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We discuss rigorous results on the rate of mixing for an idealized model of a class of fluid mixing device. These
show that the decay of correlations of a scalar field is governed by the presence of boundaries in the domain, and
in particular by the behavior of the modeled fluid at such boundaries.
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I. INTRODUCTION

The fundamental idea behind mixing by chaotic advection
is to exploit the exponential stretching inherent in a chaotic
dynamical system to mix fluid, again at an exponential rate
[1]. The mechanisms underlying these dynamics, and their
application to fluid mixing, are now well understood. However,
the real-world picture is complicated by the introduction of
necessary boundaries, which can slow the rate of mixing, as
has been observed [2,3].

The literature contains several descriptions and analyses of
the mechanisms behind this phenomenon, for example, [4–8].
These approaches are often based on strange eigenmodes and
in particular the interplay between advection and diffusion.
What is observed and investigated is that, instead of an
exponential decay in scalar concentration variance, as one
might expect from chaotic dynamics, the rate of decay is
slowed to an algebraic rate by the behavior of the fluid at the
walls of the domain. Of course, the variance of concentration
represents just one diagnostic for characterizing the rate of
a mixing process. In this article we describe new rigorous
results from the field of smooth ergodic theory. These imply
that for a simple prototype model of standard mixing devices,
this behavior is exactly what is expected for the evolution
of any scalar field, even in the absence of diffusive effects.
Moreover, these results illuminate the mechanisms underlying
the competition between chaotic advection and boundary
behavior.

In ergodic theory, an invertible measure-preserving trans-
formation f on a domain M (normalized to μ(M) = 1) is
defined to be (strong) mixing if for any pair of measurable sets
A and B we have

lim
n→∞ μ(f n(A) ∩ B) = μ(A)μ(B), (1)

where μ(·) is the invariant measure. This has a natural
interpretation for applications to fluid mixing, where for
incompressible fluids the invariant measure is Lebesgue (that
is, volume). A natural question is that of how quickly the
limiting process reveals the asymptotic independence of the
arbitrary sets A and B. Ergodic theory attempts to answer
such a question through the study of the decay of correlations.
Thus rather than inspecting the behavior of actual sets in
the system, one considers a real-valued function (usually
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called an observable) on M . For a mixing process, the
correlation between two typical observables (or between an
observable and itself) decays to zero as mixing occurs, and
this rate of decay may, in certain situations, be quantified
with some precision. The significance for fluid mixing is that
the observable functions may represent any typical laboratory
measurement.

Many mixing devices fall into the category of blinking
systems; devices in which a steady flow is made nonintegrable
by introducing a time or spatial dependence. One classical
and well-known model for such a scenario is the (Arnold)
cat map [9], the canonical example of a hyperbolic toral
automorphism. It is relatively straightforward to show that
this transformation enjoys exponential decay of correlations,
and several different methods can be used [10]. However,
although this is an instructive model of chaotic dynamics, and
has been used as a model in a fluid mixing situation [11–13],
it fails to capture many details of any real mixing device.
In particular, the cat map is defined on the torus and has no
boundary conditions. Moreover, this transformation is linear,
identical at every point, and uniformly hyperbolic. For all these
reasons, the same methods used to prove the exponential decay
of correlations cannot typically be translated into proofs of a
similar property for real mixing devices.

Linked twist maps have been proposed as a prototype model
for blinking flows [14–16]. While these are still idealizations of
physical systems, they encapsulate more general behavior than
the cat map. Most crucially for our purposes here is that they
are nonuniformly hyperbolic, and possess a boundary at which
particular fluid boundary conditions can be modeled. A linked
twist map could be regarded as an archetype of nonuniform
chaos (for different reasons to the system in Ref. [17]), in which
the nonuniformity stems from a boundary region in which
orbits get trapped, before being reinjected into a hyperbolic
mixing region.

