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Size distribution of cell pattern observed in gravitational instability
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Gravitational instability occurs at the interface of two solutions when a higher-density solution (HDS) is placed
on the surface of a lower-density solution (LDS). As the HDS sinks, a cell pattern forms on the surface. We
investigate the size distribution of the cells in this pattern. We show that the cumulative size distribution obeys
a power law with a power index that is independent of time as long as it is possible to neglect the interactions
among the cells. To understand the power law mechanism, a simple model excluding the interactions is proposed,
and we demonstrate that this simple model provides the power law measured in experiments. Our results indicate
that independent cell generation and growth are key factors to understand the feature of the cell pattern.
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I. INTRODUCTION

The power law in physics is one of the most familiar
rules for critical phenomena [1,2]; the specific heat, magnetic
susceptibility, and correlation length all obey a power law
and diverge at a critical point in an equilibrium system. The
behavior at the critical point can be explained using the free
energy obtained in a symmetry assumption [1], and an analysis
of the minimum free energy leads to the specific power law
around the critical point.

Power law appears not only in an equilibrium system but
also in a nonequilibrium system in nature: the frequency dis-
tribution of earthquakes [3,4], node number distribution of an
internet link [5,6], fragment mass (or size) distribution of glass
[7,8], frequency distributions of word and family names [9,10],
and diameter distribution of moon craters [2]. The existence of
power law means that the system has no characteristic length,
which is an anomalous feature. It is thought that the power law
is derived from complex behaviors with strong interactions.
For a system in a nonequilibrium condition, it is difficult to
define the free energy involved in these complex dynamics.
Therefore, understanding the power law in a nonequilibrium
system has been an interesting topic [2].

Recently, fractal and cell patterns were observed in grav-
itational instability experiments [11,12]. When a droplet of
a higher-density solution (HDS) is placed on the surface of
a lower-density solution (LDS), the HDS spreads over the
surface of the LDS. Following this, a gravitational instability
occurs at the interface between the HDS and LDS, and the
HDS sinks, exhibiting a fractal or cell pattern at the interface.
In this paper, we focus on the cell pattern that is formed when
the HDS sinks. In an investigation of a size distribution of
cells, it is found that the number of cells with an area S

decreases with increasing S according to a power law. Our
aim here is to understand the power law mechanism of the cell
size distribution through detailed measurements of the cell
pattern development. Clarifying the mechanism will assist
in an understanding of not only the cell pattern formation
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by a gravitational instability but also other phenomena in a
nonequilibrium system.

II. EXPERIMENTAL PROCEDURE

For the gravitational instability experiments, glycerin
solution and a magnetic fluid are used as the LDS and HDS,
respectively. The glycerin solution with 1.21 g/ml consists of
glycerin (Wako; 100.50 g), white watercolor (Kokuyo), and
water. White watercolor (0.50 g) is dissolved in 100 g of water
in order to visualize the surface pattern. In the uniform mixture
of these solutions, which are glycerin, white watercolor, and
water, the glycerin solution is made. The density of the HDS
magnetic fluid (Taiho Kozai, Ferri Colloid W-40) is 1.40 g/ml.
Clear snapshots of the surface pattern are obtained as the colors
of the HDS and LDS are black and white, respectively.

The LDS is poured into a circular container with a radius
of r = 50 mm and a height (depth) of h = 25 mm, as shown
in Fig. 1. The container stands for 10 min or more until the
LDS comes to rest. A droplet of the HDS is then placed with a
pipette on the surface of the LDS in the center of the container,
as shown in Fig. 1. The cell pattern is captured by using a digital
video camera (Sony HDR-FX1) with a macro lens (Raynox
DCR-150) from above.

