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Patient and impatient pedestrians in a spatial game for egress congestion
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Large crowds evacuating through narrow bottlenecks may create clogging and jams that slow down the egress
flow. Especially if people try to push towards the exit, the so-called faster-is-slower effect may occur. We propose
a spatial game to model the interaction of agents in such situations. Each agent has two possible modes of play
that lead to either patient or impatient behavior. The payoffs of the game are derived from simple assumptions
and correspond to a hawk-dove game, where the game parameters depend on the agent’s location in the crowd
and on external conditions. Equilibrium configurations are computed with a myopic best-response rule and
studied in both a continuous space and a discrete lattice. We apply the game model to a continuous-time egress
simulation, where the patient and impatient agents are given different individual parameter values, which are
updated according to the local conditions in the crowd. The model shows how threatening conditions can increase
the proportion of impatient agents, which leads to clogging and reduced flows through bottlenecks, even when
smooth flows would be possible.
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I. INTRODUCTION

The speed of pedestrian flow through bottlenecks is one
of the key factors affecting the outcome of evacuations. The
factors affecting these flows have been studied with evacuation
experiments [1–4] and by computer simulations [5,6]. One
of the key findings is the faster-is-slower effect [5], which
indicates that if individuals push harder towards an exit, the
flow through it may be reduced. This is due to the increased
pressure, which increases the interpersonal friction forces and
creates jams in front of bottlenecks.

The widely used social-force model describes the crowd
with a self-driven many particle system. It produces realistic
flows through bottlenecks and is able to create the faster-is-
slower effect [5]. However, there is no model that explains
or describes how, why, and when the crowd members adopt
impatient pushing behavior. The reasons for a change in the
behavior can be in the external conditions or in the behavior
of other crowd members.

In the literature of social psychology, the pushing behavior
is often related to panic [7]. Panic occurs in situations of scarce
and dwindling resources and panicking people tend to behave
irrationally and adopt a selfish attitude [8]. However, there
has been a consensus for decades that actual panic occurs
rarely in real crowds and evacuating people tend to behave
rationally [9–11].

There are some systematic experimental studies on the
factors leading to clogging [12,13]. The classic experiment of
Mintz [12] had aluminium cones put inside a bottle, each with
a string attached leading out of the bottle. Each participant held
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a string to one cone. Only one cone could pass the bottleneck
at a time and more cones at the bottleneck would create a jam.
The bottle started to slowly fill with water and the goal of the
participants was to get their cones out before they got wet. Each
participant was rewarded or fined according to the amount of
water on his cone. Mintz found out that, with this setting,
passing the bottleneck became uncoordinated, resulting in
jams and the wetting of many.

According to what is meant by panic in current literature, it
cannot be the reason for the outcome of Mintz’s experiment.
The participants’ lives were not threatened nor did they start
to behave completely irrationally. Rather, they observed the
situation and tried to act as good as possible to maximize their
reward.

The natural choice for computational modeling of strategic
interactions is game theory, which has also been applied to
evacuation modeling [14–18]. Brown [14] presented a game
theoretic explanation for the emergence of pushing behavior
in evacuation situations. He considered a prisoner’s dilemma
game with two players, the options of the players being either
to rush to the exit or to take turns. The payoffs of the prisoner’s
dilemma game are such that the rational action for everybody is
to rush, which results in jamming. Coleman [15] points out that
in evacuation situations people are able to observe the others’
actions, and thus, Brown’s one-shot game model would not be
adequate. Therefore, Coleman presents a thorough analysis of
different extensions to Brown’s model including, for example,
iterated prisoner’s dilemmas and contingent strategies.

The models of Brown and Coleman do not consider the
spatial nature of escape situations. People are unable to observe
the actions and interact with the whole crowd. Nevertheless, in
reality interactions occur with the nearest neighbors. Also, not
all crowd members are in the same situation. If no rushing
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occurs, the people in front of the exit escape fast, while
the ones in the back have to wait a long time. If time is a
limited resource, the agents at different locations are involved
in completely different games.

Spatial game theory is a method for modeling agent
interactions with their neighbors and the development of
strategies over time. Spatial games are usually studied in
two-dimensional lattices, where each individual occupies a
site. Especially two game models, the prisoner’s dilemma
[19–22] and the hawk-dove game [23–25], also called the
chicken game or the snowdrift game, have attracted lot of
attention.

The emergence of strategies in evolutionary games has been
studied with different dynamical models. In unstructured pop-
ulations, the replicator dynamics [26,27] models the process
of biological evolution. As generations proceed, high-payoff
strategies have a higher probability to survive and replicate
than low-payoff strategies. In spatial settings, the principles of
the replicator dynamics can be transferred to learning rules,
where successful strategies propagate to neighboring sites in
the lattice. There are plenty of different ways in which such
strategies can be implemented, but most of them are similar to
the replicator dynamics. A vast majority of studies on spatial
evolutionary games are based on some version of such learning
models (see, e.g., Refs. [19,24]).

