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Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the
existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human
experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve
as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or
negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior
always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy
or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by
adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging
from management and social science to ecology and evolution.
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I. INTRODUCTION

Complex adaptive systems (CASs) [1] are a dynamic
network of many agents (which may represent species,
individuals, companies, nations, etc.) constantly acting and
reacting to what the other agents are doing. Resource allocation
is one of the most fundamental issues these agents are facing.
In reality, they must compete against others for sharing limited
resources with an unbiased or a biased distribution, in order to
survive and develop. Thus, there are plenty of competitions in
CASs [1–9]. The purpose of such competitions is essentially to
get enough resources such as living spaces, food, money, etc.
Examples include the survival competition among different
species, the competition of individuals in stock markets, the
competition of companies in the markets of different sizes,
the competition of nations in world trade, and so on. For
engaging in competitions, agents in the CASs often utilize
various kinds of strategic behaviors, one of which is contrarian
behavior. Contrarian behavior means figuring out what the herd
is doing, and doing the opposite [10]. Contrarian behavior can
be regarded as a kind of self-organization, which is one of
the characteristics which distinguish CASs from other types
of complex systems. To determine the nature of contrarian
behavior is also of practical importance when one faces the
relevant problems of resource allocation, say, risk evaluation
and crisis management. Thus, contrarian behavior has been
an active subject of studies in various fields like finance and
economics [11], complexity science [12], and social science
[13–16]. In social fields, previous contrarian studies using a
Galam model of two-state opinion dynamics [13–15] aimed at
the effect of contrarian choices on the dynamics of opinion
forming, which shed a significant light on hung elections.
In this work, we designed a procedure to study the effect
of contrarian behavior on social resource allocation. It is
a common belief that contrarian behavior always stabilizes
resource allocation by shrinking the redundancy or the lack
of resources (positive role). However, is this common belief
true? Here we specially raise this question because unbiased
or biased distributions of resources are everywhere in nature
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where contrarians are often needed. In other words, to comply
with the real world, we need to investigate the role of contrarian
behavior as the environment (which here is defined by the ratio
between two resources, namely, resource ratio) varies.

The above-mentioned CASs involving competitions of
agents for various kinds of resources can be modeled as
a typical class of artificial well-regulated market-directed
resource-allocation systems (simply denoted as “resource-
allocation systems” in the following) [7,8], as an extension
of the original minority game [5]. Such resource-allocation
systems can reflect some fundamental characteristics of the
above CASs in the real world [4–8], say, a resource-allocation
balance that emerged as a result of system efficiency [7,8].
Thus, without loss of generality, we shall investigate the role
of microscopic agents’ contrarian behavior in the macroscopic
properties of the resource-allocation system. In the process, we
identify a class of transition points which help to distinguish
the positive role (stabilizing, etc.) and the negative role
(unstabilizing, etc.) of contrarian behavior for an unbiased or
weakly biased and a strongly biased distribution of resources,
respectively. Comparing our work with the contrarian study
by Galam [13], which also shows the transition point at
a critical value of the contrarian proportion to identify
opinion group forming, here the transition points in this work
help us to reveal that the allocation of resources can be
optimized at the transition point by adding an appropriate
size of contrarians which is observed in human experiments.
To proceed, based on the extensively adopted methods of
both statistical analysis [17–20] and agent-based modeling
[5–8,21,22], we shall resort to three complementary tools:
human experiments (producing data for statistical analysis),
heterogeneous-agent-based computer simulations (of agent-
based modeling), and statistical-mechanics-based theoretical
analysis (of agent-based modeling).

