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External synchronization of oscillating pulse edge on a transmission line
with regularly spaced tunnel diodes
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We investigate the external synchronization of the oscillating pulse edges developed in a transmission line
periodically loaded with tunnel diodes (TDs), termed a TD line. It is observed that the pulse edge oscillates
on a TD line when supplied by an appropriate voltage at the end of the line. We discuss how the pulse edge
oscillates on a TD line and the properties of the external synchronization of the edge oscillation driven by a
sinusoidal perturbation. By applying a phase-reduction scheme to the transmission equation of a TD line, we
obtain the phase sensitivity, which satisfactory explains the measured spatial dependence of the locking range
on the frequency. Moreover, we successfully detect the spatiotemporal behaviors of the edge oscillation by
establishing synchronization with the sampling trigger of an oscilloscope.
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I. INTRODUCTION

The nonlinear wave properties in a transmission line that
is periodically loaded with tunnel diodes (TDs), referred to as
a TD line for brevity, have attracted attention in the fields of
both science and engineering. Because the TD line adequately
simulates the nerve axon on the basis of the Hodgkin-Huxley
model, it is used in the field of physiology to characterize the
electrical pulses propagating on a nerve axon [1]. By arranging
the unit-cell structure, the nonattenuating propagation of
electrical pulses on a nerve axon is appropriately demonstrated.
Nagumo et al. [2] considered a TD line whose unit cell consists
of a shunt TD, a series resistor, and a shunt inductor that feeds
the appropriate dc voltage. They found that only a voltage
pulse having an amplitude higher than a certain threshold could
propagate on the line and evolve into a pulse with an inherent
waveform. These properties qualitatively explain the actual
behavior of an electrical pulse on a nerve axon. Richer [3]
considered the propagation of a voltage edge on a TD line
consisting of a series resistor and a shunt TD in each unit cell.
It was observed that the edge became stable, i.e., it evolved
into a traveling front that preserved the shape and velocity and
could propagate on the line only in a specific direction, such
that the voltage level decreased at every cell through which the
edge passed.

On the other hand, the use of a TD line has been investigated
in high-speed electronics. For use at high frequencies, each TD
is connected by a series inductor. By setting the appropriate
biasing voltage and current for the line, a steep incident
pulse edge is generated by the loaded TDs [4]. A resonant
tunneling diode (RTD), which is fabricated using compound
semiconductor materials, is widely used. Oscillators using
a state-of-the-art RTD generate submillimeter and terahertz
waves at room temperature [5]. Moreover, RTDs are employed
on a TD line to generate a broadband voltage front up to mil-
limeter wave frequencies [6–8]. In addition, several schemes
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using TD lines have been reported to date for generating short
electrical pulses [9,10]. Recently, an interesting oscillation
was observed for a voltage edge on a TD line [11]. With
an appropriate boundary condition, a voltage edge repeatedly
turned around halfway on the line.

In this paper, we investigate the external synchronization
of the oscillating pulse edges in a TD line. External synchro-
nization is the most fundamental synchronization phenomenon
observed in a limit cycle [12] that is one-sidedly affected by
an external oscillation. Most of the familiar examples include
the circadian rhythms. If the nature of an external oscillation
including the amplitude, phase, and waveform is known a
priori, the properties of a limit cycle can be clarified through
external synchronization. We find that the edge oscillation in a
TD line is a kind of limit cycle and can be synchronized with
a known sinusoidal perturbation.

Because the edge oscillation develops on a spatially
extended platform, the locking range may depend on the cell
to which the external oscillation is assigned. To quantify the
locking efficiency, we apply a phase-reduction scheme [13]
to the transmission equations of a TD line. The identity of
a limit cycle is illustrated by the phase sensitivity, which
quantifies how the phase of the limit cycle responds to
perturbation. To obtain a consistent spatial dependence on
frequency considering the measured locking range, we employ
the standard numerical procedure to calculate the phase
sensitivity. The qualitative validity of the phase sensitivity is
successfully confirmed in a spatially extended limit cycle.

In addition to the fundamental edge oscillation, we detect
another oscillation mode only through measurements. This
secondary (s) mode requires two oscillating edges that
originate at a cell halfway along the TD line. These edges
are mutually synchronized to support a stable oscillation.
Moreover, the turnaround distance of the edge in the s mode
is approximately half that in the fundamental (f ) mode;
therefore, the second-harmonic component of the f mode
excites the s mode. These properties are directly observed
in measurements.
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FIG. 1. Cell structure of TD lines. Two adjacent cells are shown. The line inductance, resistance, capacitance, and diode current are
represented by L, R, C, and ID , respectively.

