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Graph clustering with local search optimization: The resolution bias of the objective
function matters most
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Results of a recent comparative experimental assessment of methods for network community detection applied
to benchmark graphs indicate that the two best methods use different objective functions but a similar local
search-based optimization (LSO) procedure. This observation motivates the following research question: Given
the LSO optimization procedure, how much does the choice of the objective function influence the results and
in what way? We address this question empirically in a broad graph clustering context, that is, when graphs are
either given as such or are k-nearest-neighbor graphs generated from a given data set. We consider normalized
cut, modularity, and infomap, as well as two new objective functions. We show that all these objectives have a
resolution bias, that is, they tend to prefer either small or large clusters. When removing this bias, by forcing
the objective to generate a given number of clusters, LSO achieves similar performance across the considered
objective functions on benchmark networks with built-in community structure. These results indicate that the
resolution bias is the most important difference between objective functions in graph clustering with LSO. Spectral
clustering is an alternative to LSO, which has been used to optimize the popular normalized cut and modularity
objectives. We show experimentally that LSO often achieves superior performance than spectral clustering
on various benchmark, real-life, and k-nearest-neighbor graphs. These results, the flexibility of LSO and its
efficiency, provide arguments in favor of this optimization method.
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I. INTRODUCTION

Clustering is the problem of grouping a set of objects in
such a way that objects in each group are more “related” to
each other than to objects in the other groups. This problem is
called graph clustering or network community detection when
a pairwise relation of interest between objects is explicitly
(yet possibly partially) observed (see, e.g., Refs. [1,2]). When
objects are described by the values they assume on a set
of attributes, the problem can also be transformed into a
graph clustering task by constructing a similarity graph, for
instance, the k-nearest-neighbor graph (see, e.g., Refs. [3,4]).
In particular, Ruan [5] has shown that a slight modification
of a popular network community detection algorithm is also
effective when applied to k-nearest-neighbor graphs. The
algorithm automatically selects the value of k during the
clustering process.

Due to the intrinsic difficulty of the problem, graph
clustering has been tackled by many researchers, yielding a
vast amount of heuristic and approximate methods as well
as interesting experimental and theoretical results. We refer
the reader to the surveys on this topic, e.g., Refs. [1,2,6].
Many methods for graph clustering are based on optimizing
a global objective function. The “optimal” clustering is then
the one that minimizes the objective (throughout this paper
we will use minimization; some objectives are traditionally
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maximized, in those cases we negate the objective function).
This discrete optimization problem is computationally in-
tractable (at least for the objectives for which hardness is
known, see, for instance, Refs. [1,2,7]). Therefore, all effective
and scalable methods are based on heuristic and approximate
techniques.

One can distinguish two main classes of heuristic for
optimizing clustering objectives. The first one is based on
relaxing the discrete cluster labels to continuous variables
and solving the resulting problem with spectral methods. To
convert the continuous clustering to a discrete one, a separate
step is used, usually k-means clustering (see, e.g., the review
by Luxburg [6]). This principled spectral approach is only
possible for some objectives, such as normalized cut [8] or
modularity [9].

The other class of optimization methods is directly based on
(local heuristic) discrete optimization. The objective is to find,
among all partitions of the data set, the best one according to a
given objective function (see, e.g., the review by Fortunato [1]).
Although heuristic in nature, this latter approach has broader
applicability since any objective function can be used.

A central issue in network community detection is the
resolution limit of objective functions, which has been
investigated from multiple perspectives, in particular for
modularity [10–14]. In particular, Fortunato and Barthélemy
[15] showed that modularity optimization is unable to detect
small clusters; Good et al. [16] showed that the modularity
function exhibits extreme degeneracies such that the globally
maximum modularity partition is typically hidden among an
exponential number of structurally dissimilar, high-modularity
solutions.

An experimental study by Lancichinetti and Fortunato [17]
showed that the common spectral methods are far from optimal
for the purpose of graph community detection on benchmark
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graphs. In their review, the two best methods are those of
Blondel et al. [18] and Rosvall and Bergstrom [19]. Both
of these methods use a similar local search optimization
procedure, here called LSO, which is based on moving nodes
between clusters and constructing a clustering bottom-up.
In principle this procedure can be used with any graph
clustering objective. Since good results are obtained with at
least two different objective functions, this raises the following
questions: How much does the clustering result of LSO depend
on the objective that is being optimized? In what way does the
choice of the objective function influence the results?

