).

[10] D. Makarov and M. Uleysky, J. Phys. A: Math. Gen. 39, 489
(2006).

[11] D. V. Makarov, M. Y. Uleysky, M. V. Budyansky, and S. V.
Prants, Phys. Rev. E 73, 066210 (2006).

[12] C. Gan, Q. Wang, and M. Perc, J. Physics A: Math. Theor. 43,
125102 (2010).

[13] C. Gan and H. Lei, J. Sound Vibr. 330, 2174 (2011).
[14] A. R. Kolovsky, Phys. Rev. E 56, 2261 (1997).
[15] A. L. Virovlyansky, D. V. Makarov, and S. V. Prants, Phys. Usp.

55, 18 (2012).
[16] D. Makarov, S. Prants, A. Virovlyansky, and G. Zaslavsky, Ray

and Wave Chaos in Ocean Acoustics: Chaos in Waveguides,
Series on Complexity, Nonlinearity and Chaos, Vol. 1 (World
Scientific, Singapore, 2009).

[17] F. J. Beron-Vera, M. G. Brown, J. A. Colosi, S. Tomsovic, A. L.
Virovlyansky, M. A. Wolfson, and G. M. Zaslavsky, J. Acoust.
Soc. Am. 114, 1226 (2003).

[18] K. B. Smith, M. G. Brown, and F. D. Tappert, J. Acoust. Soc.
Am. 91, 1939 (1992).

[19] I. P. Smirnov, A. L. Virovlyansky, and G. M. Zaslavsky, Phys.
Rev. E 64, 036221 (2001).

[20] M. G. Brown, J. A. Colosi, S. Tomsovic, A. L. Virovlyansky,
M. A. Wolfson, and G. M. Zaslavsky, J. Acoust. Soc. Am. 113,
2533 (2003).

[21] D. V. Makarov, M. Y. Uleysky, and S. V. Prants, Chaos 14, 79
(2004).

[22] F. J. Beron-Vera and M. G. Brown, J. Acoust. Soc. Am. 115,
1068 (2004).

[23] A. L. Virovlyansky and G. M. Zaslavsky, Phys. Rev. E 59, 1656
(1999).

[24] I. P. Smirnov, A. L. Virovlyansky, and G. M. Zaslavsky, Chaos
14, 317 (2004).

[25] I. P. Smirnov, A. L. Virovlyansky, M. Edelman, and G. M.
Zaslavsky, Phys. Rev. E 72, 026206 (2005).

[26] G. Tanner and N. Sondergaard, J. Physics A: Math. Theor. 40,
R443 (2007).

[27] L. E. Kon’kov, D. V. Makarov, E. V. Sosedko, and M. Y. Uleysky,
Phys. Rev. E 76, 056212 (2007).

[28] O. A. Godin, J. Acoust. Soc. Am. 122, 3353 (2007).
[29] D. V. Makarov, L. E. Kon’kov, and M. Y. Uleysky, Acoust. Phys.

54, 382 (2008).
[30] O. A. Godin, Acta Acustica 95, 963 (2009).
[31] K. C. Hegewisch, N. R. Cerruti, and S. Tomsovic, J. Acoust.

Soc. Am. 117, 1582 (2005).
[32] W. Munk and C. Wunsch, Deep Sea Res. Part A. 26, 123 (1979).
[33] F. D. Tappert and X. Tang, J. Acoust. Soc. Am. 99, 185

(1996).