II. DEFINITION AND RELEVANCE OF
A LINKED TWIST MAP

A linked twist map (LTM) can be defined on both the plane
(making it an appropriate model for many duct flows and
blinking flows), or on a torus (where it has also successfully
modeled practical devices; see [14]). Here we give a full
description of the toral version. Fix x0,x1,y0,y1 ∈ [0,1] and
on the torus T 2 = [0,1] × [0,1] define a pair of annuli

P = {(x,y)|y ∈ [y0,y1]} and Q = {(x,y)|x ∈ [x0,x1]}.
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(a) P , Q, R and S on the torus (b) P , Q, R and S on the plane

(c) Action of H (d) Wedges Bn

R\P R\Q

S = P ∩ Q

R\PR\Q

S = P ∩ Q

FIG. 1. (a) The torus T 2 with x0 = y0 = 0, x1 = y1 = 1
2 . The set R is shaded: S is midgray, R\P is light gray, R\Q is dark gray; (b) the

corresponding sets for a linked twist map on the plane; (c) the image of these shaded sets under H = G ◦ F with k = l = 1 and f and g linear.
(d) The set Bn is shaded; for each n this set has a similar shape, the wedges becoming thinner with increasing n.

Denote R = P ∪ Q and S = P ∩ Q. Define twist maps F :
P → P and G : Q → Q by

F (x,y) = (x + f (y),y) and G(x,y) = (x,y + g(x)),

where f : [y0,y1] → R is such that f (y0) = 0, f (y1) = k, an
integer, and f is strictly monotonic. Similarly g : [x0,x1] → R
is such that g(x0) = 0, g(x1) = l, an integer, and g is strictly
monotonic. Note that F and G leave invariant points on the
boundaries of P and Q, respectively. This guarantees that the
LTM is continuous. We let F be the identity map on R\P and G

be the identity map on R\Q. Both F and G are area-preserving.
Consequently the linked twist map H = G ◦ F , illustrated in
Fig. 1, is an area-preserving transformation of R into itself.

In spite of its apparent simplicity (a composition of a pair
of integrable shear maps), an LTM is a source of rich, and
far from trivial, dynamical behavior. The map is nonuniformly
hyperbolic; for details see Sturman et al. [14], and is mixing
(that is, H satisfies Eq. (1), first shown by Wojtkowski

[18]). Indeed it enjoys the Bernoulli property [19,20]; the
system is statistically equivalent to an independent identically
distributed random process. In this sense it possesses stronger
ergodic mixing properties than mere mixing. However, this
additional complexity itself does not imply anything about the
rate at which correlations decay. Note that taking x0 = y0 = 0,
x1 = y1 = 1, and k = l = 1 with f and g linear recovers the
uniformly hyperbolic cat map.

Many fluid mixing devices operate with some periodicity,
either spatial or temporal, and work on the basis of repeatedly
shearing fluid first in one direction, and then in a transverse
direction. The archetypal model behind many varied designs of
mixer is the well known blinking vortex of Aref [21]. In such a
scheme, a pair of point vortices are operated alternately, each
rotating and shearing the fluid about a different stagnation
point. The two spatial dimensions of such a Stokes flow,
with the time-dependence of the alternating operation, allows
the possibility of chaotic advection. The periodicity of the
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time-dependence means that discrete time maps such as F and
G can be used to represent the dynamics of the continuous time
fluid equations, where such maps are constructed as time-τ
maps of a blinking flow, with τ the time between different flow
patterns. In the LTM framework described above, replacing the
toral annuli P and Q with interlinked planar annuli, with the
pair of intersections now playing the role of S, and defining
twist maps F and G on P and Q accordingly, as in Fig. 1(b),
creates a suitable model for the blinking vortex system. A
planar LTM can also be used to model a wider variety of
mixing device, including pipe flows, such as the partitioned-
pipe mixer [22], the rotated-arc mixer [23], and various
electroosmotic flows [24,25], each of which have a spatial
periodicity producing different cross-sectional flow patterns.
An LTM is then constructed as the composition of maps
defined by following the flow through each periodic element.

Although the torus may appear an unlikely domain for
practical considerations, doubly periodic boundary conditions
can be found in egg-beater flows [26,27] and also in mixers
constructed from source–sink pairs, such as those described
by the authors of [28–32].