In order to address these questions we consider five
objective functions, namely normalized cut, modularity, in-
fomap, and two novel simple objective functions. These novel
objectives are designed in such a way that (1) clusterings
are better if they contain more within cluster edges and
(2) clusters should not be too small or too large. First, we
analyze the resolution bias of these functions by showing
that their optimum is achieved for clusterings consisting of
either relatively small or relatively large communities. Next,
we apply LSO to these objective functions on benchmark
graphs. Results indicate that diverse quality performance is
achieved across different types of objectives. We introduce
a procedure to automatically control the resolution bias of
an objective function. Using this method, we force LSO to
output a fixed number of clusters for each objective. Results of
experiments show that the resolution bias plays a central role
for the difference in performance of the objectives. When the
resolution bias is “removed” by fixing the number of clusters,
the performance of LSO across these objective functions
becomes much more similar.

Spectral clustering is a principled alternative to LSO, which
has been used to optimize the popular normalized cut and
modularity objectives [8,9]. We show experimentally that LSO
often achieves superior performance compared to spectral
clustering on various benchmark, real-life, and k-nearest-
neighbor graphs. These results confirm the findings reported by
Lancichinetti and Fortunato [17] also for k-nearest-neighbor
graphs. In general, these results, the flexibility of LSO and
its efficiency, provide arguments in favor of this optimization
method.

The paper is structured as follows. In Sec. II we present
the five objectives, analyze their resolution bias, and introduce
a procedure for controlling the size of clusters. In Sec. III
we describe the LSO optimization method. In Sec. IV we
apply LSO to the objective functions. We show that the
resolution bias is the most important difference between
objective functions in graph clustering with LSO and that LSO
has difficulties in optimizing specific objectives. Furthermore,
we assess comparatively LSO and spectral clustering on
benchmark and real-life networks and k-nearest-neighbor
graphs. Conclusions are reported in Sec. V.

II. OBJECTIVE FUNCTIONS

A. Notation

Before continuing we introduce some notation. We denote
the set of nodes of the graph to be clustered by V . The weight of
the edge between nodes i and j is denoted as aij . If there is no

edge between two nodes, then aij = 0. The strength of a node
is the sum of weights of all edges incident to it, si = ∑

j∈V aij .
For unweighted graphs, the strength of a node is equal to its
degree. The volume of a set of nodes X is the sum of strengths
of all nodes in X, vX = ∑

i∈X si . The total volume of the graph
is M = vV . For an unweighted undirected graph this is equal
to twice the number of edges.

We say that an edge is “within” cluster X if both end points
are in X. Then wX = ∑

i,j∈X aij is the total weight of edges
within X. The normalized volume of a cluster is v̂X = vX/M ,
and the normalized within weight is ŵX = wX/M . In this
paper a clustering C of a graph is a partition of the nodes.
That is, a set of disjoint sets of nodes which we call clusters
that together cover all nodes. So, every node is in exactly one
cluster.

B. The considered objectives

Different objective functions have been proposed for graph
clustering. Perhaps the most well known is normalized cut [8],
which is defined as

QNCut(C) =
∑
c∈C

vc − wc

vc

. (1)

Another common objective is modularity, introduced by
Girvan and Newman [20],

Qmodularity(C) = −
∑
c∈C

(
ŵc − v̂2

c

)
. (2)

Note that this is the negative of the usual definition, so the
optimum is a minimum as with normalized cut. Both of these
objectives can be written as a sum over all clusters,

Q(C) =
∑
c∈C

q(c), (3)

for some function q. This means that it makes sense to look
at the objective value of just a subset of the clusters or of the
clustering of just a subset of the nodes.

A notable objective that does not follow this pattern is
infomap [19]. This objective is based on the length of a
code for paths through the graph. In addition to a sum of
per-cluster scores, infomap also include a global term based
on the probability of an edge exiting a cluster [21],

Qinfomap(C) =
∑
c∈C

h(̂vc + v̂c − ŵc)

− 2
∑
c∈C

h(̂vc − ŵc) + h

[∑
c∈C

(̂vc − ŵc)

]
, (4)

where h(p) = p log(p). The original infomap objective con-
tains an additional term,

Qinfomap[19](C) = Qinfomap(C) −
∑
i∈V

h(̂v{i}), (5)

which is needed to make the objective correspond to a code
length. However, since this last term is the same for all
clusterings, we do not include it. In addition, without this
extra term, the objective value of the trivial clustering with
one cluster is exactly 0.
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TABLE I. Objective functions considered in this paper.

Objective Expression

Normalized cut
∑

c∈C(vc − wc)/vc

Modularity −∑
c∈C(ŵc − v̂2

c )
w-log-v

∑
c∈C ŵc log(̂vc)

Parabola
∑

c∈C ŵc (̂vc − 1)
Infomap

∑
c∈C h(̂vc + v̂c − ŵc)
− 2

∑
c∈C h(̂vc − ŵc) + h(

∑
c∈C (̂vc − ŵc))

There are many more possible objective functions that
could be used for graph clusterings. Some considerations for
designing such functions are that

(1) All else being equal, clusters are better if they contain
more within cluster edges.

