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Isothermal absorption of soluble gases by atmospheric nanoaerosols

T. Elperin,* A. Fominykh,† and B. Krasovitov‡

Department of Mechanical Engineering, The Pearlstone Center for Aeronautical Engineering Studies,
Ben-Gurion University of the Negev, P.O. Box 653, 84105, Israel

A. Lushnikov§

Karpov Institute of Physical Chemistry, 10, Vorontsovo Pole, 105064 Moscow, Russia
(Received 13 September 2012; published 15 January 2013)

We investigate mass transfer during the isothermal absorption of atmospheric trace soluble gases by a single
droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that
the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according
to the first-order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes
constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the
transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed
for absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3), and chlorine (Cl2) by liquid nanoaerosols
accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols, the
kinetic effects play a significant role, and neglecting kinetic effects leads to a significant overestimation of the
soluble gas flux into a droplet during the entire period of gas absorption.
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I. INTRODUCTION

Atmospheric aerosols are directly emitted into the atmo-
sphere from natural or anthropogenic sources, or they can be
formed in the atmosphere through the nucleation of gas-phase
species. Aerosol nucleation events produce a large fraction
of atmospheric aerosols. New particle formation occurs in
two distinct stages, i.e., nucleation to form a critical nucleus
and subsequent growth of the critical nucleus to a larger
size (>2–3 nm) that competes with the capture and removal
of the freshly nucleated nanoparticles by coagulation with
pre-existing aerosols [1]. In the continental boundary layer,
there are frequent observations of the formation of ultrafine
aerosol particles accompanied by subsequent growth [2].
Gas absorption of soluble trace atmospheric gases by liquid
atmospheric aerosol particles including ultrafine particles
plays an important role in climate and atmospheric chemistry.

The consequence of aerosol climate forcing is that cooling
can be intensified with increasing atmospheric amounts of
water-soluble trace gases such as HNO3, counteracting the
warming effect of greenhouse gases [3]. Scavenging of
atmospheric gaseous pollutants by cloud droplets is a result
of the gas absorption mechanism [4,5]. Gas scavenging
of highly soluble gases by atmospheric water droplets in-
cludes absorption of HNO3,H2O2,H2SO4,HCL, and some
other gases. The sources of these gases in the atmosphere
are briefly reviewed in Refs. [6,7]. Soluble gas absorption
by noncirculating droplets was investigated experimentally
in Ref. [8], where conditions of noncirculation for falling
liquid droplets were determined by employing water droplets
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with the Sauter mean diameter equal to 0.185, 0.148, and
0.137 mm.

Gas absorption by stagnant liquid droplets in the presence
of inert admixtures when both phases affect mass transfer
was analyzed in Ref. [9], pp. 54 and 55. The criterion of
applicability of the steady-state assumption to the problem
of simultaneous diffusion and aqueous-phase reaction was
considered by Schwartz and Freiberg [10]. They showed that
a condition for using a steady-state approximation for mass
transport during gas absorption by a droplet reads

t � τreag = nL,eq

Rmax
, (1)

where t is the overall time of the process, τreag is the character-
istic time of the reagent supply, nL,eq is the equilibrium value of
aqueous-phase reagent concentration, Rmax = 3DGnG,eq/a

2 is
the gaseous-phase diffusion-limited maximum rate, DG is the
gas-phase diffusion coefficient, nG,eq is the equilibrium value
of gas-phase bulk concentration, and a is the droplet radius.
Equilibrium is attained when t � τreag [10]. Scavenging of
soluble gases by single evaporating droplets was studied in
Refs. [11,12].

All the aforementioned works considered trace gas ab-
sorption in the continuous limit, where Fick’s law relates
the flux and the concentration gradient of reactant. Recently,
some studies have attempted to describe the reactant transport
in the gaseous phase in the free-molecular and transition
regimes, where the droplet size is less than or comparable to
the mean free path of the molecules in the gaseous phase.
Discussion of recent results and approaches can be found
in Refs. [6,13–16]. The existing attempts to describe the
transitional and free-molecule regimes have encountered some
difficulties in formulating the boundary conditions to the
transport equations. For example, in Ref. [17] the diffusion
equations and a microscopic boundary condition for describing
the reactant transport toward the particle surface were used.
The rigorous approach requires a solution of the full transport
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problem, including the reactant transport in the gaseous phase
and the gas-liquid interface, by solving the Boltzmann kinetic
equation and the diffusion-reaction equation inside the droplet.