III. QUANTIFYING THE RATE OF MIXING

The ergodic theory definition of mixing given by Eq. (1)
can be written in the following equivalent functional form: H

is mixing if the correlation function

Cn(ϕ,ψ) =
∣∣∣∣
∫

(ϕ ◦ Hn)ψdμ −
∫

ϕdμ

∫
ψdμ

∣∣∣∣
tends to zero as n → ∞ for any pair of bounded measurable
functions ϕ and ψ . Moreover, the rate at which Cn approaches
zero governs the rate at which the transformation mixes. A
typical approach in ergodic theory is to choose a particular
transformation H , and then prove a result concerning such a
rate for a wide class of observable functions ϕ and ψ . In fact,
it is usual to consider all observables which have sufficient
regularity; for example, all Hölder continuous functions. Note
that arbitrarily slow decay can be achieved for observables
with no regularity properties. Such a result then certainly
allows one to establish information for a particular scalar
observable, such as concentration.

Let Hα denote the space of real-valued, α-Hölder functions
on R, that is, the functions ϕ : R → R for which there is
C > 0 such that for all z,z′ ∈ R,|ϕ(z) − ϕ(z′)| � Cd(z,z′)α ,
where d(·,·) denotes distance on R. We restrict (without loss
of generality) to the case in which the observable ψ has zero
average, and so study the rate of decay as n → ∞ of

Cn(ϕ,ψ) =
∫

R

(ϕ ◦ Hn)ψdμ. (2)

IV. EFFECT OF THE BOUNDARY

An appealing feature of linked twist maps is that the
source of both the hyperbolicity and the nonuniformity of that
hyperbolicity are quite apparent. In the following we consider a
particular LTM with x0 = y0 = 0, x1 = y1 = 1/2, f (y) = 2y

and g(x) = 2x, as in Fig. 1. As frequently occurs in a typical

trajectory, if z ∈ P and F (z) ∈ S then the derivative

DH = DG · DF =
(

1 0

2 1

) (
1 2

0 1

)
=

(
1 2

2 5

)

is a hyperbolic matrix. This is the source of hyperbolicity,
and corresponds in a real device to a region of fluid stretched
first in one direction and then another by a blinking flow. Any
trajectory of H which lands nowhere other than S experiences
precisely this hyperbolicity at each iterate. Such a trajectory is
then uniformly hyperbolic, with the Lyapunov exponents equal
to the logarithms of the eigenvalues of DH . However, initial
conditions producing trajectories with this property form a set
of zero measure in R.

For almost all trajectories, it often happens instead that
one of F,G is the identity (for example, for z ∈ R\P ) in
which case DH is nonhyperbolic. This may be the case for an
arbitrary number of successive images of z (see the “wedges”
defined below), diluting the growth of tangent cones with
each iteration. The effect is that Lyapunov exponents are still
nonzero, but are not uniformly bound away from zero.

Our motivation in this section is the presumption that the
same regions of R that impede the hyperbolicity of H also
impede its mixing. With this in mind we study the contribution
to the correlation function Cn arising from the domain

Bn = {z ∈ R : Hn(z) = Fn(z) or Hn(z) = Gn(z)}.
These sets contains those points which stick close to the bound-
ary for n steps before entering the hyperbolic region. These
can also be thought of as those points which form “regions of
low stretching [which] slow down mixing and contaminate the
whole mixing pattern . . .” [33]. It is an easy exercise to deduce
that Bn consists of four connected components, each having the
form of a “wedge.” These are illustrated in Fig. 1(d). The fixed
order of composition G ◦ F leads to a lack of symmetry be-
tween those wedges contained in Q and those contained in P .

Although it is difficult in general to compute Cn exactly, we
discuss here the contribution to this integral of the region Bn.
We first restrict our attention to one of the wedges, denoted
Wn, being in Q and having as a boundary the line x = 0
[shown in Fig. 1(d)]. This is because the dynamics on Wn

are effectively the same as those on the other components of
Bn. Its other boundaries satisfy y = 1/2 and x = (1 − y)/2n,
respectively. Consider

In =
∫

Wn

(ϕ ◦ Hn)ψdμ.

We show that In ∼ K ′/n for some (generally nonzero) K ′
and that the same holds for the three remaining wedges
constituting Bn\Wn. Here we use ∼ to indicate the common
asymptotic notation given by f ∼ g if f/g → 1 for functions
f and g. We remark that μ(Wn) = O(1/n) and the observables
are bounded, so it is trivial that an upper bound on the integral
should have this form. We are arguing that the decay rate is
no faster than this.