(2) Clusters should not be too small or too large.
For the first consideration, we can look at the ratio between

the volume of a cluster and the number of within edges. For the
second consideration, we use a weight function f (̂vc) where
f (0) = f (1) = 0, while f (x) < 0 for 0 < x < 1. Combining
these ingredients leads to an objective of the form

Q(C) =
∑
c∈C

ŵc

v̂c

f (̂vc). (6)

Two simple functions that fit the criteria for f are the parabola
f (x) = x(x − 1) and the function h(x) = x log(x). They give
the objectives

Qparabola(C) =
∑
c∈C

(ŵcv̂c − ŵc) (7)

and

Qw-log-v(C) =
∑
c∈C

ŵc log(̂vc). (8)

Of course, there are infinite other possibilities. We focus on
these two because the former is similar to modularity, while
the latter resembles infomap while being much simpler.

Table I lists all the different graph clustering objectives that
we will consider in this paper. Many other objectives have
been discussed in the literature, see Ref. [1] for an overview.
Many of them do not apply in our setting, because they assign
a score to a single cluster, not to a clustering. Therefore, it
is not clear how the cluster scores should be combined into a
score for a clustering. When the number of clusters is fixed
one could use the sum of scores, but when the number of
clusters is allowed to vary this will often not give a good
objective.

C. Resolution biases

It was shown by Fortunato and Barthélemy [15] that the
modularity objective has a resolution limit in the sense that
it tends to combine small communities into larger ones.
Specifically, in a network which has L edges, there is a
characteristic number of edges, such that communities with
less than

√
L/2 edges are not visible. Kumpula et al. [22] have

generalized this result by showing that the graph clustering
framework introduced by Reichardt and Bornholdt [13] also
has a resolution threshold. The model contains a parameter

FIG. 1. (Color online) Model graph for showing the resolution
limits. The circles represent strongly connected “modules” with q − r

internal edges, while the lines represent r edges each.

by which this threshold can be tuned, but no a priori
principle is known to select the proper value. They conclude
that single global optimization criteria do not seem capable
for detecting all communities if their size distribution is
broad [22].

In the sequel we show that the other clustering objectives
here considered have resolution limits. In fact, these are not
just limits but a general bias towards certain cluster sizes.
For example, the w-log-v objective has a resolution limit at
smaller cluster sizes, and it always leads to smaller clusters
than modularity.

Consider a graph that has n densely connected modules,
which are loosely connected in a ring [15]. Figure 1 illustrates
such a graph. The modules themselves could be single nodes,
cliques, or other subgraphs, but we are only interested in
their volume. In particular, imagine each module having q − r

internal edges and connected to both of its neighbors with r

edges each. The volume of a single module X is then vX = 2q,
while the volume of the entire graph is M = 2nq.

A cluster Xm consisting of m adjacent modules will have
normalized volume v̂Xm

= m/n. And since all but 2r of the
edges will be within the cluster, the normalized within weight
will be ŵXm

= (m − r/q)/n. By symmetry, we would expect
all clusters in the optimal clustering C∗ to have the same size
(assuming m divides n). There will then be n/m such clusters.
So, the total modularity of this clustering is

Qmodularity(C∗) = − n

m

[
m − r/q

n
−

(
m

n

)2]
. (9)

This expression has a minimum at m = √
nr/q. So the larger

the graph, or the less dense the connections in each module,
the larger the clusters that are found. The parabola objective
reaches a minimum at the same point.

For the w-log-v objective

Qw-log-v(C∗) = n

m

(
m

n
− r

qn

)
log

(
m

n

)
. (10)

The optimum is at m = W (enr/q)r/q, where W is the Lambert
W function.

The normalized and ratio cut objectives behave differently,

QNCut(C
∗) = n

m

(r/q)(1/n)

m/n
= nr

m2q
. (11)
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FIG. 2. (Color online) The resolution limits of graph clustering
objectives as a function of the graph size. We used r = 1 and q =
46, which corresponds to modules that are cliques with 10 nodes.
The resolution limit of the parabola objective is the same as that of
modularity.

This expression has no minimum value, it decreases as m gets
larger. Since the size of a cluster cannot be larger than n, the
actual optimum is at m = n, i.e., when all modules are in a
single cluster.

Finally, for infomap there is no analytical expression for
the optimum cluster size, but it can be easily calculated
numerically. Figure 2 shows the cluster size of the optimal
clustering as a function of the number of modules. This optimal
size was found by numerical optimization of the objective
in terms of the cluster size m. For this figure we have used
modules with r = 1 and q = 46, which corresponds to 45
internal edges, i.e., cliques with 10 nodes. Other module sizes
give qualitatively similar results. For each of the objectives,
the optimal cluster size depends only on the ratio r/q and the
number of modules n.