In this study, we employ a different approach for describing
gas uptake by nanodroplets. We modify the flux-matching
approach of Ref. [18] by including the in-particle chemical
transformations of the reactant molecules. The results are
applied for consideration of the trace gases scavenging by
atmospheric aerosols.

Let us assume that the reactant molecules (A molecules)
move toward the droplet which captures them. The ultimate
fate of the reactant molecules depends on the results of the
chemical reactions inside the particle. Let us denote by n±
the concentrations of A molecules right outside (n+) or right
inside (n−) the particle surface. Clearly, these concentrations
n± depend on the nature of the physicochemical processes
at the surface and inside the particle. Let n∞ be the number
density of A molecules far from the particle. It is commonly
accepted that the concentration difference n∞ − n+ drives a
flux of A molecules toward the particle surface. The mass of
the particle begins to increase, and its chemical composition
changes. The rate of change of the number of A molecules
inside the particle is equal to the total flux J , i.e., the total
number of molecules deposited per unit time at the particle
surface minus the rate of consumption of molecules A by
the chemical reaction inside the particle. Some fraction of A

molecules is assumed to escape from the particles. In steady-
state conditions, the flux J can be written as

J = α(a)(n∞ − n+), (2)

where α(a) is the capture efficiency and a is the particle
radius. Clearly, the capture efficiency α depends on the mass
accommodation coefficient Sp. The latter is defined as the
probability for an A molecule to stick to the particle after a
single collision. Since the interface and in-particle processes
determine the value of n+, Eq. (2) can be rewritten as follows
[16]:

J = α(a)n∞
1 + α(a)ψ(a,J )

, (3)

where ψ(a,J ) is a function depending on the nature of the
chemical reaction. In the case of the first-order chemical
reaction, the function ψ is independent of J . However, if the
chemical reaction inside the particle is of higher order, then J

is a solution of the nonlinear algebraic equation (3). Note that
we did not specify the functions α(a) and ψ(a,J ) in Eq. (3).
The information on the processes at the surface and inside the
particle is carried by the function ψ(a,J ). Hence, Eq. (3) is
quite general. All further approximations concern the values
of the uptake efficiency α(a) and the reaction function ψ(a).

II. DESCRIPTION OF THE MODEL

A. Preliminary remarks

The characteristic times of changes of the number density
of reactant A in gaseous and liquid phases differ by several
orders of magnitude. In particular, the relaxation time inside
the micrometer-sized droplet is τL ∝ a2/DL � 10−3 s, where
DL � 10−5 cm2/s denotes the diffusivity of the reactant
molecules in the liquid phase. The relaxation time in the

gaseous phase can be estimated as τG ∝ a/vT � 10−8 s, where
vT is the mean thermal velocity of the reactant molecules,
vT � 102 m/s. Here one can use the free molecular estimate
because the droplet size is of the order of the mean free path
of the reactant molecule. Following [6], the characteristic time
of diffusion in a gaseous phase, corresponding to the time
required by gas-phase diffusion to establish a steady-state
profile around a particle, can be alternatively estimated as
τG ∝ a2/DG � 10−8 s. As can be seen from these estimates,
the characteristic time of diffusion in a gaseous phase, τG,
is much smaller than the characteristic time of diffusion in
the liquid phase, τL, which is required for a saturation of
the droplet by soluble gas (i.e., τG � τL). Therefore, for the
large values of t (t � τG), it is reasonable to assume that the
concentration profile in a gaseous phase in the transitional
regime and the flux attain their quasi-steady-state values [19]
and are determined by Eq. (2) [or in more general form by
Eq. (3)]. Schwartz and Freiberg [10] showed that regarding
the mass transfer in a liquid phase for t = λ−1 (where t is
the overall time of the process and λ is the reaction rate), the
mass flux differs from the steady-state value by ≈7%, and
for t = 2λ−1 the difference is 1.1% only. In the case of SO2

absorption by a water droplet the magnitude of λ−1 is of the
order of 103 s. These estimations show that in the case of
nanoaerosols, the steady-state regime of mass transfer in an
aqueous phase is not realized.

The molecular mean free path in air at normal conditions is
� ≈ 65 nm, i.e., it is comparable to the sizes of the nanometer
droplets. This implies that the motion of the reactant molecules
cannot be described as Fickian diffusion, and one must apply
the Boltzmann kinetic theory. However, solving the Boltzmann
equation analytically or numerically is a formidable task.