By definition if z = (x,y) ∈ Wn then Hn(x,y) =
Gn(x,y) = (x,y + 2nx) so that In can be written explicitly
as

In = 4

3

∫ 1

1
2

∫ (1−y)/2n

0
ϕ(x,y + 2nx)ψ(x,y)dxdy,

012906-3



ROB STURMAN AND JAMES SPRINGHAM PHYSICAL REVIEW E 87, 012906 (2013)

where we have used
∫

dxdy = 3
4

∫
dμ. To estimate In consider

the related double integral

Jn = 4

3

∫ 1

1
2

∫ (1−y)/2n

0
ϕ(0,y + 2nx)ψ(0,y)dxdy.

This integral differs from In in that the integrand is evaluated
along the boundary x = 0 rather than at all points in Wn.
Making the substitution t = y + 2nx we have

Jn = 2

3n

∫ 1

1
2

ψ(0,y)
∫ 1

y

ϕ(0,t)dtdy.

The substitution clarifies the nature of the n-dependence of Jn.
The double integral is now simply a constant which depends
only on the functions ϕ and ψ , and so in particular we have
Jn ∼ K1/n for some constant K1 depending only on the values
of ϕ and ψ at the boundary.

The desired result then follows if we establish that
limn→∞ n|In − Jn| = 0 (that is, that the two integrals In and
Jn are sufficiently close). The significance of this statement
is that the contribution made to the correlation function by
points near the boundary is asympotically the same as the
contribution made by points at the boundary. Consider

n|In − Jn| = 4n

3

∣∣∣∣
∫ 1

1
2

∫ (1−y)/2n

0
ϕ(x,t)ψ(x,y)

−ϕ(0,t)ψ(0,y)dxdy

∣∣∣∣ → 0

as n → ∞. We retain the notation t = y + 2nx for conve-
nience. The domain of integration isO(1/n) and so it is enough
to show that the integrand approaches zero as n → ∞. Indeed
the integrand is bounded above in absolute value by

|ϕ(x,t)| |ψ(x,y) − ψ(0,y)| + |ψ(0,y)| |ϕ(x,t) − ϕ(0,t)|
� ϕmax|x|α + ψmax|x|α
� const n−α.

For the first bound we have used the α-Hölder property and
used ϕmax and ψmax to denote the suprema of ϕ and ψ on R.
For the second bound we have used |x| � 1/2(n − 1) on Wn.
This completes the proof that In ∼ K ′/n; the case of the other
wedge in Q is entirely similar.

Now suppose that W ′
n is a wedge in P and, without loss

of generality, that y = 0 is a boundary of W ′
n. Geometrically

W ′
n is a little different to Wn since the first occurrence of F

removes W ′
n from S. Using the boundedness of ϕ and ψ , and

the fact that 1/2(n + 1) − 1/2n = O(1/n2) we have∫
W ′

n

(ϕ ◦ Hn)ψdμ

= 4

3

∫ 1

1
2

∫ (1−x)/2n

0
ϕ(x + 2ny,y)ψ(x,y)dydx + O

(
1

n2

)
.

The result follows in the same manner as above since the
leading order term is again O(1/n).

It follows immediately that

Cn ∼ K

n
+

∫
R\Bn

(ϕ ◦ Hn)ψdμ.

V. DECAY OF CORRELATIONS FOR LTMs

Computing the contribution of R\Bn to Cn is rather more
difficult. A priori there may be some other subregion of R

which contributes at an even slower rate to the decay of Cn,
and hence dominates. This in fact cannot happen [34]. The
proof appeals to the seminal work of Young [35,36]. To apply
these results directly, one needs to construct a region � with
hyperbolic product structure and study the return times to
�. An instructive example is given by Chernov and Young
[37], in which � is described explicitly for the uniformly
hyperbolic cat map. It may be tempting to assume here that S