III. RESULTS AND DISCUSSION

A. Size distribution of cell pattern

At first, we focus on a time process of a cell pattern. The
photographs in Figs. 2(a)–2(e) are snapshots of the cell patterns
at t = 19, 59, 86, 145, and 206 s after a droplet of the HDS
is placed on the surface. These pictures show how the cell
pattern develops: (i) The HDS spreads over the surface soon
after being placed on the surface [Fig. 2(a)]. (ii) Cells are
then generated randomly in space and time on the surface
after a large cell emerges at the center, and each cell then
grows simultaneously over time [Figs. 2(b)–2(d)]. (iii) The
generation and growth rates decrease and become saturated. A
stable cell pattern is then observed as shown in Fig. 2(e). This
pattern is present for 400 s before finally disappearing.
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FIG. 1. (Color online) Schematic drawing of the experimental
procedure. The radius of the beaker and depth of the glycerin solution
(LDS) are shown as r and h, respectively.

These cells have several sizes as shown in upper pho-
tographs of Fig. 2. The size distribution of the cells in each
photograph is shown in the corresponding plot in Fig. 2. Lower
pictures of Fig. 2 show the results of the cumulative distribution
of the number of cells with the area more than S,

F (S; t) =
∫ +∞

S

f (S ′; t) dS ′, (1)

where f (S ′; t) is the number of cells with area S ′ at an elapsed
time t . The maximum value of F (S; t) corresponds to total
number of cells N (t) at t . And, N (t) is 4, 46, 65, 94, and 97 at
t = 19, 59, 86, 145, and 206 s, respectively. Furthermore, the
cumulative size distributions show that S varies from 0.03 to
308 mm2. The distribution F (S; t) for Figs. 2(b) and 2(c) decay
according to the power law ln[F (S; t)] ∼ −A ln S, where A is
a constant. The power index A was determined subject to the
following conditions: (i) The fit is performed for S � 0.5 mm2,
since data for S � 0.5 mm2 are so small that f (S; t) contains
a large error. (ii) The fitting range has over one digit. (iii) The
fitting provides the minimum variance in the measurements
through a least-squares method in which the fitting was varied
for several trials. The solid lines in Figs. 2(b) and 2(c) show the
results of the fit for A, where the values of A are 0.80 and 0.83,
respectively. The line for A = 0.80 is shown as the dashed lines
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FIG. 3. Time series of the power index A in the experiments for
r = 50 mm and h = 25 mm. The closed circles and the solid line show
the experimental data and average value (A = 0.85), respectively. A
power law is observed during the time range between two dashed
lines.

also in Figs. 2(d) and 2(e). A comparison of the experimental
data and the fit indicates that the behavior of the experimental
data in Figs. 2(d) and 2(e) is different from that in Figs. 2(b)
and 2(c). Thus, only distributions at a small elapsed time are
described well by a power law. To clarify the exact time range,
F (S; t) was investigated for various t . A fitting by a power
law is suitable for 59 s � t � 120 s, which is between dashed
lines in Fig. 3. The discussion on the fitting range is shown in
Sec. III D. Figure 3 shows a time series of the power index A,
and the average value A = 0.85 ± 4.7 × 10−2 is shown as the
solid line. Over the fitted time range, there is little variation in
the value of A from the average value.

B. Number of cells and the area

Here, we focus on the formation process of the cell pattern at
t � 120 s when the similar power index A= 0.85 is measured.
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FIG. 2. (Color online) Cell pattern development and cumulative size distribution of the cells in experiments with r = 50 mm and
h = 25 mm. The photographs show the surface pattern captured at elapsed time (a) 19 s, (b) 59 s, (c) 86 s, (d) 145 s, and (e) 206 s after
a droplet of the higher-density solution is placed on the surface. The plots show the corresponding the cumulative size distribution F (S;t) of
the cells. The solid lines in the plots for (b) and (c) are fits to a power law ln[F (S; t)] ∼ −A ln(S), where A is a constant. The dashed lines in
(d) and (e) are the plots for A= 0.80.
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FIG. 4. (Color online) Number of cells N (t) at elapsed time t

after a droplet of higher-density solution is placed on the surface
measured in the experiment for r = 50 mm and h = 25 mm. The solid
line shows the fit to an exponential function. The dashed line shows
a time when the data start to be fitted with an exponential function.