In Sec. II, we discuss the structure and fundamental proper-
ties of a traveling front or shock wave and edge oscillation in a
TD line. In Sec. III, we discuss the numerical evaluation of the
external synchronization observed in edge oscillations. The
experimental characterization of edge oscillations is discussed
in Sec. IV.

II. EDGE OSCILLATION IN TD LINES

Figure 1 shows the unit cell of a TD line, where L, R,
C, and ID represent the series inductance, series resistance,
shunt capacitance, and current of the shunt TD of the unit cell,
respectively. The typical current-voltage relationship of a TD
is shown as the thick dashed curve in Fig. 2. There are two
characteristic voltages, the peak and valley voltages, denoted
Vp and Vv , respectively. TDs exhibit a negative differential
resistance at voltages between Vp and Vv . In general, any
type of TD, including Esaki diodes and RTDs, can be used
as a platform to develop edge oscillation, which is under
investigation.

Consider the case in which a DC voltage, whose value
surpasses Vp, is applied to one of the ends of a TD line,
whose cells are all initially set to zero. Then a voltage edge
develops and starts propagating on the line. Let the line current
flowing to the nth cell and the line voltage at the nth cell be In

FIG. 2. Current-voltage relationship of TDs. The thick dashed
curve represents the typical current-voltage relationship of a TD. The
peak and valley voltages are represented by Vp and Vv , respectively.
On the other hand, the solid curve shows the model function ID(V ) ∝
V (V − Vth)(V − V0), where V is the voltage across terminals, which
provides the fundamental properties of a TD line.

and Vn, respectively. Then the transmission line equations are
given by

dIn

dt
= Vn−1 − Vn − RIn

L
, (1)

dVn

dt
= In − In+1 − ID(Vn)

C
. (2)

When the propagating voltage edge extends over many cells,
we approximate the above equations using a continuous spatial
variable x to obtain

LC
∂2V

∂t2
+

(
CR + L

dID(V )

dV

)
∂V

∂t
= ∂2V

∂x2
− RID(V ),

(3)
where V = V (x,t) represents the continuous counterpart of
Vn. Moreover, L, C, R, and ID are rescaled to be per-
unit-length quantities. Equation (3) is a nonlinear hyperbolic
equation and can support traveling fronts, i.e., uniformly
translating solutions with constant speeds [14].

To investigate the dynamics of the voltage edge on a TD
line, we use the method developed by Hadeler and Rothe in
[15]. We model the diode current to exhibit the current-voltage
relationship with β0 > 0, as shown in

ID(V ) = β0V (V − Vth)(V − V0), (4)

where V represents the voltage across the terminals. The
property of the test diode is shown by the solid curve in Fig. 2.
Unlike TDs, the current disappears at three voltages, namely,
0, Vth, and V0.

We consider that the traveling fronts connecting the
equilibrium voltages V = Vth and V = 0 have a velocity of c.
By introducing the solution of the form V (x − ct) to Eq. (3),
we obtain the ordinary differential equation

(c2LC − 1)V ′′ − c

(
CR + L

dID(V )

dV

)
V ′ + RID(V ) = 0,

(5)
where a prime denotes differentiation with respect to ξ =
x − ct . By introducing the variables u = V/Vth and v = u′
and assuming that c �= 1/

√
LC, Eq. (5) becomes a first-order

system:

u′ = f (u,v,c) = v, (6)

v′ = g(u,v,c) = 1

c2LC − 1

{
cv

(
CR + L

dID(Vthu)

dV

)

− R

Vth
ID(Vthu)

}
. (7)
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There are two singular points in (u,v) ∈ [0,1] × [0,∞),
namely, points P1(0,0) and P2(1,0), whose types are sum-
marized as follows.

For c < 1/
√

LC, P1 is a saddle point whose unstable
directions satisfy dv/du > 0, whereas it is an unstable node for
c > 1/

√
LC, whose main and side directions satisfy dv/du <

0. On the other hand, P2 is a focus for c < c0 defined as

c0 = 2
√

R |G1|
CR + L |G1| , (8)

where G1 < 0 represents the differential conductance at
V = Vth, i.e., G1 = dID(Vth)/dV . The focus becomes stable
for CR + LG1 < 0 and unstable for CR + LG1 > 0. For
c ∈ (c0,1/

√
LC), P2 is a stable node, whose main and side di-

rections satisfy dv/du < 0. Moreover, P2 is a saddle point for
c > 1/

√
LC, whose unstable direction satisfies dv/du < 0.