The idea of applying the flux-matching approach in aerosol
kinetics was pioneered in Ref. [20] by Fuchs. His reasoning
was quite simple. At a large distance from the droplet, the
reactant transport can be described by the diffusion equation.
In the vicinity of the droplet at distances of the order of � or less,
the collisions with the carrier gas do not hinder the reactant
transport. Consequently, inside the region a < r < R ∝ � (R
is referred to hereafter as the radius of the limiting sphere),
the reactant molecules move in the free molecule regime. The
value of R must be found from different consideration. Fuchs
and Sutugin [21] proposed to determine this value from the
numerical solution of the BGK equation; see, e.g., [22]. An
improved version of the Fuchs interpolation formula [20] was
obtained in Ref. [23] in the near-continuum regime by solving
the Boltzmann equation using the momentum method.

B. Trapping efficiency

The latest modification of the Fuchs theory [16,18] includes
the solution of the diffusion equation with a fixed flux J in
the diffusion zone r > R, the solution of the collisionless
Boltzmann equation in the free molecular zone r < R, and
determining the radius of the limiting sphere from the condi-
tion of equality of the fluxes in both zones. The expression for
α(a) was found in Ref. [18] for n+ = 0 and Sp = 1:

α(a) = 2πa2vT

1 +
√

1 + (
avT

2DG

)2
, (4)
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where DG is the reactant diffusivity in the carrier gas. The
extension of this formula to the case n+ � 0 and Sp � 1 reads
(for details, see [16])

α(a) = Spπa2vT

1 + Sp

2

[√
1 + (

avT

2DG

)2 − 1
] . (5)

The radius R of the limiting sphere is found from the
condition of the equality of the flux in the diffusion region
and the flux in the free molecular region. This condition yields
the formula for the radius of the limiting sphere [16,18]:

R =
√

a2 +
(

2DG

vT

)2

. (6)

It must be noted that R is independent of Sp and n+. The
spherical surface with radius R separates between the zones of
the free-molecular and the continuous flow regimes. The value
of 2DG/vT is of the order of �, the reactant molecule mean
free path. Hence, if a � � or less, then the radius R is of the
order of R � �.

The concentration profile of the reactant n(r) in the gaseous
phase inside the limiting sphere a < r < R is continuous at
r = R together with its first derivative and is given by the
following formula [18]:

n(r) − n+
n∞ − n+

=
(

1 − α(a)

4πDGR

)
b(r)

b(R)
, (7)

where

b(r) = 1 − Sp

2

(
1 −

√
1 − a2

r2

)
. (8)

Outside the limiting sphere at r � R,

n(r) − n+
n∞ − n+

= 1 − α(a)

4πDr
. (9)

Note that the number density n(a) is always larger than n+.
The formula for the concentration jump at the particle surface
reads [16]

�a = n(a) − n+ = (n∞ − n+)

(
1 − α(a)

4πDGR

)
b(a)

b(R)
. (10)

Inspection of Eq. (5) shows that when avT /2DG � 1, α(a) =
4πaDG, and Eq. (5) recovers the Maxwell equation for the
molecular flux in the continuum regime Jc:

Jc = 4πaDG(n∞ − n+). (11)

In Fig. 1, we showed the dependence of the ratio J/Jc

versus the Knudsen number Kn for different values of the
accommodation coefficient Sp (Sp was assumed to be 0.1, 0.2,
0.5, and 1.0 and DG � 10−5 m2/s).

As can be seen from this plot, the role of the kinetic effects
can be significant for Kn � 0.1.

Comparison of mass transfer rates as a function of Kn
predicted by different theories [18,20,21,23] is shown in Fig. 2.
As can be seen from Fig. 2, all approaches yield approximately
the same results for small Kn numbers, Kn � 0.1, and for
Kn � 10.

FIG. 1. Ratio of the molecular flux to the molecular flux in a
continuum regime, J/Jc , as a function of Knudsen number Kn.