Note that in this figure, for the w-log-v and infomap
objectives, the theoretically optimal clustering always has less
than 1 clique per cluster, which in practice means that the
cliques are perfectly clusterable. To actually see the resolution
limit in action for these objective, the number of cliques
must be very large. For example, the value of the w-log-v
objective for m = 2 overtakes the value for m = 1 when
n > 291 ≈ 1027.

The resolution bias discussed in this section reflects
preferences towards certain sizes of clusters, in a situation
where all vertices are similar. There are other biases that come
into play when the graph is less uniform and when the sizes of
clusters will differ [12].

D. Controlling the size of clusters

Several generalizations of the modularity objective have
been proposed that allow for control over the size of the
clusters [11,13,23]. Each of these objectives has a parameter
that controls the trade-off between the size of the clusters

and the strength of edges within clusters. For example, the
objective introduced by Reichardt and Bornholdt [13] is, in
our notation,

QRB(C,γ ) = −
∑
c∈C

(
ŵc − γ v̂2

c

)
. (12)

In this paper we also consider other objective functions
besides modularity, and, hence, we would like to add similar
size-control parameters to them. In the previous section we
have shown that the size of the clusters depends on the size of
the graph. Often this dependency is implicit, through the use
of the normalized volume and normalized within weight. This
dependence can be used to control the cluster sizes.

The idea is to embed the graph in a larger graph, with
total volume αM and thereby change the optimal clustering.
Since objective functions such as modularity are a sum over
clusters in the form of (3), we can look at the contribution to
the modularity of a clustering C of the original graph. Denote
this contribution by

Qembed
modularity(C,α) = −

∑
c∈C

(ŵc/α − (̂vc/α)2)

= 1

α2

[
Qmodularity(C) − (α − 1)

∑
c∈C

ŵc

]
.

(13)

The optimal clustering does not change when the objective
function is multiplied by a constant. Therefore, embedding
within a larger graph is equivalent to adding a term to the
objective,

Q+(C,β) = Q(C) + β
∑
c∈C

ŵc. (14)

This holds also for the parabola and the w-log-v objectives.
On the other hand, the normalized cut objective does not

depend on the size of the graph at all. Despite this, we can still
use (14) to adjust that objective.

In this way we get a family of objective functions param-
eterized by β for each original objective function. Note also
that Q+

modularity is equivalent to QRB with γ = 1 + β, and it is
equivalent to QNL introduced in Ref. [11] with t = 1/(1 + β).

By adjusting the parameter β, the size of the clusters can be
controlled. A negative value of β corresponds to embedding
the graph in a larger one, so it will lead to fewer larger clusters.
A positive β will lead to more and smaller clusters. However,
we have to be careful with large positive values of β, since that
punishes within cluster edges, instead of rewarding them.

Since a large part of the difference between objective
functions lies in the different preferred cluster sizes, this
added flexibility might be enough to get rid of much of these
differences. Suppose, for example, that the number of clusters
is known. Then we can use binary search to look for a value of
β that leads to the desired number of clusters. The resolution
bias of the objective is then no longer important, since by fixing
the number clusters we also fix their average size.

III. OPTIMIZATION METHOD

The optimization procedure that we use is the local search
method developed by Blondel et al. [18], which we call
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LSO. They proposed it for optimizing modularity, but the
same method can also be used for any other graph clustering
objective. The method is very fast and can deal with millions
of nodes in seconds. We will briefly describe the algorithm
here.

Initially, each node is assigned to a singleton cluster. Then,
iteratively, nodes are moved between clusters as long as the
objective improves. For each node, only moves to neighboring
cluster are considered; where neighboring clusters are those
clusters that contain neighboring nodes. The nodes are visited
in a random order.

The most expensive part of the algorithm is recomputing the
value of the objective function. For objectives that are written
as a sum over the clusters, as in (3), this computation can be
done efficiently, because only two terms of the sum change
when a node is moved between clusters.

Because the objective improves with each move, eventually
a local optimum will be reached. However, the clusters in this
local optimum will often be too small. It is just that they
cannot be improved by moving single nodes. We will call the
clusters found at this point small clusters. The next step is
to repeat the optimization procedure, but this time moving
entire small clusters instead of single nodes. Effectively, we
are then clustering a condensed graph, where each node in the
condensed graph is a small cluster.

The step of moving small clusters is again repeated until
convergence. The clusters at that point become the new small
clusters. At some point no small clusters will be moved, and
then the algorithm stops.

Several variations to this basic recipe are possible. For
instance, if the clusters become too large, one could apply the
clustering algorithm from scratch to only the nodes in a single
cluster. This might lead to a better optimum. However, we do
not find this step to improve the results in our experiments.
Another improvement is to simply run the algorithm several
times with different random seeds and to pick the best solution.

Our implementation of the methods described in this section
is available in Ref. [33].