When CR + LdID/dV > 0 for all u ∈ (0,1), the system
satisfies all the assumptions required in Theorem 1 of [14]
for c ∈ (c0,1/

√
LC); therefore, it is established that a unique

traveling front is supported by a TD line. For greater c, a shock
wave develops. In either case, the edge can stably propagate
on a TD line. Refer to the Appendix for the detailed properties
of traveling fronts and shock waves.

In practical situations, the line must have boundaries, where
the voltage front (or shock wave) may be reflected and start
propagating in the opposite direction. This reflected front must
correspond to a trajectory in the phase plane that starts at P2

and possibly reaches a certain point in the lower half-plane;
therefore, the reflected edge can develop only for c ∈ (0,c0)
and CR + LG1 > 0, where P2 becomes an unstable focus.
Because a front propagating to P2 develops robustly, the
reflected edge is supposed to be replaced by such a front on
the line. Certain transient processes cannot be described by
Eqs. (6) and (7). However, the estimated behavior of the phase
point is shown in Fig. 3 for qualitative illustration. Let the
values of c for the traveling front and reflected wave be cf and
cr , respectively. Then, at c = cr (<c0), P2 becomes an unstable
focus. Then a reflected edge starts following the spiral trajec-
tory and reaches point P1 through the lower half-plane v < 0.
Then a front starts at P1 and propagates toward P2, such that
the trajectory reaches and returns from P2 on the c = cf plane.

FIG. 3. Sample trajectory corresponding to edge oscillation. At
c = cr , point (1,0) becomes an unstable focus. On the other hand, it
becomes a stable node for c = cf .

FIG. 4. Fundamental oscillation mode of the pulse edge in a TD
line. Time progresses from (a) to (d). The reflected edge in (d) starts to
travel forward again, resulting in edge oscillation. The horizontal axis
measures the spatial dimension, which must be originally discrete.

Figure 4 illustrates the behavior of line voltage correspond-
ing to the phase-plane trajectory in Fig. 3. The spatial position
on the TD line is shown horizontally and the voltage is shown
vertically. Point P2 in Fig. 3 corresponds to the input end
of a TD line that is biased to develop a voltage edge. Then
Fig. 4(a) shows the behavior of line voltage corresponding to
the phase-plane trajectory on the c = cr plane. The voltage
edge that exhibits oscillation corresponds to the spiral part of
the phase-plane trajectory. Because of the losses and leakage,
the edge is gradually attenuated, and it nearly disappears,
as shown in Fig. 4(b). At this stage, a stable traveling front
develops and starts propagating back to P2 as shown in
Fig. 4(c). Once the voltage edge returns to the input end, it
is reflected again to propagate from the input end as shown in
Fig. 4(d). The voltage edge repeats this process to oscillate on
the line. This is the f mode of oscillation. Moreover, we refer
to the directions from and to the input end as the forward and
backward directions, respectively.

If the input is connected to an ideal voltage source without
internal resistance, the voltage of the input cell is fixed to
a constant value and consequently the reflected edge is not
influenced by the input boundary. Therefore, the reflected edge
gradually becomes identical to the previously reflected edge.
On the other hand, for practical voltage sources, the voltage at
the input cell cannot recover its original value within the CR
time constant provided by the source’s internal resistance. The
presence of two different time scales, including the turnaround
time of the propagating edge and the CR time constant at the
input boundary, can make the edge oscillation quasiperiodic.
Through numerical evaluations, the velocity of the voltage
edge does not significantly depend on the input dc voltage.
Moreover, the edge propagates further, and the turnaround time
increases for greater input dc voltage [16]. This is because the
frequency of the edge oscillation decreases as the input dc
voltage increases.

For actual TDs, a finite current flows, even at V = Vv

(Iv in Fig. 2), so that the traveling front cannot develop. How-
ever, edge oscillation requires only the transient development
of fronts; therefore, it may be established in a practical TD
line. In addition, this concept is predicted by the heuristic
description based on the transmission-line theory [11], which
provides some insight into the frequency of the oscillatory
component of the reflected voltage edge.
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III. EXTERNAL SYNCHRONIZATION IN TD LINES

After introducing several results of the time-domain cal-
culations including the oscillation frequency and the spatial
transient of an edge, we apply the phase-reduction scheme to
edge oscillations in a TD line to examine the external synchro-
nization of edge oscillations with a sinusoidal perturbation,
which is used to evaluate the cell dependence of the phase
sensitivity.