C. Inner diffusion-reaction equation

Consider now the effect of the first-order chemical reaction,
e.g., chemical reaction dissociation, inside the droplet on
the reactant flux toward the droplet. It is assumed that
the concentration of the trace soluble gas is much smaller
than the concentration of the carrier gas. Consequently, the
approximation of infinite dilution of the soluble gas in a liquid
phase can be applied. Neglecting recombination, the number
density of reactant molecules inside the particle nL(r,t) is
governed by the linear diffusion-reaction equation:

∂nL

∂t
= DL�nL − λnL, (12)

where nL = nL(r,t) is the number density of reactant
molecules inside the particle, DL is the reactant diffusivity in
the liquid phase, and λ is the dissociation rate. Equation (12)
must be supplemented with the initial condition

nL(r,0) = 0 (13)

FIG. 2. Ratio of the molecular flux to the molecular flux in a
continuum regime, J/Jc , as a function of Knudsen number Kn: ——,
[20]; – – –, [21]; – · –, [23]; – ·· –, [18]. Accommodation coefficient
Sp = 1.
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(no reactant inside the droplet at t = 0) and the boundary
conditions

∂nL(r,t)

∂r

∣∣∣∣
r=0

= 0 (14)

and

j (t) = −DL

∂nL(r,t)

∂r

∣∣∣∣
r=a

, (15)

where j = j (t) is the flux density j = J/(4πa2) and J is the
total flux.

Equation (12) together with the initial and boundary condi-
tions (13)–(15) can be solved analytically (see Appendix).
The result is the concentration profile nL(r,t) as a linear
functional of j (t). Substituting the determined concentration
distribution nL(r,t) into the boundary condition, Eq. (15),
yields the integral equation of Volterra type [24] for j (t):

j (t) = α(a)

4πa2

[
n∞ − H

∫ t

0
S(t − t ′)j (t ′)dt ′

]
, (16)

where

S(ξ ) = 2
∑
n> 0

e−[DL(μn/a)2+λ]ξ + 3e−λξ (17)

and μn is the infinite set of the roots of the following
transcendental equation:

μ = tan(μ). (18)

Equation (16) can be rewritten in dimensionless form for the
dimensionless flux j ∗(τ ) = j (t)4πa2/α(a)n∞, τ = DLt/a

2:

j ∗(τ ) = 1 − g(a)
∫ τ

0
S∗(τ − τ ′)j ∗(τ ′)dτ ′, (19)

where g(a) = 3α(a)H
4πaDL

and

S∗(τ − τ ′) = e−Da(τ−τ ′)

[
1 + 2

3

∞∑
n=1

e−μ2
n(τ−τ ′)

]
. (20)

In Eqs. (19) and (20), Da = λa2/DL is Damkohler number,
H = (HART )−1, HA is Henry’s law constant, R is a universal
gas constant, and T is the temperature in the gaseous phase.

III. NUMERICAL METHOD

For the solution of the integral equation (19) we use the
method based on the approximation of the integral in Eq. (19)
using some quadrature formula:∫ b

a

F (x)dx =
n∑

j=1

AjF (xj )dx + Rn(F ), (21)

where xj ∈ [a,b], j = 1,2, . . . ,n, Aj are the coefficients
associated with a family of quadrature rules, and Rn(F ) is
a corresponding residuum. Taking successively x = xi (i =
1, . . . ,n) and using the quadrature formula after discarding the
terms Rn(Fi) (i = 1, . . . ,n), we obtain the following system
of linear algebraic equations:

j ∗
i − g(a)

n∑
j=1

AjS
∗
ij j

∗
j = 1 (i = 1, . . . ,n). (22)

The solution of Eqs. (22) yields the approximative value of
the unknown function ji at the mesh point τi . The system of
Eqs. (22) can be written in the following form:

−
i−1∑
j=1

AjKij j
∗
j + (1 − AiKii)j

∗
i = 1, (23)

where Kij = g(a)S∗
ij . In a matrix form, the system of Eqs. (22)

can be written as follows:⎛
⎜⎜⎜⎜⎝

1 − A1K11 0 · · · 0

−A1K21 1 − A2K22 · · · 0
...

. . .

−A1Kn1 −A2Kn2 · · · 1 − AnKnn

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

j ∗
1

j ∗
2

...

j ∗
n

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1

1
...

1

⎞
⎟⎟⎟⎟⎠ . (24)

Using the unequally spaced mesh with an increment hi =
τi − τi−1, i = 2, . . . ,n and applying the trapezoidal integra-
tion rule Eqs. (22) yield the following recurrent equations:

j ∗
1 = 1, j ∗

2 = 1 + h2
2 K21j

∗
1

1 − h2
2 K22

,

j ∗
i = 1 + h2

2 Ki1j
∗
1 + ∑i−1

j=2

( τj+1−τj−1

2

)
Kij j

∗
j

1 − hi

2 Kii

(i = 3, . . . ,n).