IV. EXPERIMENTS

A. Community detection benchmarks

We consider the LFR graph generator by Lancichinetti,
Fortunato, and Radicchi [24] which constructs networks with
built-in community structure. In this benchmark, the size of
each cluster is drawn from a power-law distribution, as is
the degree of each node. These benchmarks are specifically
constructed to closely resemble real-world graphs. Indeed, it
has previously been observed that real-world graphs also have
such a power-law degree distribution [25].

The LFR model has several parameters. The most important
is the mixing parameter μ, which controls the fraction of edges
that are between clusters. Essentially this is the amount of noise
in the graph. If μ = 0, all edges are within cluster edges; if
μ = 1, all edges are between nodes in different clusters.

Other parameters control the number of nodes, the distri-
butions of cluster sizes, the distribution of degrees, and so
on. If something is known about the target graph, then these
parameters should be chosen to match that graph. However,
in this paper we do not try to match any particular graph.
We therefore follow the settings used by Lancichinetti and
Fortunato [17]. They describe four benchmarks. Two with
“small clusters” of between 10 and 50 nodes and two with
“large clusters” of between 20 and 100 nodes. Each graph has
either 1000 or 5000 nodes in total.

To measure the quality of a clustering, we compare it to the
ground truth with the normalized mutual information (NMI)
metric [26],

Î (C1,C2) = 2I (C1,C2)

H (C1) + H (C2)
, (15)

where I is mutual information and H is entropy. Figure 3
shows the normalized mutual information as a function of
the mixing parameter for the different clustering objectives.
We used LSO to optimize all objectives. We did not include
the normalized cut objective, since without adjustment this
objective always leads to a single cluster. We only show the
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FIG. 3. (Color online) Normalized mutual information as a function of the mixing parameter for various objective functions; the Small
1000 data set (top) and the Big 5000 data set (bottom). The error bars indicate standard deviation.
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results for the benchmark with 1000 nodes and small clusters
and the benchmark with 5000 nodes and large clusters. The
results for the other two benchmarks are similar.

For comparison, besides LSO, we also include two spectral
clustering methods in our experiments. First, a simple method
that approximately minimizes the normalized cut objective
by solving a generalized eigenvalue problem for the graph
Laplacian and then finds discrete clusters using k means [8].
Second, the method of Newman [9], which uses eigenvectors
of the modularity matrix. Based on these eigenvectors a few
(two or three) clusters are found, which are then recursively
subdivided until the optimal modularity is reached. The
clusterings are further optimized by a Kernighan-Lin style
algorithm [27], which moves single nodes around in a similar
fashion to the first iteration of the LSO algorithm. These
two methods represent the complete opposite approach to
clustering. Whereas LSO uses a greedy search to grow clusters
from the bottom up, these spectral methods use a smooth
approximation to repeatedly subdivide the graph.

Optimizing the w-log-v and infomap objectives always
leads to a perfect recovery of the clustering up to μ = 0.65 on
the small data set and μ = 0.7 on the big data set. For higher μ,
infomap suddenly gives a clustering with normalized mutual
information 0. This is the clustering where all nodes are put
into a single cluster. Notice the large standard deviation on the
Big 5000 data set. In some cases the optimizer finds the trivial
clustering, and in other cases it finds a clustering comparable
to that found with the w-log-v objective.

The w-log-v objective does not have the instability of the
infomap objective, and the performance normalized mutual in-
formation decreases more gradually. The other two objectives,
modularity and parabola, perform worse. As we show next,
this mainly due to the failure to recover the right number of
clusters.

When the true number of clusters is known, we can adjust
the objective to get the desired number of clusters, as described
in Sec. II D. In this case it is also possible to use spectral
clustering to optimize the normalized cut objective, which
requires the number of clusters as an input parameter. Figure 4
shows the results on the same benchmark graphs when forcing
the number of clusters to be equal to the number of clusters in
the ground truth.

The behavior of the different objective functions is now
very similar. However, with the normalized cut objective we
are still unable to find the right clustering. This is due only to
the optimizer, because when normalized cut is optimized with
spectral clustering, the correct clustering is found.

B. Objectives versus optimization

One might wonder how much the results of these experi-
ments depend on the objective function and how much they
depend on the objective that is being optimized. To distinguish
between the two, we compare the objective value for the
clustering found by the LSO algorithm to the objective value
for the ground truth clustering. If the objective is lower at the
ground truth clustering, then this indicates that optimizer has
failed to find a good-enough clustering. On the other hand, if
the objective of the ground truth clustering is higher, then the
optimizer has found a clustering that is “better than the ground
truth” according to the objective. That means that the objective
is unsuitable in this situation. As a baseline, we also compare
with a clustering obtained on a randomly rewired graph with
the same degree distribution.