We consider an N -cell TD line. Initially, all line voltages are
set to zero. Then the input end is connected to a voltage source
with negligible internal resistance that outputs the dc voltage
of A and the other end is short-circuited. For convenience,
we define 2N variables Xi (i = 1, . . . ,2N ) as Xm = Im and
XN+m = Vm for m = 1, . . . ,N . Then Eqs. (1) and (2) can be
reformulated as

dX
dt

= F(X), (9)

where X = (X1, . . . ,X2N ) and F represents a 2N vector
defined by

F1 = 1

L
(A − XN+1 − RI1) ,

(10)

Fi = 1

L
(XN+i−1 − XN+i − RIi) ,

FN+j = 1

C
(Xj − Xj+1 − ID(XN+j )),

F2N = 1

C
(XN − ID(X2N )) (11)

for i = 2, . . . ,N and j = 1, . . . ,N − 1. F1 and F2N account
for the boundary conditions. The fourth-order Runge-Kutta
method was used to solve Eq. (9). In order to simulate
the measured TD line discussed below, we set L, C, and
R to 1.0 μH, 500.0 pF, and 1.0 �, respectively. ID was
optimized to exhibit the relationship shown by the thick
dashed line in Fig. 2, where Vp, Vv , Ip, and Iv were set to
60.0 mV, 380.0 mV, 6.0 mA, and 1.1 mA, respectively. After
an appropriate calculation time had elapsed, the voltage edge
started oscillating steadily. We examined this steady state.

The spatiotemporal waveform for A = 0.7 V is shown in
Fig. 5. The brighter points exhibit higher line voltages. A single
voltage edge develops and oscillates. Therefore, it is confirmed
that edge oscillation is supported by the f mode for all of the
calculated input dc voltages. Spatial waveforms are shown in
Figs. 6(a), 6(b), 6(c), and 6(d), which correspond to the timings
of 0.5, 0.7, 0.8, and 1.15 μs in Fig. 5, respectively. When a
stable front develops as shown in Fig. 6(b), the voltage edge
starts propagating backward as shown in Fig. 6(c). Once the
edge returns to the input end, it is again reflected to propagate
forward as shown in Fig. 6(d). The edge that is propagating
forward exhibits an oscillatory behavior as shown in Fig. 6(a),
whereas the backward edge does not, as shown in Fig. 6(c).
These results are the same as those observed in Fig. 4. At a fixed
cell, the voltage rapidly decreases to zero when the backward
edge passes it, and the voltage rapidly attains a certain finite
value when the forward edge passes the cell. Therefore,
the temporal waveform monitored at the point is a train of
square pulses, whose fundamental frequency is coincident
with that of the edge oscillation. Therefore, the spectral peaks

FIG. 5. Spatiotemporal behaviors of the calculated f -mode
waveforms for A = 0.7 V. Brighter points exhibit higher line
voltages. Forward- and backward-going edges are designated f and
b, respectively.

corresponding to the fundamental and high-order harmonics
may be observed in the spectrum. We monitored the fifth cell,
where the duty cycle of the pulse train is moderate for all of
the input dc voltages.

Figure 7(a) shows the spectral peaks calculated by the
Fourier transforms of the temporal waveforms monitored at
the fifth cell for different input dc voltages. The horizontal
and vertical axes measure the input dc voltage and frequency,
respectively. The four sequences of spectral peaks are observed
in Fig. 7(a), each corresponding to the harmonics up to the
fourth order. For A < 0.6 V, the oscillation frequency de-
creases as A increases, depending on the turnaround time. On
the other hand, the oscillation frequency does not significantly
depend on A for values above 0.6 V, being sufficiently greater
than Vv , because a considerable increase in ID protects the
frequency from the impact of the increasing dc voltage.