II. HUMAN EXPERIMENTS

We design and conduct a series of computer-aided human
experiments on the basis of the resource-allocation system
[4–8]. As revealed in Refs. [7,8], the system can reach a
macroscopic dynamic balance that corresponds to the most
stable state where the resources are allocated most efficiently
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and the total utilities of the system are maximal due to
the absence of macroscopic arbitrage opportunities. Here we
add a proportion of contrarians, in order to observe how
contrarian behavior affects the macroscopic properties of the
resource-allocation system. For the experiments, we recruited
171 subjects, all of whom are students and teachers from
several departments of Fudan University. The experiments
were conducted in a big computer laboratory, and each subject
had a computer to work with. All of the subjects were given
a leaflet interpreting how the experiment would be performed
before the experiment started. In the computer-aided online
experiment, there are two virtual rooms: Room 1 and Room 2.
Each room owns a certain amount of resources marked
as M1 or M2 accordingly. The subjects do not know the
exact resource ratio, M1/M2, at every experimental round. In
the experiment, any kind of communication is not allowed,
and every subject chooses to enter Room 1 or Room 2
independently to share the resources in it. Meanwhile, the
computer program secretly adds contrarians into the system
whose behaviors are controlled by the following settings.
In every round of the experiment, each contrarian randomly
chooses five subjects as his or her group. Then the contrarian
will choose to enter the less-entered room according to the
group. For example, if most of the subjects in a contrarian’s
group choose to enter Room 1, the contrarian will choose
to enter Room 2. The total number of the subjects and the
contrarians entering Room 1 and Room 2 are denoted as N1 and
N2, respectively. After every experimental round, if M1/N1 >

M2/N2, we say Room 1 (or Room 2) is the winning (or losing)
room, because the subjects and contrarians entering Room 1
obtain more resources per capita, and vice versa. The subjects
in the winning room will be granted 10 scores, and those in
the losing room will be given 0 score. The final rewards are
based on the scores each subject obtains in all the experimental

rounds according to the exchange rate: 10 scores = 1
Chinese RMB. In addition, we will pay every subject 30
Chinese RMB as the attendance fee, and reward the top 10
subjects (having the highest scores), each with extra 100
Chinese RMB. More details are explained in the Appendix.

In the experiment, we adjusted two parameters: one is the
resource ratio, M1/M2, and the other is the ratio between the
number of contrarians and subjects, βc. Thirty experimental
rounds are repeated under each parameter set: M1/M2 and βc.
Let us denote the number of subjects as Nn and the number
of contrarians as Nc, thus yielding βc = Nc/Nn. In addition,
the total number of all the subjects and contrarians is N =
Nn + Nc = N1 + N2.

The experiment was conducted on two successive days:
88 subjects on the first day and 83 on the second day. The
different number or different subjects show no influence on
the results of the experiment. The experimental results are
shown in Fig. 1, where 〈N1〉/〈N2〉 is plotted as a function of
M1/M2. When the distribution of resources is weakly biased
up to M1/M2 = 3, the experimental results of 〈N1〉/〈N2〉 are
approximately located on the line with slope = 1 for the three
values of βc. In such cases, the system reaches dynamic balance
at which the total utilities of the system are maximal due to
the elimination of the macroscopic arbitrage opportunities.
Nevertheless, for the strongly biased resource ratio, say,
M1/M2 = 10, the balance is broken as shown by the three
experimental values that deviate far from the “slope = 1” line.
In other words, as the resource ratio is unbiased or weakly
biased, adding a small proportion of contrarians does not
hurt the system balance. In contrast, as the resource ratio is
biased enough, the contrarians of the same proportion break
the balance instead.

Then we analyze the experimental results from both
individual and overall aspects of preference. As we know,

FIG. 1. (Color online) Population ratio, 〈N1〉/〈N2〉, as a function of resource ratio, M1/M2. The line with “slope = 1” indicates the balance
state where 〈N1〉/〈N2〉 = M1/M2. Each experiment lasts for 30 rounds (the first 6 rounds for equilibration and the last 24 rounds for statistics).
Simulations are run for 400 time steps (the last 200 time steps for statistics and the first 200 time steps for equilibration). In (a), the number
of normal agents in simulations is 100. In (b), the numbers of normal agents are respectively 1000, 83, and 88. 〈· · ·〉 denotes the average over
the last 24 rounds for the experiment or the last 200 time steps for the simulations. The three experimental data at M1/M2 = 1 are overlapped.
Parameters for the simulations: S = 8 and P = 64.
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FIG. 2. (Color online) Experimental data of the preference of each subject to Room 1 for the nine parameter sets with M1/M2 = 1 (a–c),
3 (d–e), and 10 (g–i) and βc = 0 (a, d, g), 0.1 (b, e, h), and 0.3 (c, f, i). For each parameter set, the experiment lasts for 30 rounds (the first six
rounds for equilibration and the last 24 rounds for statistics). In the figure, “Mean” denotes the average preference of all the subjects.