Figure 5 shows the value of the objective functions for
different mixing parameters. We can see that the objective
value of the ground truth crosses that of the randomly rewired
graph at different points for different objectives. Beyond this
point, there is little hope of recovering the true clustering, since
the graph has then no more cluster structure than a random
one. We can also see cases where the optimizer fails, such
as with the w-log-v objective at μ = 0.75. Here the ground
truth has a better objective value than the clustering found by
the optimizer. Repeating the optimization 20 times leads to a
slightly better optimum but not yet to the ground truth. Even
more repetitions can further improve performance but only
slightly.

The parabola objective shows a different picture. The
clustering found by the optimizer has a lower objective value
than the ground truth in many cases. This means that the LSO
method often fails to find the optimal clustering or one close to
it. The clustering that is found instead has too few clusters. In
Sec. II C we showed that the parabola objective has the same
resolution bias as modularity, while optimizing modularity
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FIG. 4. (Color online) Normalized mutual information as a function of the mixing parameter, when the number of clusters has been fixed
to the actual number of clusters. We show results for the Small 1000 data set (top) and the Big 5000 data set (bottom). The error bars indicate
standard deviation.
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FIG. 5. (Color online) The value of the objective as a function of the mixing parameter on the Small 1000 data set. “Random” is the
objective value reached by the optimizer on a randomly rewired graph, “truth” is the objective value of the ground truth clustering. LSO is the
value reached by the optimizer, and LSO×20 is the best objective value of 20 restarts. The objectives shown are as follows: modularity (top
left), parabola (top right), w-log-v (bottom left), and infomap (bottom-right).

with LSO does not give a clustering with a lower objective
value than the ground truth. This means that the resolution
bias does not tell the whole story. Another important aspect of
the results seem to be how easy the objective is to optimize
with LSO.

With the infomap objective, the clustering found for the
randomly rewired graph always has objective value 0. This
corresponds to a clustering where all nodes belong to the same
cluster. This clustering is always a possible one, but it is not
always found by the optimizer. For example, at μ = 0.7, the

TABLE II. The normalized mutual information for optimizing the various objectives on real-world networks. The best results are indicated
in bold. In the first part of the table the number of clusters is forced equal to the true number, which is shown in the “Clusters” column. In the
second part the number of clusters is left free, and in parenthesis is the number of clusters that are found for each method.

Data set LSO Spectral

Name Vertices Clusters Modularity Parabola w-log-v Infomap ncut Modularity

Zachary 34 2 67.7% 67.7% 67.7% 30.1% 73.2% 67.7%
Football 115 12 92.4% 92.4% 92.4% 92.4% 92.4% 89.5%
Pol. Books 105 3 55.4% 55.4% 57.4% 57.4% 54.2% 54.2%
Pol. Blogs 1490 2 11.5% 11.5% 11.5% 11.5% 0.9% 52.2%
Zachary 34 Free 58.8% (4) 58.8% (4) 42.8% (6) 56.8% (3) – 58.8% (4)
Football 115 Free 89.0% (10) 82.0% (8) 92.4% (12) 92.4% (12) – 85.2% (9)
Pol. Books 105 Free 56.0% (5) 46.9% (6) 40.7% (11) 53.7% (5) – 52.1% (4)
Pol. Blogs 1490 Free 37.2% (278) 33.9% (280) 25.1% (314) 33.9% (303) – 52.2% (2)

012812-7



TWAN VAN LAARHOVEN AND ELENA MARCHIORI PHYSICAL REVIEW E 87, 012812 (2013)

5 · 10−2 0.1 0.15 0.2 0.25
0.6

0.7

0.8

0.9

1

Noise variance σ2

A
cc

u
ra

cy

modularity

w-log-v

parabola

infomap

ncut (spectral)

mod. (spectral)

FIG. 6. (Color online) Accuracy of the clustering methods on the
two moons data set, as a function of the variance of the noise.

optimizer sometimes finds an infomap objective value that is
greater than 0. In these cases the optimizer is stuck in a local
minimum that is not globally optimal.

C. Real-world community graphs

We next applied the optimizer to several small real-world
networks. We only looked at networks for which some kind of
ground truth clustering is know. For other networks, often only
a modularity score is reported in the literature. But since we
use several different objective functions, this makes no sense
in our context. The networks we considered are as follows:

(1) Zachary’s karate club [28].
(2) Football: A network of American college football games

[20].
(3) Political books: A network of books about U.S. politics

[29]. The clusters are left-wing, right-wing, and neutral books.

(4) Political blogs: Hyperlinks between weblogs on U.S.
politics [30].

In each case, we force the number of clusters found by
the methods to be the same as the number of clusters in the
data set. The first part of Table II gives the results of these
experiments. In most experiments the spectral methods give
the best results. We believe that this is due to the small number
of clusters. The difference is especially large for the Political
Blogs data set, which is the largest data set in this experiment.
Since the spectral methods start with a single large cluster, the
final solution with just two or three clusters is a relatively close
to this starting point. In contrast, the LSO method starts from
singleton clusters, which are gradually merged.