(25)

Equations (25) are valid in the case in which hi �= 2
Kii

.
In the numerical calculations, we spaced the mesh points

adaptively using the following formula:

τi = τ1 + (τN − τ1)

[
1 − cos

(
π

2

i − 1

N − 1

)]
(i = 1,2, . . . ,N ).

(26)

FIG. 3. Total molecular flux of sulfur dioxide as a function of
time (droplet radii a = 1.0, 0.8, and 0.5 μm).
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FIG. 4. Total molecular flux of sulfur dioxide as a function of
time (droplet radii a = 100.0, 80.0, and 50.0 nm).

In Eq. (26), N is the chosen number of mesh points, and τ1

and τN are the locations of the left and right boundaries of the
time interval, respectively.

IV. RESULTS AND DISCUSSION

Using the suggested model, the calculations were per-
formed for sulfur dioxide (SO2), dinitrogen trioxide (N2O3),
and chlorine (Cl2) absorption by water aerosol particles. To
validate our model, we compared the results obtained using the
suggested model with the results obtained in our previous study
for large droplets (Kn � 1) (see, e.g., [12]). The calculations
were performed for the SO2 absorption by a nonevaporating
water droplet of 10 μm in radius. The concentration of sulfur
dioxide in ambient air was assumed to be 0.01 ppm. The
calculations showed that the time of the complete saturation
of a droplet by sulfur dioxide estimated using the suggested
model is ≈0.08 s, while the time of complete saturation of a
droplet by sulfur dioxide estimated using our previous model
is ≈0.1 s. These calculations demonstrate that the results
obtained by both models are in fairly good agreement.

The results of calculation of the total mass flux of sulfur
dioxide as a function of time are shown in Figs. 3 and 4.

FIG. 5. Dimensionless molecular flux density j ∗(τ ) as a function
of dimensionless time τ (radius of the droplet a = 100 nm).

FIG. 6. Dimensionless molecular flux density j ∗(τ ) as a function
of dimensionless time τ [solid line, α(a) = 4πaDG; dashed line, α(a)
calculated using Eq. (4)].

The calculations were performed for various radii of a water
aerosol particle (from 0.5 to 1.0 μm, 0.07 � Kn � 0.14, see
Fig. 3, and from 50 to 100 nm, 0.7 � Kn � 1.42, see Fig. 4).

As can be seen from these plots for small and moderate sized
droplets, the flux of absorbate decreases rapidly at the initial
stage of gas absorption and approaches zero asymptotically
at the final stage of the process. The vanishing flux of the
absorbate implies the stage of saturation of a droplet by gas.

The results of calculation of the dimensionless flux j ∗(τ ) =
j (t)4πa2/α(a)n∞ as a function of dimensionless time τ =
DLt/a2 for different gases such as sulfur dioxide, chlorine,
and dinitrogen trioxide are shown in Fig. 5. Larger values of
mass flux at the later stages of gas absorption for N2O3 in
comparison with SO2 and Cl2 absorption can be explained by
large values of the constant of chemical reaction for N2O3 gas
absorption in water (λN2O3 = 1.2 × 104 s−1, λSO2 = 10−3 s−1,
and λCl2 = 13.3 s−1).

Enhanced depletion of the dissolved gaseous N2O3 in a
water droplet due to chemical reaction leads to a decrease
of N2O3 concentration in the bulk of a water droplet and to
an increase of the concentration gradient at the interface in
a liquid phase. These two factors increase the mass transfer

FIG. 7. Concentration of the dissolved SO2 in the bulk of a droplet
as a function of time (radii of a droplet 0.5, 0.8, and 1.0 μm).
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FIG. 8. Concentration of the dissolved SO2 in the bulk of a droplet
as a function of time (radii of a droplet 5.0, 10.0, and 20.0 nm).

coefficient in a droplet and increase the driving force of mass
transfer in liquid.