should suffice as the hyperbolic region �, but matters are more
complicated for LTMs. An intuitive reason for this is that local
stable and unstable manifolds do not exist everywhere (only
μ-almost everywhere) and so �, defined as an intersection
of such manifolds, cannot be simply connected (i.e., it must
contain holes). This immediately rules out simply-connected
sets such as S as candidates for �. In general, for nonuniformly
hyperbolic systems, the explicit construction of � is typically
prohibitively difficult. The work of Chernov [38] and Chernov
and Zhang [39] gives a method to obtain conclusions related
to those of Young while not explicitly constructing �. Instead,
one finds a region Y , such that � ⊂ Y , in which hyperbolicity
is sufficiently strong, and some other technical conditions are
satisfied (in particular, the interplay between the hyperbolicity
of the system and the singularities generated from images of
the boundaries of P and Q). Here S can be taken as the choice
of Y . Finally to reach the conclusions of Young from those
of Chernov we appeal to a result of Markarian [40], which
involves considering in detail a certain set of points which
return to S particularly infrequently.

The work briefly discussed in the preceding paragraph has
been completed by the present authors and can be found in
Springham and Sturman [34], and so we have the rigorous
conclusion that correlations for LTMs decay at a rate no
slower than Cn = O(1/n). Moreover, the argument of Sec. IV
shows that this bound is optimal, providing the following two
conditions hold.

First, that the contributions from each wedge do not cancel
each other out. Note that it would be possible to choose
observable functions with a symmetry between the wedges
of Bn to achieve this cancellation. Avoiding such observables
is straightforward, and indeed generic.

Second, that the decay rate of
∫
R\Bn

(ϕ ◦ Hn)ψdμ is, to
leading order, not precisely equal to −K/n, thus again
canceling out the O(1/n) decay rate and allowing a faster
decay of correlations. Once more the result stands providing
such a pathological choice of observables is not taken.

VI. MORE GENERAL BOUNDARY BEHAVIOR

We now consider perturbations of the twists f and g that
are nonlinear in a neighborhood of the boundary. Fix p > 0,
0 < ε � 1

4 and for x,y ∈ [0,ε) ∪ ( 1
2 − ε, 1

2 ] let

F̃ (x,y) = (x + 2yp,y) and G̃(x,y) = (x,y + 2xp) (3)

and consider the LTM H̃ = G̃ ◦ F̃ . Note that we do not
prescribe the form of the twist maps away from this region
(other than to insist on their monotonicity as before), but
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simply concentrate on the behavior near the boundary. Such
functions can represent different possible boundary layer
behavior in a fluid situation.

Defining Bn as before we claim that there exists Kp =
Kp(ϕ,ψ) ∈ R, in general nonzero, so that∫

Bn

(ϕ ◦ H̃ n)ψdμ ∼ Kp

n1/p
. (4)

The claim is established just as in Sec. IV; only minor changes
are required so we omit a proof. This result implies that
the linked twist map just described experiences decay of
correlations at the polynomial rate n−1/p.

Other recent studies have also noted the role of material near
to walls in mixing problems (“peripheral regions” in Chertkov
and Lebedev [6], Lebedev and Turitsyn [7], Chernykh and
Lebedev [8], “parabolic periodic points” in Gouillart et al.
[41]). In Lebedev and Turitsyn [7], a distinction is made

between decay rates in vessels and pipes. In particular, the
mathematical models therein use incompressibility to derive
boundary layer behavior in the peripheral regions. In the vessel
case, the velocity component perpendicular to the wall v⊥
scales as ε2, where ε is the distance from the wall, while in the
pipe case, v⊥ scales as ε. This difference in boundary behavior
is manifested in a difference in decay rates, which scale as
t−1/2 for the vessel (where t is time), and as z−1 for the pipe,
where z is the coordinate along the pipe. These results are
obtained by predicting the thickness of the boundary layer of
unmixed fluid.

In the present paper, by contrast, area-preservation (cor-
responding to incompressibility) determines that there is no
motion perpendicular to the walls. Instead, the size of the
wedges Bn (corresponding to the thickness of the boundary
layer) diminishes at a rate governed by the value of p as defined
above. Thus the results herein are quite compatible with those

FIG. 2. (a) Two initially segregated sets are iterated under the LTM H and shown after (b) 2, (c) 6, and (d) 10 iterates. In the latter two
figures the empty square T 2\R is used to enlarge part of the domain contributing to the slowest mixing.
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of Lebedev and Turitsyn [7] and Chernykh and Lebedev [8],
with p = 2 representing the vessel case, and p = 1 modeling
the pipe flow.