As the generation and the growth of cells are characteristics of
the cell pattern formation, shown in upper pictures of Fig. 2,
we also examine the number of cells and the area of each cell
in this time range.

Figure 4 shows a time series of the number of cells N (t). The
number N (t) increases according to an exponential function
exp(at) for 60 s � t � 120 s, where a = (1.30 ± 0.04) ×
10−2 s−1. Accurate analysis is difficult, since the cell area is
too small at t � 60 s. Therefore, we focus on the data for
t � 60 s. The behavior at small t was investigated in
experiments with a high-resolution camera, and a similar result
was also obtained [13].

Figure 5 shows the area of the ith cell. Four cells (i = 1, 2,
3, 4), shown in Fig. 5(a), were analyzed. These cells were
spatially separated from other cells and appeared to grow
independently. The analyses provided the area Si(t) of the ith
cell at t in Fig. 5(b). As shown in Fig. 5(b), the generation time
τi for individual cells varies between 22 and 80 s. As mentioned
in Sec. III A, we regarded that the data at Si(t) � 0.5 mm2 were
possible to be analyzed. Now, we define that the cell generates
at the time when its area reaches S0 = 0.5 mm2. Then, the

elapsed time after the ith cell generates is denoted as t ′i , where
t ′i = t − τi and t ′i = 0 s at S0 = 0.5 mm2. Figure 5(c) shows
a development of Si(t ′i )/S0 with t ′i . The data for the ith cell
correspond to those in Fig. 5(b). Although each cell generates
at a different time and grows in a different region, Si(t ′i )/S0 is
quite similar [Fig. 5(c)]. This result demonstrates that the cells
grow independently. The data for Si(t ′i )/S0 are consistent with
the exponential function exp(bt ′i ) for t ′i � 120 s, shown as the
solid line in Fig. 5(c). The average value of b for cells i = 1–4
is b = (1.8 ± 0.3) × 10−2 s−1. Hereafter, we denote Si(t ′i ) as
S(t ′) = S0 exp(bt ′), since the tendency does not depend on
individual cells. The data in experiments with a high-resolution
camera provide S(t ′) = S0 exp(bt ′) in the condition that even
the area is smaller than 0.5 mm2. And, the b is 1.73 × 10−2 s−1,
which is a close value to b = 1.80 × 10−2 s−1 in Fig. 5(c) [13].

C. Simple model to lead a power law

Now, our aim is to understand the mechanism of the power
law F (S; t) ∼ S−A for t � 120 s, where a similar power index
is measured. The experimental results in Figs. 4 and 5 suggest
the following:

(i) The number of cells increases with time according to

N (t) ∼ exp(at) (2)

at 60 s � t � 120 s, and (ii) the area of each cell grows
according to

S(t ′) = S0 exp(bt ′). (3)

Equation (3) shows that S(t ′) is determined uniquely for t ′.
This allows dt ′ = ∂t ′

∂S
dS, and leads to

N (t) =
∫ t

0
n(τ )dτ =

∫ t

0
n(t − t ′)dt ′

=
∫ S0 exp(bt)

S0

n(t − t ′)
∂t ′

∂S
dS, (4)

where the generation time of cells and the generated number of
cells at τ are τ = t − t ′ and n(τ ) = dN(τ )/dτ , respectively.
On the other hand, f (S; t) is the number of cells with area S
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FIG. 5. (Color online) Time series of the area of individual cells in experiments for r = 50 mm and h = 25 mm. (a) Snapshot of investigated
four cells (i = 1, 2, 3, 4) at an elapsed time t = 86 s after a droplet of the higher-density solution is placed on the surface of the lower-density
solution. The data for individual cells are indicated by different symbols in (b) and (c). (b) Time development of area Si(t) of ith cell at t .
(c) Time development of Si(t ′

i )/S0 for individual cells, where S0 = 0.5 mm2 and t ′
i = 0 s as Si = S0. The solid line represents a fit to an

exponential function. The dashed line shows Si = S0.

