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In a highly interdependent economic world, the nature of relationships between financial entities is becoming
an increasingly important area of study. Recently, many studies have shown the usefulness of minimal spanning
trees (MST) in extracting interactions between financial entities. Here, we propose a modified MST network
whose metric distance is defined in terms of cross-correlation coefficient absolute values, enabling the connections
between anticorrelated entities to manifest properly. We investigate 69 daily time series, comprising three types
of financial assets: 28 stock market indicators, 21 currency futures, and 20 commodity futures. We show that
though the resulting MST network evolves over time, the financial assets of similar type tend to have connections
which are stable over time. In addition, we find a characteristic time lag between the volatility time series of the
stock market indicators and those of the EU CO2 emission allowance (EUA) and crude oil futures (WTI). This
time lag is given by the peak of the cross-correlation function of the volatility time series EUA (or WTI) with that
of the stock market indicators, and is markedly different (>20 days) from 0, showing that the volatility of stock
market indicators today can predict the volatility of EU emissions allowances and of crude oil in the near future.
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I. INTRODUCTION AND METHOD

In the study of complex systems, there has been much
work demonstrating the usefulness of extracting the underlying
structure from the correlations found in statistical data [1–14].
Any means of selecting statistically reliable information from
correlation matrices has been dubbed a “filtering procedure”
[8]. Useful examples of filtering procedures that use a correla-
tion matrix from return time series are hierarchical clustering
[1–7], procedures based on the random matrix theory [10–14],
and networks from minimum spanning trees [1–5]. Correlation
structure studies are not limited only to stock return time
series [1–3] but also extend to quasisynchronously recorded
time series of worldwide stock exchange market indices [2]
and stock return volatility increments [7].

Financial time series can include not only stock price but
also many other types of data, such as commodities price,
treasury yield, market index, and so on. Investigation of mul-
titype quasisynchronous financial data may yield insights into
the interdependent relationships of markets and commodities.
Moreover, a relationship map of financial assets can highlight
the movement of speculative capital.

We investigate 69 daily financial series from the time
period spanning January 2007 to September 2011. The data
set includes 21 currency futures, 20 commodity futures which
are taken from Ref. [15], and 28 stock market indicators which
are taken from Ref. [16] (see the Appendix).

Recently, papers have shown the usefulness of the cor-
relation structure described by an ultrametric space and a
corresponding hierarchical organization for financial return
time series [1–3]. The approach requires the definition of
a metric distance. Because correlation does not fulfill the
three [17] axioms that define a metric, the aforementioned
papers use the Mantegna-Sornette distance defined by

dij = √
2(1 − ρij ) (1)

for each pair of elements i and j , where ρij is the correlation
coefficient of the two time series given by [18]

ρij ≡ 〈YiYj 〉 − 〈Yi〉〈Yj 〉√(〈
Yi

2
〉 − 〈Yi〉2

)(〈
Yj

2
〉 − 〈Yj 〉2

)

= 〈(Yi − 〈Yi〉)(Yj − 〈Yj 〉)〉
σYi

σYj

, (2)

where 〈· · · 〉 denotes the mean.
This distance dij fulfills the three axioms [17] of a metric:

(i) dij = 0 if and only if i = j , (ii) dij = dji , and (iii) dij �
dik + dkj [1–3].

In this work, we make a modification to the metric above,
based on the reasoning that if two time series have a very
large negative correlation, they should still be considered close
to each other in ultrametric “correlation” space, since this
would indicate a strong connection, regardless of the sign.
Likewise, weak correlations of either sign indicate a weaker
connection. On this basis, strong correlations of either sign
should be considered closer than weak ones.

The value of this modification can be readily seen in
situations where two entities have strong anti correlations,
as has been observed in the relationship between bond and
stock markets (e.g., between UK gilts and the FTSEMIB),
between stocks and currency futures, and between industries
and their inputs (e.g., the price of oil and the value of airline
stock) [19–22]. Here, use of the conventional Mantenga-
Sornette metric would likely result in any of these two entities
manifesting on opposite sides of a tree, even though we know
them to be very closely linked. Use of our generalized metric
ensures that such entities will be placed nearby when such
appropriately strong relations exist.