As was mentioned above in the case of large droplets (Kn �
1), the capture efficiency [see Eqs (4) and (5)] can be expressed
by α(a) = 4πaDG. Consequently, the flux of soluble gas in a
gaseous phase is expressed by an equation similar to Maxwell’s
equation [see Eq. (11)]. In Fig. 6, we showed the results of
calculation of the dimensionless flux j ∗(τ ) of sulfur dioxide
as a function of the dimensionless time τ . It was assumed
that the concentration of sulfur dioxide in a gaseous phase is
equal to 1 ppb, the temperature in a gaseous phase is 298 K,
and the radius of a water nanoparticle is equal to 10 nm. The
dashed line presents the results of calculation when the capture
efficiency was calculated using Eq. (5). In our calculations, we
assumed that the accommodation coefficient Sp = 1. The solid
line present the results of calculation without using the kinetic
approach, and thereby the capture efficiency was assumed to
be equal to α(a) = 4πaDG. As can be seen from these plots,
neglecting kinetic effects in the case of gas absorption by
nanoaerosols can lead to an essential overestimation of mass
flux.

FIG. 9. Effect of Knudsen layer on temporal evolution of con-
centration of the dissolved SO2 for droplets with the radii 5.0 and
10.0 nm.

Dependence of the average concentration of soluble sulfur
dioxide in a droplet versus time is shown in Figs. 7 and 8.
Calculations were performed for water droplets with the radii
0.5, 0.8, and 1 μm (Fig. 7) and for water droplets of radii 5,
10, and 20 nm (Fig. 8).

In these calculations, we employed the kinetic approach by
using Eq. (5) for the capture efficiency α(a) with Sp = 1. In
Fig. 9, the dependence of average concentration of SO2 in a
droplet versus time was calculated using the kinetic approach
(solid lines) and neglecting kinetic effects (dashed lines).
Calculations were performed for the droplets with the radii
10 and 5 nm. As can be seen from these plots, neglecting
kinetic effects leads to a significant overestimation of the
concentration of the dissolved gas in a droplet during the entire
period of gas absorption. Clearly, when the duration of gas
absorption t → ∞, both approaches yield the same result for
the magnitude of the dissolved gas concentration.

V. CONCLUSIONS

In this study, we developed a model for absorption of
soluble trace gases by nanoaerosols taking into account
dissociation reaction of the first order in a liquid phase. In
the case in which the radius of the particle is comparable
with the mean free path, transport of reactant molecules
cannot be described by Fickian diffusion. However, application
of the flux-matching theory allowed using the transient
diffusion equation with the kinetic boundary conditions for the
description of gas absorption by nanoaerosols. The transient
diffusion equation was solved analytically and we derived
a linear integral equation of Volterra type for the transient
mass flux to a liquid droplet. The integral equation was solved
numerically by the method based on the approximation of the
integral using the quadrature formula with unequally spaced
mesh.

The comparison of the suggested model with our earlier
model developed for gas absorption by large droplets (Kn �
1) (see [12]) showed that both models require the same
amount of time for complete saturation of a large droplet
by the soluble gas. Using the suggested model, we studied
absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3),
and chlorine (Cl2) by water nanoaerosol. It was shown that
enhanced depletion of the dissolved N2O3 gas in a water
droplet due to a chemical reaction leads to a decrease of
N2O3 concentration in the bulk of a water droplet and to
an increase of the concentration gradient at the gas-liquid
interface. Consequently, the flux of dinitrogen trioxide into a
droplet is higher than the fluxes of sulfur dioxide and chlorine
at later stages of gas absorption. It was demonstrated that
neglecting kinetic effects leads to a significant overestimation
of the soluble gas flux into a droplet during the entire period
of gas absorption.

APPENDIX: DERIVATION OF THE INTEGRAL EQUATION
OF VOLTERRA TYPE FOR THE MOLECULAR

FLUX DENSITY

Here we give the details of the derivation of Eq. (16). Let us
first remove j from the boundary condition (15). To this end,
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let us introduce the unknown function C(r,t):

nL = C(r,t) − j (t)r

DL

. (A1)

Substituting Eq. (A1) into Eq. (12), and taking into account that
in spherical coordinates the Laplacian �r = 2/r , we obtain
the following equation for C(r,t):

∂C

∂t
= DL�C + rjt

DL

− 2j

r
− λC + λjr

DL

, (A2)

with the following boundary conditions:

∂C

∂r

∣∣∣∣
r=a

= 0 (A3)

and
∂C

∂r

∣∣∣∣
r=0

= j

DL

∣∣∣∣
r=0

. (A4)