The second part of the table gives results when the number
of clusters is not fixed. In these experiments the results are more
varied. Observe that for the football data set the modularity and
parabola objective no longer find the same clustering as the
other objectives, instead giving fewer clusters. This is due to
the biases of these objectives.

D. Artificial nearest-neighbor data

We now consider the applicability of LSO to clustering
nearest-neighbor graphs. We follow the setup from Bühler and
Hein [31].

First, we ran experiments on the two moons data set. This
data set consists of points on two half-circles that are offset
from each other, embedded in a d-dimensional space, and have
added Gaussian noise.

For each point xi in the data set we add edges to its k nearest
neighbors with the weights

a′
ij = e−4‖xi−xj ‖2/‖xi−xk

i ‖2
,

where xk
i is the k nearest neighbor of xi . To make the graph

symmetric, we take the maximum weight over the two edge
directions, aij = max(a′

ij ,a
′
ji).

In our experiments we used n = 2000 points of dimension
d = 100 and k = 10 neighbors of each point. The optimizer is

TABLE III. The normalized mutual information of various methods on real-world data sets. The best results are indicated in bold. In the
first part of the table the number of clusters is forced equal to the true number, which is shown in the “Clusters” column. In the second part the
number of clusters is left free, and in parenthesis is the number of clusters that are found for each method.

Data set LSO Spectral

Name Vertices Clusters Modularity Parabola w-log-v Infomap ncut Modularity

MNIST 70 000 10 91.1% 91.9% 87.7% 87.6% 76.3% 22.7%
USPS 9298 10 87.9% 87.9% 89.8% 89.6% 79.9% 35.7%
iris 150 3 86.4% 86.4% 86.4% 86.4% 86.4% 74.0%
coil20 1440 20 92.5% 92.4% 92.8% 92.4% 91.9% 49.4%
waveform 5000 2 41.7% 42.1% 41.6% 41.3% 36.5% 12.6%
ringnorm 7400 2 7.8% 9.0% 0.0% 0.0% 14.4% 2.0%
faces 624 20 86.2% 86.2% 85.7% 85.7% 86.4% 62.8%
MNIST 70 000 Free 82.8% (18) 82.6% (18) 45.0% (2058) 46.7% (1523) – 51.8% (382)
USPS 9298 Free 84.0% (17) 84.4% (16) 52.4% (473) 55.0% (332) – 59.1% (122)
iris 150 Free 60.4% (9) 61.1% (9) 51.6% (18) 54.5% (15) – 64.5% (8)
coil20 1440 Free 88.7% (27) 88.8% (27) 74.1% (143) 76.7% (107) – 75.7% (110)
waveform 5000 Free 28.4% (6) 28.1% (6) 12.8% (298) 13.8% (193) – 29.3% (5)
ringnorm 7400 Free 2.4% (19) 3.8% (5) 4.8% (559) 4.6% (469) – 3.4% (8)
faces 624 Free 88.4% (32) 88.4% (32) 80.4% (92) 81.9% (76) – 80.3% (61)
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TABLE IV. The classification accuracy of various methods on real-world data sets. The best results are indicated in bold. In the first part
of the table the number of clusters is forced equal to the true number, which is shown in the “Clusters” column. In the second part the number
of clusters is left free, and in parenthesis is the number of clusters that are found for each method.

Data set LSO Spectral

Name Vertices Clusters Modularity Parabola w-log-v Infomap ncut Modularity

MNIST 70 000 10 95.0% 96.8% 84.2% 84.2% 75.8% 31.0%
USPS 9298 10 89.7% 89.7% 91.2% 92.6% 80.5% 43.1%
iris 150 3 96.0% 96.0% 96.0% 96.0% 96.0% 83.3%
coil20 1440 20 85.6% 85.2% 82.9% 82.8% 86.9% 43.0%
waveform 5000 2 80.0% 80.3% 80.0% 79.3% 79.5% 69.5%
ringnorm 7400 2 66.1% 67.4% 50.5% 50.5% 72.0% 58.1%
faces 624 20 77.2% 77.2% 76.0% 76.0% 76.4% 48.6%
MNIST 70 000 Free 96.8% (18) 96.7% (18) 96.8% (2058) 96.8% (1523) – 79.1% (382)
USPS 9298 Free 96.7% (17) 96.6% (16) 96.8% (473) 96.8% (332) – 84.9% (122)
iris 150 Free 96.0% (9) 96.7% (9) 96.0% (18) 94.7% (15) – 96.7% (8)
coil20 1440 Free 84.9% (27) 85.2% (27) 95.4% (143) 94.7% (107) – 87.8% (110)
waveform 5000 Free 81.3% (6) 81.4% (6) 86.3% (298) 85.7% (193) – 83.4% (5)
ringnorm 7400 Free 60.8% (19) 61.9% (5) 68.3% (559) 67.9% (469) – 58.6% (8)
faces 624 Free 84.8% (32) 84.8% (32) 99.4% (92) 97.2% (76) – 89.5% (61)

restricted to finding two clusters. We evaluate the performance
by looking at the leave-one-out accuracy. That is, the fraction
of points that have the same label as the majority of the other
nodes in the same cluster. Figure 6 shows the accuracy as a
function of the variance of the noise.