For this reason, we replace the Pearson correlation co-
efficient in Eq. (1) with the absolute value of the Pearson
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correlation coefficient, defining a new distance as

dij = √
2(1 − |ρij |) (3)

with the ρij defined as before in Eq. (2) as the correlation
coefficient of assets i and j .

This equation also fulfills three axioms of a metric distance
for ρ ∈ (−1,1]. Accordingly, because the set of assets con-
sidered has no cases such that ρij = −1, the first axiom is
satisfied on this set in that dij = 0 if and only if the correlation
is total (ρ = 1, meaning that the stocks perform the same
stochastic process). The second axiom (that of symmetry) is
trivially satisfied because ρij = ρji by definition of the Pearson
correlation coefficient. For the validity of axiom (iii), consider
three time series Yi , Yj , and Yk , which have means equal to 0
and standard deviations equal to 1. All times series have the
same length. In order to prove dij � dik + dkj , first, we define
two new time series as

Y ′
i ≡

{
Yi, if ρYi,Yk

� 0
−Yi, if ρYi,Yk

< 0) , (4)

Y ′
j ≡

{
Yj , if ρYj ,Yk

� 0
−Yj , if ρYj ,Yk

< 0 . (5)

So we can rewrite dik + dkj of distance Eq. (3) by using Y ′
i

and Y ′
j as
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√
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2
(
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∣∣) ≡ dij . (10)

Thus, dik + dkj � dij , and our metric satisfies the three axioms
of a metric.

For each of the 22 financial time series, we calculate the
return time series, defined as the change of logarithmic price
of time series Yi(t),

Ri(t) ≡ ln[Yi(t + 1)] − ln (Yi(t)). (11)

Here Yi(t) is the daily price time series of financial asset i.
For each of the 22 time series, we also calculate the volatility
time series which is defined simply as the absolute value of
the return |Ri |

Vi(t) ≡ |Ri(t)| = | ln[Yi(t + 1)] − ln (Yi(t))|. (12)

Additionally, we define the cross-correlation for our anal-
ysis. Consider two time series {yt } and {y ′

t }. The cross-
correlation between {yt } and {y ′

t } is given by

Cy,y ′ (n) ≡ (yt − μ)(y ′
t+n − μ′)/(σσ ′), (13)

where μ and μ′ are the respective means and σ and σ ′ are the
respective standard deviations of the series {yi} and {y ′

i}.
The efficient market hypothesis, a basic tenet of modern

economics, states that markets are approximately efficient,
meaning that one cannot consistently achieve returns better

than the market because all information about an asset is
already incorporated into that asset’s price [9,23]. As a result,
it is believed that the long-range memory cannot exist in any
return time series. Suppose that long-range autocorrelations
exist in a return time series: investors may then obtain benefits
by using information, which stands in contradiction to the
principle of an efficient market. Consider the cross-correlation
function [Eq. (13)] between return time series of asset i and
asset j . Any significant cross-correlations CRi,Rj

(n) in n �= 0
of two return time series would also contradict the existence of
an efficient market. Therefore, we can assume that significant
cross-correlations CRi,Rj

(n) will exist only for the case n = 0.
However, because trading occurs at different times in

different cities, some markets are open when others are closed.
The effect of nonsynchronous trading in time-series analysis
has been well stated [24,25]. In fact, the highest degree of
correlation between different markets may be detected at a
1-day time lag because of the time difference.

Therefore, significant cross-correlations CRi,Rj
(n) may also

exist for n = −1 or n = 1. Additionally, we only care about
the magnitude and not the sign of cross-correlation. Thus, we
define the absolute correlation coefficient as

ρij = max
(∣∣CRi,Rj

(n)
∣∣) (14)

for n = −1,0,1.
In volatility time series, long-range correlations CVi,Vj

(n)
have been shown to exist [10–13]. It follows that significant
cross-correlations CVi,Vj

(n) may exist for n � 0 or n 	 0.
Additionally, the existence of long-range negative correlations
between past returns and future volatility [26,27], known as
the leverage effect, has also been reported. This correlation
is moderate and decays exponentially over the long term.
However, while both of these types of correlations may help
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FIG. 1. (Color online) The cross-correlation function C(n) of
volatility (a) and return (b) time series between the DJIA and
FTSE100. Both show statistically significant correlation coefficients
at their maxima near time lag = 0 (dotted curve). Solid lines show the
LOWESS (locally weighted scatter plot smoothing) values of C(n),
smoothed over a span of 30 days.
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predict the financial risks on a long-range time interval, we
point out that neither the negative correlation between returns
and volatilities nor long-range autocorrelation of volatility can
be used to obtain benefits. This is because the price volatility
does not include the direction of price changes, and so neither
contradicts the efficient market hypothesis.