In order to model an external perturbation, the transmission
equation is modified by a 2N vector p(t) with ε � 1 as

dX
dt

= F(X) + εp(t). (12)

We investigated the situation in which only the Mth cell
was externally perturbed by a sinusoidal voltage with an
angular frequency of ω1. Then the components of p are given
as pN+M = sin(ω1t) and pi = 0 for the other values of i.
According to the phase-reduction scheme [13], by defining
the phase φ of the limit cycle for the angular frequency to
be ω, the temporal evolution of the phase difference between
the limit cycle and the sinusoidal perturbation ψ = φ − ω1t is
given by [13]

dψ

dt
= 
ω + �(ψ), (13)

�(ψ) = 1

2π

∫ 2π

0
dθ Z(θ + ψ)T q(θ ), (14)

where 
ω = ω − ω1 and q(ω1t) = p(t). The identity of the
edge oscillation is represented by the 2π -periodic 2N -vector
function Z(φ) = ∇Xφ, which is called the phase sensitivity.
When the right-hand side of Eq. (13) becomes zero for a
certain ψ and d2ψ/dt2 < 0, ψ becomes time invariant for a
sufficiently large period of time. Therefore, the edge oscillation
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FIG. 6. Four temporal slices in Fig. 5 at the timings of (a) 0.5 μs, (b) 0.7 μs, (c) 0.8 μs, and (d) 1.15 μs.

is phase locked with the sinusoidal perturbation. Hence, when
the variation of �(ψ) with respect to ψ increases, the locking
frequency range 
ω also increases. Thus, for measuring
the efficiency of external synchronization, we consider the
quantity defined by


� =
∣∣∣ max

0<ψ�2π
�(ψ) − min

0<ψ�2π
�(ψ)

∣∣∣. (15)

The phase sensitivity is numerically obtained by solving the
adjoint of the linearized Eq. (9) with the initial condition
that the eigenvector corresponds to the eigenvalue 1 of the
transpose of the state-transition matrix of the edge oscillation
[17,18].

By evaluating 
� for different input voltages and all of the
perturbing cells, we obtain Fig. 7(b) by setting ω1 to 2ω. At
present, we are only required to elucidate the relative intensity
of 
�, so we have omitted the legend for clarity. The brighter
region indicates the greater 
�. The spatial dependence of 
�

is significant. Consistent with the behavior of the turnaround
distance of the edge oscillation, cells exhibiting a greater

� become distant from the input as the input voltage A

increases. The magnitude of 
� depends mainly on A. As
the input dc voltage increases, regions exhibiting greater and
lesser 
� appear alternately. Moreover, there are two peaks
with the magnitude of 
� at different input voltages. For
example, points M1 and M2 correspond to two such peaks
for A = 0.45 V. As mentioned above, the temporal waveform
monitored at a fixed cell is a train of square pulses. Moreover,
its duty cycle depends on the monitoring cell, which is a

unique cell that exhibits a 50% duty cycle. Then there are two
spectrally equivalent cells, for which the ratio of the “on-time”
duration to the total period observed at one of the two cells
is equal to that of the “off-time” duration to the total period
observed at the other, both in front of and behind that cell.
The two-peak property of the magnitude of 
� is because the
oscillating edge correlates most with the external perturbation
at two spectrally equivalent cells.

IV. EXPERIMENTS

The test TD line was built on a standard breadboard. The
shunt electronic switches were NEC 1S1763 Esaki diodes.
Series inductance, resistance, and shunt capacitance were
implemented using 1.0-μH inductors (TDK SP0508), 1.0-�
resistors (Tyco Electronics CFR25J), and 470-pF capacitors
(TDK FK18C0G1), respectively. First, we evaluated the
spectral properties of the test line by connecting the input end
to a dc voltage source and monitoring the voltage at the fifth cell
using a spectrum analyzer (NEC Specat).2 The result is shown
in Fig. 8. In the region A � 0.5 V or 0.55 V � A � 0.60 V,
the spectral peaks are effectively simulated by the calculated
ones shown in Fig. 7(a). Therefore, the edge oscillation may be
supported by the f mode in those regions. For other input dc
voltages, the frequency corresponding to the lowest frequency
peak is approximately twice as high as those expected in
Fig. 7(a). Therefore, the edge oscillation can be supported
by the s mode. Two mutually synchronized edges contribute
to this oscillation mode. The turnaround distance of each edge
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FIG. 7. Calculated properties of the test TD line. (a) Spectral peaks as a function of input dc voltage and (b) dependence of the phase
sensitivity on space and input dc voltage. The spectral peaks are obtained by the Fourier transform of temporal waveforms monitored at the
fifth cell. The dotted vertical line in (b) represents a slice at 0.45 V. Points M1 and M2 specify the peak positions for 0.45 V.

is approximately half of that of the single edge in the f mode;
therefore, the frequency of the s mode becomes twice as high
as that of the f one. Refer to Figs. 13 and 14 and their
captions for a detailed description. The s mode in Fig. 7(a)
cannot be accurately simulated by numerical calculations; this
discrepancy may be because the calculation time is insufficient
to identify the oscillation mode to which the line finally settles.
Moreover, performance uniformity and noises in employed
devices may influence the mode to which the edge oscillation
should settle.