different individuals have different preferences for a resource,
which reflects heterogeneity of preferences. The heterogeneity
has a remarkable influence on achieving the balance of the
system. Here, the preference of each subject is defined as
his or her average rate of entering Room 1 in the 30 rounds
of experiments. The statistical results are shown in Fig. 2.
Figure 2(a) shows the result for M1/M2 = 1 and βc = 0. The
preferences of the subjects are different except for the unbiased
distribution of the two resources, M1/M2 = 1. We see that
the third subject preferred Room 1 while the second player
preferred Room 2. Such heterogeneity of preferences remains
after introducing contrarians in Figs. 2(b)–2(c). As for the
larger resource ratios in Figs. 2(d)–2(f) and Figs. 2(g)–2(i),
the subjects still have different preferences. However, the
average preference of all the subjects varies with M1/M2,
which illustrates the environmental adaptability of the subjects.

Next, in order to clearly observe the influence of contrarians
on the macroscopic system, we calculated the stability of the
system, f = 1

2N

∑2
i=1〈(Ni − Ñi)2〉 [7], where 〈· · ·〉 denotes

the average of time series · · ·. This definition describes the fluc-
tuation in the room population away from the balance state at
which the optimal room population, Ñi = MiN/(M1 + M2),

can be realized. Clearly the smaller value of f is, the
closer the system approaches to the dynamic stability.
Figure 3(a) displays that, for small M1/M2, the fluctuations
of the system decrease after introducing contrarians. Namely,
the system becomes more stable. However, for large M1/M2,
adding contrarians makes the system more unstable. Thus,
we generally conclude that M1/M2 has a threshold, which
distinguishes the different role of contrarians in the stability of
the system. This experimental phenomenon will be further in-
terpreted in the following part about the computer simulations
and theoretical analysis about transition points.

To further evaluate the performance of the overall system,
we have also calculated the efficiency and the predictability of
the resource-allocation system. Here the efficiency is defined
as e = | 〈N1〉

〈N2〉 − M1/M2|/(M1/M2) [7]. Evidently, a larger value
of e means a lower efficiency of resource allocation and
vice versa. Figure 3(b) shows the change of e when adding
contrarians into the experiment. When M1/M2 is 1 or 3, the
adding of contrarians makes the resource-allocation system
more efficient. However, for M1/M2 = 10, the presence of
contrarians reduces the efficiency. Figure 3(c) shows the
predictability of the system, which is represented by the
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FIG. 3. (Color online) Experimental data for (a) stability f , (b) efficiency e, and (c) predictability w1 at M1/M2 = 1, 3, and 10. Each
experiment lasts for 30 rounds (the first six rounds for equilibration and the last 24 rounds for statistics).

winning rate of Room 1, w1 [8]. Note w1 = 0.5 means the
winning rate is the same for both Room 1 and Room 2, which
is hard for the subjects to predict. If w1 deviates from 0.5,
the winning rate of one room is higher than the other, so the
subjects can predict the results easily. According to Fig. 3(c),
when M1/M2 = 1, the winning rate w1 fluctuates around 0.5,
which means it is hard to make the prediction. But if M1/M2

becomes larger, the subjects are easy to predict for the winning
room for the next round, especially when enough contrarians
are added.

III. HETEROGENEOUS-AGENT-BASED
COMPUTER SIMULATIONS

Clearly the above experiment has some unavoidable limi-
tations: specific time, specific experiment avenue (a computer
room in Fudan University), specific subjects (students and
teachers of Fudan University), and the limited number of
subjects. Now we are obliged to extend the experimental
results (Figs. 1–3) beyond such limitations. For this purpose,
we establish an agent-based model on the basis of the resource-
allocation system. In this model, we denote Nn as normal
agents and Nc as contrarians. Normal agents correspond to
the subjects in the experiment, and each of them decides to
enter one of the two rooms using their strategy table, which
is the same as the one designed in the agent-based model of a
market-directed resource-allocation game [7,8]. In particular,
the table of a strategy is constructed by two columns. The
left column represents P potential situations, and the right
column is filled with 0 and 1 according to the integer, L,
which characterizes the heterogeneity in the decision making
of normal agents. For a certain value of L, (L ∈ [0,P ]), there
is a probability of L/P to be 1 in the right column of the table
and a probability of (P − L)/P to be 0. Here 0 and 1 represent
entering Room 2 and Room 1, respectively. At each time step,
normal agents choose to enter a room according to the right
column of the strategy tables directed by the given situation
Pi , (Pi ∈ [1,P ]). Before the simulation starts, every normal
agent will randomly choose S strategy tables, each determined
by an L. At the end of every time step, each normal agent
will score the S strategy tables by adding 1 (or 0) score if
the strategy table predicts correctly (or incorrectly). Then, the

strategy table with the highest score will be used for the next
time step. In addition, because contrarians have no strategy
tables, their behavior is set to be the same as that already
adopted in the experiment.