The substitution

C(r,t) = χ (r,t)

r
(A5)

reduces Eq. (A2) to

∂χ

∂t
= DL

∂2χ

∂r2
− λχ − 2j + 1

DL

(r2jt + λjr2). (A6)

The boundary conditions to Eq. (A6) read

∂χ

∂r

∣∣∣∣
r=a

− χ

r

∣∣∣∣
r=a

= 0 (A7)

and

χ |r=0 = 0. (A8)

Let us introduce the eigenfunctions

d2φn

dr2
= −κ2φn, (A9)

where the boundary conditions to Eq. (A9) are the same as for
χ , i.e., they are given by Eqs. (A7) and (A8),

∂φn

∂r

∣∣∣∣
r=a

− φn

r

∣∣∣∣
r=a

= 0, φn|r=0 = 0. (A10)

Then the solution of Eq. (A9) reads

φn = un sin

(
μn

r

a

)
, (A11)

where μ = κa is the infinite set of the roots of the characteristic
equation:

μ = tan(μ). (A12)

The roots μn of Eq. (A12) can be calculated numeri-
cally and are as follows: μ1 = 4.4934, μ2 = 7.7253, μ3 =
10.9041, μ4 = 14.0662, μ = 17.2208, etc. The orthogonality
condition for eigenfunctions reads∫ a

0
φnφmdr = δnm, (A13)

where δnm is the Kronecker delta. Equation (A13) allows us to
determine the normalization constant un:

u2
n =

( ∫ a

0
sin2

(
μn

r

a

)
dr

)−1

= 2

a sin2 μn

. (A14)

The eigenvalue μn = 0 [which is also the solution of
Eq. (A12)] and the respective eigenfunction require special
consideration. The solution of Eq. (A9) for μn = 0 reads

φ0(r) = u0r, (A15)

where the normalization constant u0 is determined from (A13):

u0 =
√

3

a3
. (A16)

Let us now look for the solution to Eq. (A6) in the following
form:

χ (r,t) = 2�0(t)φ0 +
∑
n>0

�n(t)φn(r), (A17)

where the coefficient 2 appears due to double degeneration of
the eigenvalue μn = 0. The equation for �n reads

d�n

dt
= −σn�n + 1

DL

(jt + λj )bn − 2jan, (A18)

where

σn = λ + DL

(
μn

a

)2

, an = un

∫ a

0
sin

(
μn

r

a

)
dr,

bn = un

∫ a

0
r2 sin

(
μn

r

a

)
dr, (A19)

and

σ0 = λ, a0 = u0

∫ a

0
r dr = 1

2

√
3a,

b0 = u0

∫ a

0
r3dr = 1

4

√
3a5. (A20)

For n > 0, we obtain

�n(t) = bnj (t)

DL

−
[(

μn

a

)2

bn + 2an

] ∫ t

0
j (t ′)e−σn(t−t ′)dt ′

(A21)

and

�0(t) = b0j (t)

DL

− 2a0

∫ t

0
j (t ′)e−λ(t−t ′)dt ′ (A22)

for n = 0. The number density of molecules A inside the
particle near the surface reads

n−(a,t) = χ (a,t)

a
− j (t)a

DL

. (A23)

Now let us determine χ from Eq. (A17). Noting that

∑
n�0

bnφn(a) = a2

4
(A24)

and [(
μn

a

)2

bn + 2an

]
φn(a) = 2, n > 0, (A25)

[(
μn

a

)2

bn + 2an

]
φn(a) = 3, n = 0, (A26)
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and using Eqs. (A17) and (A21)–(A23), we arrive at the
following equation:

n−(a) = −2
∑
n>0

∫ t

0
e−σn(t−t ′)j (t ′)dt ′ − 3

∫ t

0
e−λ(t−t ′)j (t ′)dt ′.

(A27)

According to Henry’s law, n+ = Hn−. Using the equation for
the flux density,

j (t) = 1

4πa2
α(a)(n∞ − n+), (A28)

we arrive at the following integral equation of Volterra type
for j (t):

j (t) = α(a)

4πa2

[
n∞ − H

∫ t

0
S(t − t ′)j (t ′)dt ′

]
, (A29)

where the kernel S(t − t ′) is given by the following formula:

S(ξ ) = 2
∑
n> 0

e−[DL(μn/a)2+λ]ξ + 3e−λξ . (A30)
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V.-M. Kerminen, W. Birmili, and P. H. McMurry, Aerosol Sci.
35, 143 (2004).
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