In order to examine the transient oscillation modes, we
applied a square-pulsed voltage instead of dc to the input
end. Figure 8(b) shows the result for a pulsed voltage having
a duration of 266 μs. There are no clear spectral peaks at
amplitudes lower than 0.5 V. The f mode may not establish
sufficiently steady edge oscillations to exhibit high-quality
factors at the spectral peaks. On the other hand, the f mode,

which cannot be detected while inputting a dc voltage, coexists
with the s mode at amplitudes higher than 0.5 V. The f mode
may dominate the edge oscillation initially after excitation,
and the s mode may then gradually substitute the f mode as
time progresses.

Figure 9 shows the mode that dominates the edge oscillation
for different pulse durations. The spectral intensities are
obtained by the Fourier transform of the temporal waveform
monitored at the fifth cell. Because of their small separation
in frequency, the correlation between the fundamental com-
ponent of the s mode and the second-harmonic component of
the f mode must determine the mode that should dominate
the edge oscillation. Squares and circles represent the spectral
intensities at the fundamental frequency of the s mode and the
second-harmonic frequency of the f mode, respectively, for
an input amplitude of 0.7 V. The horizontal axis measures the
pulse frequency, which is 0.8 times the inverse of the pulse

FIG. 8. Dominant oscillation modes in TD lines. Spectral intensities are plotted for several input voltages. (a) Spectrum measured with
dc inputs and (b) spectrum measured with pulsed inputs. Spectral intensities were obtained by the Fourier transform of temporal waveforms
monitored at the fifth cell. We identify which mode dominates the spectral peaks by the fundamental frequencies.
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FIG. 9. (Color online) Dependence of peak intensities on pulse
frequency. Circles: the spectral intensities at the second-peak fre-
quency of the f -mode, squares: those at the first-peak frequency
of the s-modes. The horizontal axis measures the pulse frequency
defined by 0.8 times the inverse of the pulse duration.

duration. (The duty cycle was set to 80%.) We can observe
that the s mode dominantly supports the edge oscillation for
large pulse durations that correspond to a pulse frequency
of <4 kHz. On the other hand, for pulse frequencies higher
than 10 kHz, the f -mode intensity becomes greater than that
of the s mode. These observations reinforce our expectation
mentioned above.

In order to examine the external synchronization properties,
we measured the locking range of frequency for sinusoidal
perturbation. Two input voltages at which f -mode oscillation
was observed for a dc voltage input were selected. A single
cell was perturbed by a sinusoidal voltage. The frequency
of sinusoidal perturbation was swept around the second-
harmonic frequency of the f -mode oscillation to ensure
consistency with the procedure used to obtain Fig. 7(b).
The locking range was obtained by measuring the range

of perturbation frequency at which the second-harmonic
frequencies of the f -mode oscillation were in synchronization
with the external frequency. By changing the perturbed cell,
we obtained the spatial dependence of the locking range. The
results are shown in Fig. 10(a). In Fig. 10(a), we observe that
external synchronization is more efficient at 0.45 V than at
0.55 V. Moreover, the locking range becomes maximum at the
10th–11th and the 18th–19th cells for 0.45- and 0.55-V inputs,
respectively. The highly efficient cells shift toward the far end
as the input amplitude increases. The efficiency of external
synchronization is significantly degraded near the sixth cell
for a 0.45-V input, thereby resulting in the presence of two
peaks. Qualitatively, the locking range of frequency must be
effectively predicted by 
�. To examine the similarity, we
show two vertical views in Fig. 7(b) for A values of 0.40
and 0.56 V. The two-peak property is clearly observed at
A = 0.40 V, together with the spatial shift of the cell position
by A. These properties effectively simulate the measured ones.

To detect the spatiotemporal behavior of the edge os-
cillation, we attempted to synchronize it with sinusoidal
perturbation having a sufficiently low phase noise to measure
the behavior. The line edge was excited by a 0.7-V square
voltage with a duration of 266 μs. The perturbing signal was
generated by an arbitrary waveform generator NF WF1974
and it was injected at the 17th cell, where 
� was supposed
to be maximum. The line voltages along the test TD line
were detected by an Agilent 1134 active probe, and they were
monitored in the time domain using an Agilent DSO90254A
oscilloscope.