For the computer simulations, we use 100 normal agents
and set S = 8 and P = 64. The result of 〈N1〉/〈N2〉 versus
M1/M2 is shown in Fig. 1(a). Clearly, qualitative agreement
between experiments and simulations is displayed. In order to
confirm this result, we conduct more simulations with different
numbers of normal agents to compare with experimental
results, which are shown in Fig. 1(b). We choose to use 83 and
88 normal agents, which are consistent with experiments, and
1000 normal agents, which represent the case of a remarkable
different size. Comparing the different simulations in Figs. 1(a)
and 1(b), their results show no qualitative differences though
the number of normal agents varies. Therefore, we can say that
the number of agents has no influence on our simulation results.
This means that the experimental results reported in Fig. 1 are
general (at least to some extent), being beyond the above-
mentioned experimental limitations. Thus, we are confident to
do more simulations in the following. For convenience, we use
100 normal agents in the remainder of this work.

In order to compare with the experiment, the preferences
of 100 normal agents are also calculated; see Fig. 4. The
simulation results are very similar to the experimental results
in Fig. 2. That is, normal agents also show the heterogeneity
of preferences and the environmental adaptability.

Then we are in a position to scrutinize the role of
contrarians. To compare with the experimental results in Fig. 3,
we also calculate stability (f ), efficiency (e), and predictability
(w1); see Fig. 5.

From Fig. 5, we find that the resource-allocation system
clearly exhibits a transition point when taking M1/M2 and
w1 as the tuning parameter and order parameter, respectively.
This agrees with what we have reported in Ref. [8]. In the
meantime, at the transition point, (M1/M2)t , f reaches the
lowest value, which means the system becomes the most stable.
In detail, for a small βc, increasing M1/M2 will increase the
system stability until f has the minimum value at (M1/M2)t ,
which corresponds to the most stable state of the system. Once
the minimum value is passed, the stability of the system will
worsen for larger M1/M2. The former (or the latter) is positive
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FIG. 4. (Color online) Simulation data of the preference of each normal agent to Room 1 for the nine parameter sets with M1/M2 = 1 (a–c),
3 (d–e), and 10 (f–i) and βc = 0 (a, d, g), 0.1 (b, e, h), and 0.3 (c, f, i). For each parameter set, simulations are run for 400 time steps
(the last 200 time steps for statistics and the first 200 time steps for equilibration). In the figure, “Mean” denotes the average preference of the
100 normal agents.

(or negative) role of contrarians. As for large βc, increasing
M1/M2 will always make the system more unstable (negative
role). In addition, as βc increases, (M1/M2)t moves toward
the direction of decreasing M1/M2. We shall discuss the
movement of (M1/M2)t in the following theoretical analysis.

Figure 5(b) shows the simulation results for the change
of system efficiency, e. When M1/M2 is small, increasing
contrarians can make the system more efficient at a certain
range. In contrast, for large M1/M2, adding contrarians always
reduces the efficiency. Such simulation results echo with those
experimental results as shown in Fig. 3(b).

Figure 5(c) displays the predictability of Room 1. Similarly,
we can see from Fig. 5(c) that when M1/M2 is very small
(close to 1), the winning rate of two rooms remains almost
unchanged at 0.5 or so, even though βc varies. That is, in this
case, the system is unpredictable. When M1/M2 is gradually
increasing, adding more contrarians will cause w1 to increase
from the value for βc = 0; namely, it becomes more easy for
the agents to predict the winning room. Again, these simulation
results agree with those experimental results in Fig. 3(c).