012903-3



SHIMOKAWA, KITAHATA, AND SAKURAI PHYSICAL REVIEW E 87, 012903 (2013)

at t according to Eq. (1). Then,

N (t) =
∫ +∞

0
f (S; t)dS =

∫ S0 exp(bt)

S0

f (S; t)dS, (5)

because from Eq. (3) the minimum and maximum values of
S at t are S0 and S0 exp(bt), respectively. A comparison of
Eq. (4) and Eq. (5) yields

n(t − t ′)
∂t ′

∂S
= f (S; t) (6)

for an arbitrary time. Equations (2) and (3) lead Eqs. (7) and (8),
respectively:

n(t − t ′) = dN(t − t ′)
d(t − t ′)

∼ a exp[a(t − t ′)], (7)

t ′ = ln

(
S(t ′)
S0

)1/b

, (8)

because ln S(t ′) = ln S0 + bt ′ according to Eq. (3). The Eq. (8)
yields

∂t ′

∂S
= 1

bS
. (9)

Using Eqs. (7)–(9), Eq. (6) gives

f (S; t) ∼ a exp{a(t − t ′)} 1

bS

= a exp(at) exp

{
−a ln

(
S

S0

)1/b
}

1

bS

= a

bS0
exp(at)

(
S

S0

)−a/b−1

∼ exp(at)S−a/b−1. (10)

Now, the cumulative size distribution at each time is consid-
ered. The factor exp(at) is nonessential for the distribution at
60 s � t � 120 s when the power law is measured. Therefore,
f (S; t) is regarded as S−a/b−1. The cumulative distribution
F (S; t) is

F (S; t) =
∫ +∞

S

f (S ′; t)dS ′ ∼ S−a/b. (11)

Equation (11) shows that the cumulative distribution F (S; t)
obeys a power law. This result agrees with the experimental
results shown in Fig. 2. Furthermore, the power index a/b is
independent of time, which also agrees with the results of A

shown in Fig. 3.
The power index a/b is compared with A for several depths

of the circular container h. Since a cell pattern appears only
at h � r = 50 mm [12], F (S; t) was investigated for h �
40 mm. The results are shown in Fig. 6(a), where the
closed circles and open triangles represent A and a/b,
respectively. The value of a/b is 0.72 ± 0.27 at h =
25 mm (a = (1.30 ± 0.04) × 10−2 s−1 and b = (1.8 ± 0.3) ×
10−2 s−1), which is close to the value A = 0.85 ± 4.7 × 10−2

at h = 25 mm found in Fig. 3. The value of a/b also shows
agreement with A for other h. These results indicate that
Eqs. (2) and (3) as the fitting are reasonable and lead to
the conclusion that independent generation and growth are
important for the cell pattern formation.

We also note that the power index A increases with
increasing h. Figure 6(b) shows the change in both a and b

as a function of h, where a−1 and b−1 are indexes of Eqs. (2)
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FIG. 6. (Color online) (a) Power index for the depth h. The closed
circles and open triangles show the experimental results for A and
a/b obtained from our model, respectively. The dashed line is an
approximate straight-line fit. (b) The indexes a (open circles) and b

(open squares) for different h.

and (3). The index a is almost constant, while b tends to
decrease with increasing h. This result anticipates that a is a
parameter derived from the gravitational instability. Since the
disturbance due to a gravitational instability depends only on
the surface condition such as densities and interfacial tension
between the HDS and LDS [14], a must be independent of
h. In contrast, it is thought that b explains the hydrodynamic
effect in the global experimental system because the flow of
the HDS and LDS brings about the cell growth. However,
measurements of the flow field will be needed in order to
confirm this hypothesis. The measurement remains as a future
subject.