First, we established external synchronization by setting the
frequency of perturbation to 2.05 MHz, which corresponded
to the second-harmonic frequency of the f mode. The
measured spatiotemporal voltages are shown in Fig. 11, and
the brighter points correspond to higher voltages. The f -mode
edge oscillation was successfully observed. Moreover, the
calculated results shown in Fig. 5 are in good agreement
with the measured ones. The forward and backward voltage
edges are designated f and b, respectively. The voltage edge

FIG. 10. (Color online) Efficiency of external synchronization. Spatial dependence of (a) the measure frequency locking range and (b) the
numerically obtained 
�.
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FIG. 11. Spatiotemporal behaviors of measured f -mode wave-
forms. The brighter points exhibit higher line voltages. The perturba-
tion was applied at the 17th cell. Forward- and backward-going edges
are designated f and b, respectively.

propagated from the input end to the 20th cell, and then it
returned to the input end; the turnaround time was estimated
to be 1.0 μs. As mentioned above, the forward edge was
carried by an oscillatory mode whose speed is supposed to
be lower than c0 in Eq. (8). In addition, this slow propagation
was predicted heuristically by the property of a TD line in
which the short-wavelength waves propagated more slowly
than the long-wavelength ones because of dispersion [11].
We observed that the forward edge was much slower than
the backward one by monitoring five temporal waveforms at
the cells numbered n = 10, 11, 12, 13, and 14, as shown in
Fig. 12. The rising and falling pulse transients result from
the forward- and backward-moving voltage edges (the rising
transient progresses from n = 10 to n = 14, whereas the
falling transient progresses in the reverse direction). Therefore,
we can obtain their speed by estimating the elapsed time that
is required to pass through the cells (
tf,b in Fig. 12). We
observed that 
tf > 
tb. The actual speeds of the forward and

FIG. 12. (Color online) Temporal waveforms monitored at fixed
cells. Five waveforms, monitored at n = 10, 11, 12, 13, and 14, are
shown for a 1-μs duration, where n is the cell number. Rising and
falling pulse transients, bundled with f and b, result from the passing
forward and backward voltage edges.

FIG. 13. Spatiotemporal behavior of the measured s-mode os-
cillating edge. Brighter points exhibit higher line voltages. The
perturbation was applied at the 17th cell. The location of point P ,
where two voltage edges originate, is shown by the horizontal dashed
line.

backward edges were estimated to be 2.5 × 107 and 4.2 × 107

cells/s, respectively.
Second, another external synchronization was established

by setting the frequency of perturbation to 2.21 MHz, which
corresponds to the fundamental frequency of the s mode.
Figure 13 shows the measured spatiotemporal voltages, and the
s mode was successfully detected. Two mutually synchronized
voltage edges, each of which originates at a fixed point, are
shown by the horizontal dashed line in Fig. 13. The turnaround
time is estimated to be 0.45 μs, which is half that of the f

mode. In Fig. 13, we observe that the turning point of a single
edge is near the 20th cell.

Figure 14 illustrates the s-mode edge oscillation. For the s

mode, the voltage steadily oscillates across Vp at a fixed point
on the line, which is shown as P in Fig. 14. Then a voltage
edge may originate at P and propagate forward at the time at
which the voltage at P becomes higher than Vp. In contrast,
when the voltage at P becomes lower than VP , a voltage
edge can originate at P and start propagating backward. Each
edge oscillation is a limit cycle and can establish mutual
synchronization with the other; therefore, the two voltage

FIG. 14. Secondary oscillation mode of the pulse edge in a TD
line. Time progresses from (a) to (d). The approaching edges in
(d) arrive at point P again as in (a), resulting in edge oscillation.
The horizontal axis measures the spatial dimension, which must be
originally discrete.
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FIG. 15. Traveling fronts in TD lines for c ∈ (c0,1/
√

LC). (a)
Critical points in the phase plane for c ∈ (c0,1/

√
LC) and (b)

dependence of the speed of the traveling front on the line inductance.
The curve in (b) represents the minimum speed c0 defined by Eq. (8).
Circles show the numerically estimated speeds. Lth is defined by
CR/ |G1|.

edges are eventually phase locked. Figure 14 illustrates this
process. For clarity, the line voltage at P is shown to be time
invariant. Two oscillating edges originate at P in Fig. 14(a).
One of the two edges starts propagating backward toward the
input end, and the other propagates forward, as in Fig. 14(b).
The backward voltage edge reaches the input end and is
reflected. Almost simultaneously, the forward voltage edge
turns to propagate backward [Fig. 14(c)]. Then both the edges
propagate to point P [Fig. 14(d)] and recover their initial states
shown in Fig. 14(a). Because the s mode results from a mutual
synchronization, its phase noise may become smaller than that
of the f mode [12]. Because of the reduced turnaround time,
the oscillation frequency of the s mode becomes higher than
that of the f mode for a given input dc voltage. Moreover,
to establish a mutual synchronization between the two edges,
oscillation frequencies must be approximately equal to each
other; therefore, the s mode exhibits an oscillation frequency
that is approximately twice as high as that of the f mode.