Now, we can understand the role of contrarians in the
resource-allocation system. On one hand, contrarians have

positive roles as M1/M2 is small. Namely, adding contrarians
can help to not only improve the system stability, but also
increase the system efficiency while keeping the system
unpredictable. On the other hand, contrarians have negative
roles as M1/M2 becomes large enough. That is, adding
contrarians can hurt the system stability and efficiency while
making the system more predictable. Both positive and
negative roles have been well distinguished by identifying
a transition point, (M1/M2)t . Further, it is clear that the
transition points identified herein also help to reveal that the
allocation of resources can be optimal (i.e., stable, efficient,
and unpredictable) at (M1/M2)t by adding an appropriate size
of contrarians.

IV. STATISTICAL-MECHANICS-BASED
THEORETICAL ANALYSIS

In order to get a better understanding of the underlying
mechanics of the agent-based model, we conduct theoretical
analysis. When S and P are fixed, the system of our interest
could reach the most stable state only at the transition point,
i.e., a particular ratio between the two resources, (M1

M2
)t . If we
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FIG. 5. (Color online) βc − M1/M2 contour plots for (a) stability
f , (b) efficiency e, and (c) predictability w1. For each parameter set,
simulations are run for 400 time steps (the last 200 time steps for
statistics and the first 200 time steps for equilibration).

adjust the values of βc, the transition point, ( M1
M2

)t , will change
accordingly.

A. The properties of the transition point, ( M1
M2

)t

(a) Without contrarians: It can be proven that for the agent-
based model, the transition point has two properties: 1) every
normal agent uses the strategy with the largest preference,
(Li)max, in his or her hand; 2) the system is in the balance state,
which means the ratio between the numbers of agents in the
two rooms is equal to the ratio between the two resources [7].
We first define

N1 =
∑

xi,

where the choice of agent i is denoted as xi = 1 (Room 1) or
0 (Room 2). Then, at the transition point, the expected ratio of

normal agents who chooses to enter Room 1 is

〈N1〉
Nn

=
∑〈xi〉

Nn

=
∑Nn

i (Li)max

PNn

=
(

M1

M1 + M2

)
t

, (1)

where 〈· · ·〉 denotes the averaged value of · · ·. Equation (1)
shows that when M1

M1+M2
> ( M1

M1+M2
)t , Room 1 will become

unsaturated. This means the system does not stay at the balance
state.

(b) With contrarians: From the properties of the transition
point and the behavior of the contrarians, it can be shown that,
all the normal agents still use the largest-preference strategy
(Li)max at the transition point when contrarians are added.
Every contrarian follows the minority in his or her group to
make a choice denoted as xc. Then the expected ratio of agents
(both normal agents and contrarians) who choose to enter
Room 1 at the transition point becomes

〈N1〉
N

=
∑Nn

i (Li)max + P
∑Nc

c 〈xc〉
(1 + βc)PNn

=
(

M1

M1 + M2

)
t ′
, (2)

where βc = Nc

Nn
and ( M1

M1+M2
)t ′ stands for the new transition

point with contrarians added.

B. Finding the expressions of
∑Nn

i (Li )max and
∑Nc

c 〈xc〉
(a) Without contrarians: The probability that Li takes a

certain integer from the range 0 to P is 1
P+1 . Then, the

probability of (Li)max being a certain value of L is

p(L) =
(

L + 1

P + 1

)S

−
(

L

P + 1

)S

.

If Nn is large enough, there is

Nn∑
i

(Li)max =
P∑

L=0

Nnp(L)L

= PNn

[
1 − 1

P

P∑
L=1

(
L

P + 1

)S
]
. (3)

In the absence of contrarians, the substitution of Eq. (3) into
Eq. (1) leads to

〈N1〉
Nn

= 1 − 1

P

P∑
L=1

(
L

P + 1

)S

=
(

M1

M1 + M2

)
t

≡ mn,

(4)

where mn represents the transition point for the system with
only normal agents.

(b) With contrarians: Since the normal agents still use
their strategy with (Li)max at the transition point after adding
contrarians into the resource-allocation system. Therefore, for
normal agents, we have

〈Nn1〉
Nn

= 1 − 1

P

P∑
L=1

(
L

P + 1

)S

=
(

M1

M1 + M2

)
t

≡ mn.