012911-13

http://dx.doi.org/10.1103/PhysRevLett.96.050602
http://dx.doi.org/10.1103/PhysRevLett.101.260603
http://dx.doi.org/10.1103/PhysRevE.84.026204
http://dx.doi.org/10.1070/PU2006v049n11ABEH006066
http://dx.doi.org/10.1016/j.ocemod.2011.02.008
http://dx.doi.org/10.1016/j.ocemod.2011.02.008
http://dx.doi.org/10.1016/j.jcp.2011.10.032
http://dx.doi.org/10.1016/j.jcp.2011.10.032
http://dx.doi.org/10.1016/0167-2789(85)90135-6
http://dx.doi.org/10.1103/PhysRevLett.98.224503
http://dx.doi.org/10.1016/j.physd.2009.03.002
http://dx.doi.org/10.1088/0305-4470/39/3/003
http://dx.doi.org/10.1088/0305-4470/39/3/003
http://dx.doi.org/10.1103/PhysRevE.73.066210
http://dx.doi.org/10.1088/1751-8113/43/12/125102
http://dx.doi.org/10.1088/1751-8113/43/12/125102
http://dx.doi.org/10.1016/j.jsv.2010.09.025
http://dx.doi.org/10.1103/PhysRevE.56.2261
http://dx.doi.org/10.3367/UFNe.0182.201201b.0019
http://dx.doi.org/10.3367/UFNe.0182.201201b.0019
http://dx.doi.org/10.1121/1.1600724
http://dx.doi.org/10.1121/1.1600724
http://dx.doi.org/10.1121/1.403677
http://dx.doi.org/10.1121/1.403677
http://dx.doi.org/10.1103/PhysRevE.64.036221
http://dx.doi.org/10.1103/PhysRevE.64.036221
http://dx.doi.org/10.1121/1.1563670
http://dx.doi.org/10.1121/1.1563670
http://dx.doi.org/10.1063/1.1626392
http://dx.doi.org/10.1063/1.1626392
http://dx.doi.org/10.1121/1.1648320
http://dx.doi.org/10.1121/1.1648320
http://dx.doi.org/10.1103/PhysRevE.59.1656
http://dx.doi.org/10.1103/PhysRevE.59.1656
http://dx.doi.org/10.1063/1.1737271
http://dx.doi.org/10.1063/1.1737271
http://dx.doi.org/10.1103/PhysRevE.72.026206
http://dx.doi.org/10.1088/1751-8113/40/50/R01
http://dx.doi.org/10.1088/1751-8113/40/50/R01
http://dx.doi.org/10.1103/PhysRevE.76.056212
http://dx.doi.org/10.1121/1.2799479
http://dx.doi.org/10.1134/S1063771008030147
http://dx.doi.org/10.1134/S1063771008030147
http://dx.doi.org/10.3813/AAA.918228
http://dx.doi.org/10.1121/1.1854842
http://dx.doi.org/10.1121/1.1854842
http://dx.doi.org/10.1016/0198-0149(79)90073-6
http://dx.doi.org/10.1121/1.414502
http://dx.doi.org/10.1121/1.414502


MAKAROV, KON’KOV, ULEYSKY, AND PETROV PHYSICAL REVIEW E 87, 012911 (2013)

[34] V. Bezotvetnykh, A. Burenin, Y. Morgunov, and Y. Polovinka,
Acoust. Phys. 55, 376 (2009).

[35] R. C. Spindel, J. Na, P. H. Dahl, S. Oh, C. Eggen, Y. G. Kim,
V. A. Akulichev, and Y. N. Morgunov, IEEE J. Ocean. Engin.
28, 297 (2003).

[36] J. L. Spiesberger and F. D. Tappert, J. Acoust. Soc. Am. 99, 173
(1996).

[37] P. F. Worcester, B. D. Cornuelle, J. A. Hildebrand, J. William,
S. Hodgkiss, T. F. Duda, J. Boyd, B. M. Howe, J. A. Mercer, and
R. C. Spindel, J. Acoust. Soc. Am. 95, 3118 (1994).

[38] P. F. Worcester, B. D. Cornuelle, M. A. Dzieciuch, W. H.
Munk, B. M. Howe, J. A. Mercer, R. C. Spindel, J. A. Colosi,
K. Metzger, T. G. Birdsall, and A. B. Baggeroer, J. Acoust. Soc.
Am. 105, 3185 (1999).

[39] K. E. Wage, M. A. Dzieciuch, P. F. Worcester, B. M. Howe, and
J. A. Mercer, J. Acoust. Soc. Am. 117, 1565 (2005).

[40] N. S. Grigorieva, G. M. Fridman, J. A. Mercer, R. K. Andrew,
M. A. Wolfson, B. M. Howe, and J. A. Colosi, J. Acoust. Soc.
Am. 125, 1919 (2009).

[41] I. A. Udovydchenkov, M. G. Brown, T. F. Duda, J. A. Mercer,
R. K. Andrew, P. F. Worcester, M. A. Dzieciuch, B. M.
Howe, and J. A. Colosi, J. Acoust. Soc. Am. 131, 4409
(2012).

[42] K. C. Hegewisch and S. Tomsovic, Europhys. Lett. 97, 34002
(2012).

[43] R. C. Shockley, J. Northrop, P. G. Hansen, and C. Hartdegen,
J. Acoust. Soc. Am. 71, 51 (1982).

[44] W. H. Munk, W. C. O’Reilly, and J. L. Reid, J. Phys. Oceanogr.
18, 1876 (1988).

[45] Oceanography and Marine Environment of the Far East-
ern Region of Russia (proj. leader Rostov I. D.)
[http://www.pacificinfo.ru/en].

[46] L. M. Brekhovskikh, V. V. Goncharov, S. A. Dremuchev,
V. M. Kurtepov, V. G. Selivanov, and Y. A. Chepurin, Sov. Phys.
Acoust. 36, 461 (1990).

[47] I. Smirnov, J. Caruthers, and A. Khil’ko, Radiophys. Quant.
Electron. 42, 864 (1999).

[48] A. K. Morozov and J. A. Colosi, J. Acoust. Soc. Am. 117, 1611
(2005).

[49] Y. Petukhov, Acoust. Phys. 55, 785 (2009).
[50] L. B. Dozier and F. D. Tappert, J. Acoust. Soc. Am. 64, 533

(1978).
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