V. CONCLUSION

The external synchronization of the oscillating edge(s) on
a TD line was investigated using numerical and experimental
methods. The predictions made by the phase-evolution equa-
tion were validated by the experimental observations. More-
over, we successfully detected the spatiotemporal behaviors of
oscillating edges carried by both the f and the s modes. The
edge oscillation has noteworthy properties such as the voltage-

controlled oscillation frequency and spatial extendedness. This
study lays the foundation for the description of more complex
behaviors of edge oscillations on TD lines.

APPENDIX: PROPERTIES OF TRAVELING
FRONTS AND SHOCK WAVES

In this Appendix, the condition required to develop either a
traveling front or a shock wave is derived together with several
results of numerical calculations that validate the analytical
ones.

When CR + LdID/dV > 0 for all u ∈ (0,1), the system
satisfies all of the assumptions required in Theorem 1 of [14]
for c ∈ (c0,1/

√
LC); therefore, it has been shown that a

unique traveling front is supported by a TD line. Figure 15(a)
shows the corresponding phase portrait. Because ID is finite
in u ∈ (0,1), we can construct a line v = v̄, where g < 0.
Moreover, g becomes positive on the u axis [g(u,0,c) =
RID(Vthu)/Vth(1 − c2LC) > 0]. Then there must be a trajec-
tory starting from P1 at ξ = −∞ and reaching P2 at ξ = +∞,
which corresponds to a front transition from V = Vth to 0.0
(t becomes ∓∞ at ξ = ±∞). Figure 15(b) shows the
calculated speed of the front for different values of L, with
1/

√
CL being kept fixed at 4.5 × 10−7 cell/s. ID was tuned

such that the maximum current in (0, Vth) becomes 1.0 mA.
Moreover, R, Vth, and V0 were set to 0.4 �, 0.5 V, and 1.0 V,

FIG. 16. Traveling fronts in TD lines for c > 1/
√

LC. (a) Critical
points in the phase plane for c > 1/

√
LC and (b) dependence of the

speed of the traveling front on the line inductance. Circles show the
numerically estimated speeds in (b).
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respectively. The curve and circles represent the minimal
speed c0 defined by Eq. (8) and the numerically estimated
speeds, respectively. The uppermost inductance Lth satisfies
CR + LthG1 = 0, where c0 = 1/

√
CL. Interestingly, each nu-

merically obtained front exhibits the lowest realizable speeds.
For larger c, there is no trajectory that directly connects P1

and P2. However, when the line permits a single solution for
u = um ∈ (0,1) for CR + LdID(Vthu)/dV = 0, two trajecto-
ries u±(ξ ) can be present, and we can construct a trajectory
us(ξ ), such that us = u− for u ∈ (0,um) and us = u+ for
u ∈ (um,1). Figure 16(a) shows the trajectories in the phase
plane. The phase plane is divided into three parts by the
function v = v0(u), which is defined by

v0(u) = RID(Vthu)/Vth

c (CR + LdID(Vthu)/dV )
, (A1)

where g vanishes. On the basis of the assumption, v0

becomes ±∞ for u = um ∓ 0. The region in the phase plane
sandwiched by the two branches of v0 exhibits g < 0, whereas
g becomes positive for the remaining regions except for v0.
For c > 1/

√
LC, P1 and P2 are an unstable node and a

saddle, respectively. The solid curves show u±. It is easily
seen that both the main and the side directions of P1 are
contained in the region g > 0. Moreover, the stable direction
of P2 is contained in the region g < 0. Because u′

± increases
near um, us describes a shock wave. Figure 16(b) shows the
calculated speed for line inductances that are larger than those
used to obtain Fig. 15(b). For these inductances, we observed
a voltage edge with a very steep transient, whose speed
was greater than 1/

√
LC and depended linearly on the line

inductance.
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