As a sample, the correlation functions of volatility CVi,Vj
(n)

and return CRi,Rj
(n) between the FTSE100 and DJIA are

shown in Fig. 1. The peaks (highest correlations) of both
correlation functions are near n = 0; however, the correlation
function for returns is fast decaying, quickly approaching 0
for n �= 0, while the volatility correlation function is slow
decaying with CVi,Vj

(n) > 0 for n > −50 and n < 50.
We now turn our attention to the stability and structure

of minimal spanning trees (MSTs), which are made using the
distance defined in Eq. (3). Following our discussion on MSTs,

we will show the correlation function graphs of volatility
that relate the correlation C(n) to the time-lag n, specifically
focusing on the value of n that gives the LOWESS (the
smoother which uses locally weighted polynomial regression)
equal to its maximum value. Here, the LOWESS is defined
by a complex algorithm, proposed by W. S. Cleveland [28] in
1981. For each value, we define 10th nearest neighbor values
as the local region, which is used to calculate the LOWESS
value.

An MST is defined as the set of n − 1 links that connect
a set of n elements in the smallest possible total distance
[29]. MSTs have been used in prior papers [1–5] to connect
financial data, illustrating the MST’s usefulness in highlighting
the interactions between a number of financial time series.
In Fig. 2, we find that, although MSTs show significantly
different structures in different calendar years, the same type
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FIG. 2. (Color online) The MST obtained from the absolute correlation coefficients |ρij | of the set of 68 return time series during in
individual calendar years (a) 2007, (b) 2008, (c) 2009, and (d) 2010. Red indicates commodity futures, blue indicates currency futures, and
green represents stock market indicators. See Appendix for a listing of symbols and their meanings.
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FIG. 3. (Color online) The MST, similar to Fig. 2, but for the
longer time span January 2007 to September 2011. See the Appendix
for symbol definitions.

of financial assets tend to group together consistently over
time.

We also find that the stock market indicators (blue in
Fig. 2) and currency futures (green) groups show stronger
interconnections than the commodities (red) group. For stock
market indicators and currency futures, financial factors are
the predominant reason for price changes. On the other
hand, commodity futures may be just as much affected
by investment as they are by actual supply and demand.
Speculation in commodity futures may alter pricing in a way
that contradicts the law of supply and demand. The existence
of such contradictions depends on commodity type and the
calendar year and therefore serve to decrease the stability of
the MST. If this reasoning is correct, increasing the time span of
the time series for cross-correlation should make the observed
connections more stable. In Fig. 3, we show the MST using
the time series from January 2007 to September 2011. We note
that only two coal futures are not connected to the commodity
group and the stability is greater than for single-year time
series.

In Fig. 4, we describe the cross-correlation functions of the
volatility time series. We show the cross-correlation function
of main stock market indicators with EUA in Fig. 4(a) and
with WTI in Fig. 4(b). A systemic time shift between EUA or
WTI and stock market indicators can clearly be seen. Since
the maximum cross-correlation coefficient in most functions
is not much greater than 0.2, the connections are not so strong,
but certainly they are significant. Further tests of Granger
causality also show that the volatility of stock indices is useful
in forecasting the volatility of EUA and WTI approximately
20 to 120 days in advance.