When contrarian c chooses k normal agents as his or
her group, the probability to get a normal agent who
chooses Room 1 can be expressed approximately as 〈Nn1〉

Nn
=

( M1
M1+M2

)t ≡ mn. Then, the probability for xc = 1 (or 0) is
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FIG. 6. (Color online) Transition point (M1/M2)t versus βc, as
a result of theoretical analysis [curve obtained according to Eq. (6)]
and simulation [data extracted from Fig. 5(a)]. Parameters: S = 8 and
P = 64.∑y

q=0 C
q

k [( M1
M1+M2

)t ]q[( M2
M1+M2

)t ]k−q ≡ mc (or 1 − mc), where

( M2
M1+M2

)t = 1 − mn, y = k−1
2 , and k is odd. Thus, we have the

average of xc, 〈xc〉, as

〈xc〉 = mc =
y∑

q=0

C
q

k (mn)q(1 − mn)k−q . (5)

Plugging Eq. (5) into Eq. (2) yields

〈N1〉
N

= PNnmn + PNcmc

(1 + βc)PNn

=
(

M1

M1 + M2

)
t ′
,

and then we have

〈N1〉
N

= mn + βcmc

1 + βc

=
(

M1

M1 + M2

)
t ′
. (6)

Clearly, by adjusting βc, we can change the transition
point of the resource-allocation system. Figure 6 shows the
monotonically decreasing trend of (M1

M2
)t for increasing βc,

which displays an excellent agreement between theoretical
and simulation results.

In both experiments and computer simulations, we have
found that when the system is in the balance state [M1/M2 <

(M1/M2)t ], the fluctuations of the system decrease after
introducing a small number of contrarians. Because in both
experiments and simulations, the behavior of contrarians is
set to follow the same rule, it is necessary to further analyze
the influence of this behavior on the stability of the whole
system. Equation (5) describes the probability of contrarians
choosing to enter Room 1 when the system reaches balance.
It is known that at this balance state, the number of subjects in
the experiments (or normal agents in the simulations) choosing
to enter each room still varies at every time step due to
fluctuations. Hence we replace mn in Eq. (5) with Nn1/Nn

and get 〈xc〉 = ∑y

q=0 C
q

k (Nn1/Nn)q(1 − Nn1/Nn)k−q, where
Nn1 is the number of subjects or normal agents who choose
to enter Room 1, and the average of xc, 〈xc〉, represents
the expected probability of contrarians choosing Room 1. Note
that 〈xc〉 is a random variable due to the fluctuations of Nn1.

FIG. 7. (Color online) N1/N versus Nn1/Nn according to Eq. (7).
The three horizontal gray dot lines are given by N1/N = 0.5, 0.75,
and 0.909, which are respectively related to the balance state of three
resource ratios, M1/M2 = 1, 3, and 10.

Then, according to Eq. (6), we obtain

N1

N
= Nn1/Nn + βc〈xc〉

1 + βc

. (7)

By drawing N1/N versus Nn1/Nn, we achieve Fig. 7, which
shows the influence of the deviations of Nn1/Nn on N1/N

under different values of βc. For M1/M2 = 1, it is shown that
the balance point of the system lies on A0 (0.5,0.5) when βc =
0, 0.1, 0.3, and 0.5. And the deviations of Nn1/Nn can cause the
system to vibrate around A0 along a certain line in Fig. 7, which
is determined by βc. Then, Fig. 7 shows that, under the same
range of deviations of Nn1/Nn, by increasing βc, we can bring
down the vibration of N1/N around N1/N = 0.5. In addition,
we can see from Fig. 7 that, when βc becomes too large, such
as βc = 1 or 2, A0 is no longer a stable point. The state of the
system tends to move to the right end of the associated line
because now more subjects or normal agents choosing to enter
Room 1 will make Room 1 easier to win. That is, when βc

is too large, adding more contrarians will lead the system to
a more unstable state. For a biased distribution of resources,
say, M1/M2 = 3, Fig. 7 shows that the balance point of the
system lies on different points for different values of βc, i.e.,
B0 (0.75,0.75), B1 (0.82,0.75), and B2 (0.97,0.75) for βc = 0,
0.1, and 0.3. It can be shown that adding a small number of
contrarians makes the system with a biased distribution of
resources more stable due to the following two reasons: 1)
under the same deviations of Nn1/Nn, the vibration of N1/N

(say, around B0, B1, or B2 for M1/M2 = 3) decreases slightly
when adding more contrarians; and 2) when adding more
contrarians, the values of Nn1/Nn at the balance points (e.g.,
B0, B1, and B2 for M1/M2 = 3) increase; in this case, subjects
or normal agents will be more certain to choose Room 1,
which reduces the deviation range of Nn1/Nn, thus decreasing
the vibration of N1/N .