VII. NUMERICAL VERIFICATION

We illustrate the rigorous results above with the following
simple numerical experiments. We seed the LTM with the
initial conditions colored black if x < y and gray if x � y

as shown in Fig. 2(a). Note that the upper right corner of
the square (torus) plays no role. The images of these sets of
initial conditions after 2, 6, and 10 iterations of the map H

are shown in Figs. 2(b)–2(d). It is a simple matter to compute,
for example, the maximum striation width for such a map,
given by the perpendicular height of the wedges. Measuring

striation width in a fluid mixing experiment is a common way
to characterize the quality of a mixture, although the present
theorems hold whichever method of quantifying the mixing
process is chosen. This scales with n as 1/n, as predicted by the
discussion of Sec. IV. These widths are shown in Fig. 3(d) as
circles, the fitted solid straight line A/n on the logarithmic plot
indicating the algebraic decrease in maximum striation width.

We can support the statement of Eq. (4) by considering a
related map. Here we replace the twist functions f and g with
the functions

f̃ (y) = 1 − cos−1(4y − 1)

π
, g̃(x) = 1 − cos−1(4x − 1)

π
,

which satisfy Eq. (3) near the boundaries with p = 1/2. In
such a system points near the boundaries are sheared more

(d) Width of largest striation

(a) After 2 iterates (b) After 6 iterates

(c) After 10 iterates
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FIG. 3. The initial sets in Fig. 2 are iterated, under the nonlinear map H̃ , (a) 2, (b) 6, and (c) 10 times. Relative to Fig. 2 the thickest
striations, shown in the insets, are mixed more quickly, due to the particular behavior at the boundary. Panel (d) shows how the maximum
striation width decreases with iteration, for the linear LTM (circles, solid line), the nonlinear LTM (crosses, dashed line), and the cat map
(squares, dotted line).
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strongly, representing boundary conditions in which points
are moved more quickly at the walls. The resulting wedges of
unmixed material are shrunk, and the maximum striation width
reduced, plotted as crosses in Fig. 3(d) with dashed line B/n2.
This confirms that the striation width still decays algebraically,
at a faster rate than for the linear case. For comparison, we
include in Fig. 3(d) the width of the largest striation (plotted
as squares) for the uniformly hyperbolic case identical to the
above, but with x1 = y1 = 1 (i.e., the Arnold cat map). This
has an exponential decay of correlations, and indeed these
fit the dotted line given by λe−n, where λ is the contracting
Lyapunov exponent.

VIII. DISCUSSION AND CONCLUSION

Just as a hyperbolic toral automorphism provides a funda-
mental skeleton of two-dimensional area-preserving chaotic
dynamics, so a linked twist map gives a nonuniform general-
ization which can form a paradigm model for chaotic dynamics
with a boundary. Moreover, such maps underpin a wide class
of fluid mixing device. Here we describe the results concerned
with the rate of mixing of such maps. We give the main
result which implies that the rate of decay of correlations is
polynomial, rather than exponential, where the algebraic expo-
nent depends on the boundary conditions of the domain. This
provides an insight into the dynamical mechanism for a variety

of recently reported experimental phenomena, in particular in
the situation where advection dominates over diffusion.

The result of this paper is rigorous and general, but provides
only a first order estimate on rates of mixing, and moreover
applies to an idealized model of fluid mixing device. There are
many natural avenues for further investigation, for example,
what is the effect of adding diffusive effects to a linked twist
map? An open question is that of higher order statistics for
mixing behaviors. Lebedev and Turitsyn [7] and Chernykh
and Lebedev [8], for example, described a complex situation
in such details for mixing in vessels and pipes. One approach to
this, related to the methods of the present paper and the subject
of currently ongoing work, could be to study in greater detail
the statistics of the return map to the hyperbolic region. Such
a study for a single shear map has been made in Hu et al. [42],
which also contains an analysis of return time distributions for
systems with some mixing behavior. The corresponding result
for linked twist maps is likely to be of significantly greater
complexity.