As mentioned before, the correlation function of volatility
is a slow-decaying function. It is much more slowly decaying
than the correlation function of return time series (see Fig. 1),
meaning that a long-range cross-correlation relationship exists.
If we consider significant cross-correlations between different
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FIG. 4. (Color online) Cross-correlation function C(n) of volatil-
ity daily time series between 5 main stock market indices and (a) EUA
(European carbon emissions permits) or (b) WTI (light sweet crude
oil). Red lines indicate the locally weighted scatter plot smoothing
values (LOWESS) of C(n). Graphs show systemic time shift for the
highest cross-correlation value. This time shift is observed in most
stock markets. (c) The average time-lag between EUA, WTI, and
28 stock market indicators, with error bars showing the standard
deviations. (d) The average time lag between the DJIA and other
27 stock market indicators, with error bars showing the standard
deviations. The time lags (in days) are calculated from the time lag n

of highest LOWESS values.

volatility time series to be an information transfer between
different assets, the time lag corresponding to the highest
values of correlation gives the time lag of that information
transfer. It is worth pointing out that the time lag between each
pair of stock markets is approximately 0, such as the time lag
between DJIA and other 27 stocks indicators are shown in
Fig. 4(d). We show a simple summary of such time lag in
Figs. 4(c) and 4(d) If there is information affecting stock
markets at a time of 0 days, the EUA and WTI crude oil
futures will be affected by this information roughly 30 and
90 days later, respectively. Because both crude oil and the
ability to emit carbon are major inputs in the world economy,
the existence of this time lag can have strong implications in
terms of potential economic feedback loops.

II. DISCUSSION

The drawn MSTs are reflective of a number of easily
reasoned underlying economic relationships, both through the
stability and specificity of the links.

As expected, we find a stable tendency for like financial
assets to cluster. Even during the otherwise anomalous 2007
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TABLE I. Stock market indicators.

Symbol Meaning Notes Symbol Meaning Notes

000001.SS SSE Composite Index Shanghai stocks ISEQ Irish Stock Exchange Quotient
AEX Amsterdam Exchange Index Dutch securities JKII Jakarta Islamic index
AORD All Ordinaries Australian stocks KLSE Kuala Lumpur Stock Exchange
ATX Austrian Traded Index KS11 Seoul Composite (South Korea)
BSESN SENSEX Bombay stocks MXX Mexican Stock Exchange IPC
BVSP Bovespa Index São Paulo stocks N225 NIKKEI 225 Tokyo stocks
CAC CAC 40 French stocks NZ50 NZX 50 Index New Zealand index
DJIA Dow Jones Industrial Average American index OMX OMX Stockholm 30
FTSE FTSE 100 London stocks OMXC20 OMX Copenhagen 20
FTSEMIB FTSE MIB Italian stocks OSEAX Oslo Børs All Share Index
GDAXI Deutscher Aktien Index German blue chips STI Straits Times Index Singapore stocks
GSPTSE S&P/TSX Composite Index Toronto stocks SSMI Swiss Market Index
HSI Hang Seng Index Hong Kong stocks TA100 Tel Aviv 100
IBEX IBEX 35 Spanish stocks TWII TSEC weighted index Taiwanese stocks

subprime lending crisis and 2008 global financial crisis, this
clustering tendency is preserved. This indicates the existence
of strong stable connections, which come out of the strong
cross-correlations, reflective of basic economic features and
interactions. These connections are stable over time and not
affected by market conditions.

On the other hand, certain portions of the MSTs are
consistently unstable, like those relating to coal. This also
may be reflective of economic relationships. Unlike other
commodities like oil, speculation in coal is limited, so the
movement of the coal futures may be simple supply and
demand, as opposed to driven by speculation. Coal’s lack
of strong connections to other commodities may be a result
of investor’s low speculation in stock when building their
commodities portfolios.

Certain connections in our MSTs reveal underlying re-
lationships that are created by regulation. For example, we
find that EUA futures mostly connect with the base electricity
and natural gas futures, which show stable correlations among
them. EU allowance permits, as a part of the European Union
Emission Trading Scheme, are either allocated or auctioned
and allow a firm to emit a designated amount of carbon dioxide
[30]. Since power generation accounts for about one-quarter of
total emissions of carbon dioxide, and natural gas is the most

resource of electricity generation in UK, the stable connections
of EUA to UK base electricity futures and UK natural gas
futures in our MST graph is reasonable.