D. Occupancy of cells

As we have demonstrated, the assignment A ∼ a/b is valid
only for t � 120 s in experiments with h = 25 mm. To clarify
the behavior at t � 120 s, the occupancy p(t) of the cells
was investigated. Figure 7 shows p(t) = ∑

i Si(t − τi)/B at t ,
where Si(t − τi) and B represent the area of the ith cell at t and
the whole region surrounded by the edge of the cell pattern,
respectively. The area Si(t − τi) can be defined at t � τi , and
thus it is regarded as zero otherwise. The B is almost constant
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FIG. 7. (Color online) Occupancy p of all cells for a whole
area B of a cell pattern at t , where p(t) = ∑

i Si(t − τi)/B. The data
are measured in experiments for r = 50 mm and h = 25 mm. The
solid and dashed lines are the data obtained from our experiments
and Eq. (12), respectively. After 130 s, the agreement between the
experimental data and those of Eq. (12) diminished. This region is
shown in grey.
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as shown in Fig. 2. The experimental result is shown as a
solid line in Fig. 7. As shown in Fig. 7, p(t) increases with
increasing t and is saturated at t ∼ 190 s.

Equations (2) and (3) also lead p(t). The occupancy can be
expressed as

p(t) =
∫ t

0 n(τ )S(t − τ )dτ

B
= 1

B

∫ t

0

dN(τ )

dτ
S(t − τ )dτ

∼ S0

B

∫ t

0
a exp(aτ ) exp{b(t − τ )}dτ

= S0a

B(a − b)
exp(bt)[exp{(a − b)t} − 1]

= S0a

B(a − b)
{exp(at) − exp(bt)}

= C{exp(at) − exp(bt)}, (12)

where values of a and b were obtained from those of Figs. 4
and 5(c). The fitting function, provided by Eq. (12), is
C {exp(at) − exp(bt)}, where C = −6.08 × 10−2. The value
of C is determined in the measurement through a least-squares
method, and the fitting region is at 60 s � t � 140 s. As a

is smaller than b in the condition of h = 25 mm, C < 0 is
reasonable. The plot of the fitting function is shown as the
dashed line in Fig. 7, and the region in which the dashed
line deviates from the solid line of the experimental data is
represented by the grey shading. The transition occurs around
at t = 130 s, which is close to 120 s. This result suggests that
a different mechanism from that discussed for t � 120 s is
needed for t � 120 s. The cell generation and growth rate
might decrease, since the experimental value is lower than
that of Eq. (12) for t � 120 s. For t � 120 s, the interaction
among the cells is considered to be one of the reasons for
the difference between the two results. As seen in Figs. 2(d)
and 2(e), a cell structure with a large p(t) prevents the growth
of cells. This effect must first appear at t ∼ 120 s, and so
therefore, the common power index is obtained only for t �

120 s. The pattern formation with a strong interaction for t �
120 s is a topic of future research.

IV. SUMMARY

When a droplet of HDS is placed on a LDS surface, the
HDS spreads over the LDS surface. A gravitational instability
occurs at the HDS–LDS interface, and the HDS sinks. During
the sinking process, a cell pattern is formed on the surface. We
have investigated the cumulative size distribution of the cells
and found that the distribution obeys a power law as shown in
Fig. 2. The power index is independent of time as shown in
Fig. 3, as long as an interaction among the cells is neglected.
Experimental measurements in the time region without the
interaction yielded the following conclusions: (i) the number of
cells increases with time according to an exponential function
(Fig. 4), and (ii) the area of each cell grows independently
according to an exponential function [Fig. 5(c)]. These results
lead to a power law with a power index that agrees with
that obtained from our experiments. We also found good
agreement between power indexes of experiments and those of
our discussion for different LDS depths as shown in Fig. 6(a).
These results indicate that independent cell generation and
growth are key factors to understand the feature of a cell
pattern.
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