V. CONCLUSION

In summary, using the three tools, we have investigated the
role of contrarian behavior in a resource-allocation system. In
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contrast to the common belief that contrarian behavior always
plays a positive role in resource allocation (say, it stabilizes
resource allocation by shrinking the redundancy or the lack of
resources), the transition points have helped us to reveal that
the role of contrarian behavior in resource-allocation systems
can be either positive (to stabilize the system, to improve
the system efficiency, and to make the system unpredictable)
or negative (to unstabilize the system, to reduce the system
efficiency, and to make the system predictable) under different
conditions. Further, the transition points identified herein
have also helped us to show that resource allocation can be
optimized by including an appropriate size of contrarians.

Our work is also expected to be of value to other fields.
In management and social science, administrators should not
only conduct contrarianism when finding the formation of a
herd, but also need to consider system environment and timing
to see whether contrarianism is globally positive or negative.
In ecology and evolution, it is not only necessary to study
the mechanism of contrarian formation, but also to pay more
attention to the effect of contrarianism on the whole ecological
system and evolution groups.
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APPENDIX: ABOUT THE EXPERIMENT

The existence of contrarians is not told to the subjects in
the experiment. The contrarians generated by the computer
program play the online game together with the subjects. The
parameters, M1/M2 and βc, are controlled by the experiment
organizer via the control panel (Fig. 8), and every parameter
set (i.e., each pair of M1/M2 and βc) lasts for 30 rounds.
The values of the parameter set are not told to the subjects
either. The experiment organizer only lets every subject know
whether he or she wins or loses after each experimental round
(Fig. 9). Details can be found in the following leaflet, which

FIG. 8. (Color online) The control panel for the experiment
organizer to adjust parameters.

FIG. 9. (Color online) The two panels for subjects in the
experiments.

was explained to the subjects who participated in the computer-
aided online human experiment.

Leaflet to the Experiment
Thank you for participating in this experiment! Please read

the instructions of the experiment carefully before starting to
play. If you have any questions, please feel free to ask. No
communication is allowed once the experiment starts.

Everyone will be allocated with an anonymous account
in the experiment. You will use the account throughout the
experiment. After logging in, you will see page 1/2 (in Fig. 9)
with two options: Room 1 and Room 2. Each room will own an
amount of resources, labeled as M1 and M2. You can choose
to enter either Room 1 or Room 2, and then click “Okay” and
wait. The page will automatically turn to page 2/2 after all the
players have finished. The result of this round and the current
score will be shown in page 2/2. You will have 15 seconds
to check the results. After that, the page will automatically
change to page 1/2 again and the next round starts.

The total number of players entering Room 1 is N1, and
N2 for Room 2. After all players finish, the computer program
will choose the winners according to the resource per capita
determined by M1

N1
> M2

N2
or M1

N1
< M2

N2
.

If M1
N1

> M2
N2

, those who choose Room 1 win.

If M1
N1

< M2
N2

, those who choose Room 2 win.
Example:
Suppose the resources in Room 1 and Room 2 are both 100

units. If 30 players choose to enter Room 1 and 70 players
choose to enter Room 2, each player in Room 1 will have
more resources per capital, and he or she wins. Suppose the
resources in Room 1 and Room 2 are 100 units and 200 units,
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respectively. If 50 players choose to enter Room 1 and 50
players choose to enter Room 2, then each player in Room 2
will have more resources per capital, and he or she wins.

Notice:
The resources in Room 1 and Room 2 (M1 and M2) and

the number of players entering Room 1 and Room 2 (N1 and
N2) will not be announced. You cannot see the other players’
options. Only your results will be shown on your computer
screen after every round. You can use this information to

decide which room to enter in the next round. Every account’s
original score is set to 0. Ten scores will be added in every
round if you win and 0 added if you lose. We will pay
you cash with the exchange rate, 10 scores = 1 Chinese
Yuan, after the experiment finishes. In addition, we will pay
every player 30 Chinese Yuan as the attendance fee, and
reward the top 10 players (with the highest scores after all
the experiment is completed) each with extra 100 Chinese
Yuan.
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