Also intuitive is the location specific clustering of stock
market indices. AORD, an Australian index, consistently
appears closely linked to those of nearby countries like New
Zealand, Japan, and China. Similarly, the HSI not only keeps
connections with most of the Asian stock indices like the JK11,
000001.SS, BSESN, and TWII, but also keeps connections
with or otherwise stays closely connected to indices from
America and Australia. Thus, the MST created reflects the
common knowledge that Hong Kong is the financial center of
Asia.

One benefit of the novelty of our approach is that it connects
indices of dissimilar type, yielding new insights. The index that
connects most to coal is OSEAX, that of Norway. Norway is
rich in oil and natural gas, which explains why the Norway
stock index appears as the most “coal-like” of the national
indices. Similarly, the most “currency-like” of the national
stock indices seems to be AEX, the Dutch securities index.

We also note the relationship between the centrality in the
network and real-world geographical knowledge. SOK/SEK
is a currency future that is among the furthest from the center.
This is intuitive, since currency trading between Norway and

TABLE II. Commodity futures.

Symbol Meaning Notes Symbol Meaning Notes

Barley Western Barley Futures Gasoline RBOB Gasoline Futures
BrCrude Brent Crude Futures North Sea crude oil HeatOil Heating Oil Futures
Canola Canola Futures NatGas UK Natural Gas Futures
CCI Consumer Confidence Index Futures PeakElec UK Peak Electricity Futures
Cocoa Cocoa Futures RBCoal Richards Bay Coal Futures
Cotton Cotton No. 2 Futures RCoal Rotterdam Coal Futures
FCOJA FCOJ-A Futures Florida orange juice RJ/CRB Thomson Reuters/Jefferies assorted commodities

CRB Index
Electric UK Base Electricity Futures Sugar Sugar No. 11 Futures
Coffee Coffee “C” Futures WTI West Texas Intermediate Texas crude oil
GasOil Gas Oil Futures EUA EU emission allowance
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TABLE III. Currency futures.

Symbol Currency Traded in units of

AUD Australian dollar CAD, JPY, NZD, USD
CAD Canadian dollar JPY
EUR Euro AUD, CAD, GBP, JPY
GDP British pound AUD, CAD, JPY, NOK, NZD, ZAR, SEK
JPY Japanese yen
NOK Norwegian krone JPY, SEK
NZD New Zealand dollar JPY, USD
SEK Swedish krona JPY
ZAR South African rand

Sweden has little to do with financial activity in the rest of the
world. The same principle applies to the trading of Euros with
the British pound, shown as EUR/GBP. The Australian dollar,
on the other hand, plays a central role in its exchanges with far
away currencies like the US dollar, Euro, Japanese yen, and
Canadian dollar.

III. CONCLUSION

In this paper, we have analyzed the correlation function
of return and volatility time series, constructed MSTs based
on return time series, and found consistent time lags in the
correlation functions of the volatilities. From these analyses,
we have two main conclusions. (i) The stability of MST
structure clustering between like commodities reflects a basic
rule of economic activity, whereby the interaction between
economic actors is not easily affected by capital movement.
The method of absolute cross-correlation-coefficient-based
MSTs has strong implications in the ongoing debate about
the relationships of different financial commodity time series.
(ii) We find that a time lag of correlation functions of volatility
appears between stock markets and EUA and WTI. From this
finding, we hypothesize that there may be systemic differences
in the spread of financial risk, most often quantified as volatil-
ity. In other words, as concerns risk, different types of markets
may have different sensitivities to economic information and
other influencing factors. It would be interesting, from a
theoretical point of view, to generalize this time lag to predict

the financial risks on a much longer time interval. However,
much more would need to be understood first, such as the
properties and mechanisms for this time lag. Hence, further
empirical study is needed first. We endeavor to address this
question more in future work.
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APPENDIX: SET OF DATA

The data under investigation includes 28 stock market
indicators, 21 currency futures, and 20 commodity futures.

The stock market indicators investigated are shown in
Table I.

The commodity and currency futures investigated are
all traded in the markets of intercontinental exchange. The
commodity futures are shown in Table II.

Additionally, the currency futures in the form A/B refers to
the value of currency A in units of currency B. For example,
USD/EUR would be the value of US dollars in units of Euros.
The currency futures investigated are shown in Table III.
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