The results are in some ways opposite to those on the
LFR benchmark. For these K-nearest-neighbor graphs, the
modularity and parabola objectives outperform w-log-v and
infomap. We conjecture that this has to do with the resolution
bias of the methods. In the LFR benchmarks we search
for more clusters, around 40, compared to only 2 in this
experiment. Thus, the objectives that are biased towards larger
clusters will perform better here. However, at the moment we
have no proof or additional evidence to support this conjecture.

E. Real-world nearest-neighbor data sets

We used the same construction of a nearest-neighbor graph
outlined in the previous paragraph also on real-world and UCI
data sets. In each case, we force the number of clusters to be the
same as the number of classes in the data set. Table III contains
the results of these experiments. Since this is a classification
task, we have also measured the performance with leave one
out accuracy instead of normalized mutual information. The
LOO accuracy is the fraction of points that would be correctly
classified if the most common label among all other points
in the same cluster is used as that cluster’s label. Table IV
contains the LOO accuracy results.

On the iris data set all methods except spectral modularity
optimization achieve the same high accuracy. This can be
explained by the small size of the data set and the relatively
easy classification task. The iris data set was previously used
in a comparison of different multi-resolution methods [32],
the accuracy reported in that paper is the same 96% that we
found. On the MNIST and USPS data sets, LSO significantly
outperforms spectral clustering. These data sets have many
classes, many features and are not completely balanced. On
the other hand, on the ringnorm data set spectral normalized cut

optimization perform much better than other methods. Overall,
as on the two moons data set, the parabola objective gives the
best results.

The second part of the Table IV shows that, when the
number of clusters is not fixed, the w-log-v objective has the
highest or close to the highest accuracy in all cases. But this is
merely because the w-log-v objective has an optimum with the
most clusters, and the accuracy is nearly always higher with
such a more fine grained clustering. On the other hand, the
normalized mutual information is higher when the number of
clusters is closer to the true number of clusters. In this regard,
the modularity and parabola objectives give the best results.

V. CONCLUSIONS

The results of our investigation show that the choice of
objective function matters for graph clustering with LSO. The
objective function has two important main effects.

First, we have shown that different graph clustering objec-
tives have different resolution biases. These form the largest
difference between the different objectives. Our experiments
show that on benchmark network graphs with built-in com-
munity structure, when controlling the number of clusters, the
clusterings found with different objective functions are very
similar. However, when the number of clusters is not fixed, the
resolution bias has a large influence on the performance of the
method.

Second, some objectives are easier to optimize with LSO
than others. For example, in the experiments on the LFR
benchmarks, the clustering found with the parabola objective
function is often not optimal for that objective. In addition,
optimizing other objectives such as normalized cut turns out
to be very hard. For that objective function spectral methods
are more suitable.

For nearest-neighbor graphs, LSO often significantly out-
performs spectral clustering, while never performing signifi-
cantly worse. When the number of clusters is fixed to a small
number, the modularity and parabola objectives give the best
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results. When the number of clusters is not fixed, the w-log-v
objective finds the most clusters and has the best accuracy. But
the modularity and parabola objectives stay close to the true
number of clusters, and they give the best NMI.

The way we adjust the number of clusters, by embedding
the graph in a larger one, works best when we want to decrease
the number of clusters. For some objectives, in particular
normalized cut, we instead wish to increase the number of
clusters. Other adjustments to the objective function might
work better in that case, for example, adding a term to directly
reward the number of clusters. Such an adjustment will lead to
another family of objective functions, perhaps with different
resolution bias characteristics.

The parabola and modularity objectives have the same
resolution bias,

√
nr/q. However, the behavior of the two

objectives on the LFR benchmarks differ significantly. This is
in part due to the inability of LSO to find the optimal clustering
for the parabola objective, but it seems that the objectives also

differ in other ways. An avenue for future work is to improve
the resolution bias model to show how these objectives
differ.

In this paper we have only considered undirected graphs.
Each of the objectives can be adapted to directed graphs by
using a variation of the volume that is based on the indegree or
outdegree of nodes or on a combination of the two. In Ref. [19],
the infomap objective is defined based on the outdegree and
on edges leaving a cluster. It is not clear what the advantages
are of directly using undirected graphs for clustering or how
the clustering of a graph should differ from the clustering of
its transpose.
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