ACKNOWLEDGMENTS

The authors thank Stephen Wiggins, Julio Ottino, Rich
Lueptow, and Stefano Luzzatto, and anonymous referees for
useful comments and conversations. This work was supported
by the Leverhulme Trust Grant No. F/10101/A.

[1] J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and
Transport (Cambridge University Press, Cambridge, England,
1989).

[2] T. Burghelea, E. Segre, and V. Steinberg, Phys. Rev. Lett. 96,
214502 (2006).

[3] C. Simonnet and A. Groisman, Phys. Rev. Lett. 94, 134501
(2005).

[4] R. T. Pierrehumbert, Chaos Solitons Fractals 4, 1091 (1994).
[5] E. Gouillart et al., Phys. Rev. Lett. 99, 114501 (2007).
[6] M. Chertkov and V. Lebedev, Phys. Rev. Lett. 90, 034501

(2003).
[7] V. V. Lebedev and K. S. Turitsyn, Phys. Rev. E 69, 036301

(2004).
[8] A. Chernykh and V. Lebedev, JETP Lett. 87, 682 (2008).
[9] V. I. Arnold and A. Avez, Ergodic Problems of Classical

Mechanics (Addison-Wesley, Boston, 1968).
[10] V. Baladi, in Smooth Ergodic Theory and its Applications,

Proceedings of Symposia in Pure Mathematics, Vol. 69 (Amer-
ican Mathematical Society, Providence, 2001), pp. 297–325.

[11] H. Aref, Phys. Fluids 3, 1009 (1991).
[12] B. Sundaram, A. C. Poje, and A. K. Pattanayak, Phys. Rev. E

79, 066202 (2009).
[13] J.-L. Thiffeault and S. Childress, Chaos 13, 502 (2003).
[14] R. Sturman, J. M. Ottino, and S. Wiggins, The Mathematical

Foundations of Mixing, Cambridge Monographs on Applied
and Computational Mathematics, Vol. 22 (Cambride University
Press, Cambridge, England, 2006).

[15] J. M. Ottino and S. Wiggins, Philos. Trans. R. Soc. 362, 923
(2004).

[16] J. M. Ottino and S. Wiggins, Science 305, 485 (2004).
[17] S. Cerbelli and M. Giona, J. Nonlinear Sci. 15, 387 (2005).

[18] M. Wojtkowski, in Nonlinear dynamics, Annals of the New
York Academy of Sciences, Vol. 357 (Wiley, New York, 1980),
pp. 65–76.

[19] F. Przytycki, Ann. Scient. Ec. Norm. Sup. 16, 345 (1983).
[20] J. Springham and S. Wiggins, Dyn. Syst. 25, 483 (2010).
[21] H. Aref, J. Fluid Mech. 143, 1 (1984).
[22] D. V. Khakhar, J. G. Franjione, and J. M. Ottino, Chem. Eng.

Sci. 42, 2909 (1987).
[23] G. Metcalfe, M. Rudman, A. Brydon, and L. Graham, in

Proceedings of the 6th World Congress of Chemical Engineer-
ing (Institution of Chemical Engineers, Melbourne, Australia,
2001).

[24] A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. Huck, P. J.
A. Kenis, and G. M. Whitesides, Phys. Rev. Lett. 84, 3314
(2000).

[25] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A.
Stone, and G. M. Whitesides, Science 295, 647 (2002).

[26] J. M. Ottino, Sci. Am. 260, 56 (1989).
[27] J. G. Franjione and J. M. Ottino, Philos. Trans. R. Soc. London

338, 301 (1992).
[28] M. A. Stremler and B. A. Cola, Phys. Fluids 18, 011701 (2006).
[29] B. A. Cola, D. K. Schaffer, T. S. Fisher, and M. A. Stremler,

J. Microelectromech. Syst. 15, 259 (2006).
[30] M. K. McQuain, K. Seale, J. Peek, T. S. Fisher, S. Levy, M. A.

Stremler, and F. R. Haselton, Anal. Biochem. 325, 215 (2004).
[31] J. M. Hertzsch, R. Sturman, and S. Wiggins, Small 3, 202

(2007).
[32] F. Raynal, F. Plaza, A. Beuf, P. Carrière, E. Souteyrand, J.-R.

Martin, J. P. Cloarec, and M. Cabrera, Phys. Fluids 16, L63
(2004).

[33] E. Gouillart et al., Phys. Rev. E 78, 026211 (2008).

012906-7

http://dx.doi.org/10.1103/PhysRevLett.96.214502
http://dx.doi.org/10.1103/PhysRevLett.96.214502
http://dx.doi.org/10.1103/PhysRevLett.94.134501
http://dx.doi.org/10.1103/PhysRevLett.94.134501
http://dx.doi.org/10.1016/0960-0779(94)90139-2
http://dx.doi.org/10.1103/PhysRevLett.99.114501
http://dx.doi.org/10.1103/PhysRevLett.90.034501
http://dx.doi.org/10.1103/PhysRevLett.90.034501
http://dx.doi.org/10.1103/PhysRevE.69.036301
http://dx.doi.org/10.1103/PhysRevE.69.036301
http://dx.doi.org/10.1134/S0021364008120072
http://dx.doi.org/10.1063/1.858080
http://dx.doi.org/10.1103/PhysRevE.79.066202
http://dx.doi.org/10.1103/PhysRevE.79.066202
http://dx.doi.org/10.1063/1.1568833
http://dx.doi.org/10.1098/rsta.2003.1355
http://dx.doi.org/10.1098/rsta.2003.1355
http://dx.doi.org/10.1126/science.1099343
http://dx.doi.org/10.1007/s00332-004-0673-2
http://dx.doi.org/10.1080/14689361003639080
http://dx.doi.org/10.1017/S0022112084001233
http://dx.doi.org/10.1016/0009-2509(87)87056-2
http://dx.doi.org/10.1016/0009-2509(87)87056-2
http://dx.doi.org/10.1103/PhysRevLett.84.3314
http://dx.doi.org/10.1103/PhysRevLett.84.3314
http://dx.doi.org/10.1126/science.1066238
http://dx.doi.org/10.1038/scientificamerican0189-56
http://dx.doi.org/10.1098/rsta.1992.0010
http://dx.doi.org/10.1098/rsta.1992.0010
http://dx.doi.org/10.1063/1.2162184
http://dx.doi.org/10.1109/JMEMS.2005.863786
http://dx.doi.org/10.1016/j.ab.2003.10.032
http://dx.doi.org/10.1002/smll.200600361
http://dx.doi.org/10.1002/smll.200600361
http://dx.doi.org/10.1063/1.1775807
http://dx.doi.org/10.1063/1.1775807
http://dx.doi.org/10.1103/PhysRevE.78.026211


ROB STURMAN AND JAMES SPRINGHAM PHYSICAL REVIEW E 87, 012906 (2013)

[34] J. Springham and R. Sturman, arXiv:1212.0889 [Ergodic Theory
and Dynamical Systems (to be published)].

[35] L.-S. Young, Ann. Math. 147, 585 (1998).
[36] L.-S. Young, Isr. J. Math. 110, 153 (1999).
[37] N. Chernov and L. S. Young, in Hard Ball Systems and the

Lorentz Gas, Encyclopaedia of Mathematical Sciences, edited
by D. Szasz, Vol. 101 (Springer, New York, 2000), pp. 89–120.

[38] N. Chernov, J. Stat. Phys. 94, 513 (1999).
[39] N. Chernov and H. K. Zhang, Nonlinearity 18, 1527 (2005).
[40] R. Markarian, Ergodic Theory Dyn. Syst. 24, 177 (2004).
[41] E. Gouillart, O. Dauchot, B. Dubrulle, S. Roux, and J. L.

Thiffeault, Phys. Rev. E 78, 026211 (2008).
[42] H. Hu, A. Rampionni, L. Rossi, G. Turchetti, and S. Vaienti,

Chaos 14, 160 (2004).

012906-8

http://arXiv.org/abs/arXiv:1212.0889
http://dx.doi.org/10.2307/120960
http://dx.doi.org/10.1007/BF02808180
http://dx.doi.org/10.1023/A:1004581304939
http://dx.doi.org/10.1088/0951-7715/18/4/006
http://dx.doi.org/10.1017/S0143385703000270
http://dx.doi.org/10.1103/PhysRevE.78.026211
http://dx.doi.org/10.1063/1.1629191