While the replicator dynamics describes the evolution
of strategies over generations, some other learning models
describe the dynamics of a group of individuals playing a
game repeatedly. In reinforcement learning [28–31], agents
tend to repeat the strategies that in the past led to satisfac-
tory outcomes, while unsatisfactory experiences are avoided.
Reinforcement learners do not need to know the strategic
nature and the payoffs of the game they are playing. In the
myopic best-response learning models [16,27,32,33], when
updating their strategies, agents observe the actions of the
others and adopt the strategy that would give them the highest
payoff assuming the others stick to their current strategies.
Best-response learning models have been previously used to
model pedestrian interaction with others when selecting the
exit in evacuations [16], but also, for example, to describe
traffic flow in telecommunication networks [34,35]. Fictitious
play [27,36] is quite similar to the best-response dynamics, but
the players assume their opponents play a static mixed strategy
and estimate it from the whole history of their play.

In this study, we present a spatial game theoretic model
for pedestrian behavior in situations of exit congestion.
The options of the agents are either to behave patiently or
impatiently. The payoffs of our game are derived from natural
assumptions on crowd dynamics, which turn out to result
in a hawk-dove game matrix. Nevertheless, the parameters
of the game depend on the agents’ location in the crowd,
and thus, the agents in front of the exit play a different
game than the ones further back in the crowd. We apply
the best-response learning scheme and study the equilibria
of the game. The behavioral game model is coupled with the
popular social-force egress simulation model. The individual
parameters of the social-force model are set to depend on
the agents’ strategies. Simulation results show that the model
gives an explanation for the clogging occurring at bottlenecks
of egress routes under threatening conditions.

II. MODEL DESCRIPTION

For an agent queuing in front of an exit, the time it takes
for him to pass the exit can be estimated. This time depends
on the capacity of the exit, that is, how many agents are able to
pass it within a given time interval, and on the number of the
other agents that are closer to the exit [37]. We call this time
the estimated evacuation time of agent i, denote it by Ti , and
define it as

Ti = λi

β
, (1)

where λi is the number of other agents closer to the exit and β

is the capacity of the exit.
We assume that agents have a cost function that describes

the risk of not being able to evacuate before the conditions
become lethal. This is a function of Ti and is denoted by
u(Ti ; TASET). The shape of the cost function depends on a
parameter called the available safe egress time (ASET), which
we denote by TASET. The term ASET is widely used in the
literature and describes the time when fire-induced conditions
within an occupied space or building become untenable [38].
The value of TASET depends on the fire and smoke conditions.
Agents are assumed to observe their situation and these
conditions and estimate Ti and TASET. For the rest of this paper,
we denote the cost function only by u(Ti) for simplicity. We
also make the assumption that the cost function is increasing
and convex:

u′(Ti) � 0, u′′(Ti) � 0. (2)

The convexity assumption means that the further the agents
are from the exit, that is, the larger the Ti , the more they will
gain from reducing the estimated evacuation time Ti .

The agents interact with their nearest neighbors. The set
of agent i’s nearest neighbors is denoted by Ni . We assume
that each agent has two possible strategies of behavior: patient
and impatient. The agents playing the strategy impatient try to
push forward and overtake others while those playing patient
move with the crowd and try to avoid physical contacts. In
the interaction of two neighboring agents i and j , we define
Tij = (Ti + Tj )/2 as their average estimated evacuation time.
When the two agents interact with each other, we assume that
the agents expect the following outcomes.

(i) An impatient agent i can overtake its patient neighbor
j . This reduces Ti and increases Tj by �T . As a result, the
cost of agent i decreases by �u(Tij ) and the cost of agent j

increases by the same amount:

�u(Tij ) = u(Tij ) − u(Tij − �T ) � u′(Tij )�T. (3)

Since u′(Tij ) � 0, we have �u(Tij ) � 0.
(ii) Two patient agents do not compete with each other. They

keep their respective positions and their costs do not change.
(iii) When two impatient agents interact, neither can overtake
the other, but they will face a conflict where both have an equal
chance of getting injured. We describe this risk of injury by a
cost C > 0, which affects both players. We call the constant
C the cost of conflict.

From these assumptions, we can construct a 2 × 2 game
matrix (4), which is the basis of loss minimization of agent
i when playing against its neighboring agent j . Player i’s
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strategies are identified with the rows and player j ’s with
the columns. In the cells of the matrix, the first (second) value
describes the loss of agent i (j ), when they play the strategies of
the corresponding row and column. The total loss of the agent
is calculated as the sum of losses against all of its neighbors,
and based on this the agent selects the best strategy and plays
it against all of them. We will discuss this in detail in Sec. III.

Impatient Patient

Impatient C, C −Δu(Tij), Δu(Tij)

Patient Δu(Tij),−Δu(Tij) 0, 0

(4)

It is important to notice that the losses (gains) of game (4)
are functions of the average estimated evacuation time of the
two agents, Tij . Hence, the agents that are closer to the exit play
a different game than the ones in the back of the crowd. This
is natural because the agents near the exit expect to evacuate
faster, and thus, are in a less threatening situation than the ones
further back in the crowd.

When each payoff of game (4) is divided by �u(Tij ), the
game can be written as

Impatient Patient

Impatient
C

Δu(Tij)
,

C

Δu(Tij)
−1, 1

Patient 1,−1 0, 0

(5)

The game is symmetric and it depends only on the ratio
C/�u(Tij ), that is, the ratio between the cost of conflict and
the loss of getting overtaken.

Note that C/�u(Tij ) > 0, since �u(Tij ) and C are positive.
We omit the case �u(Tij ) = 0. The game to be played is

(i) prisoner’s dilemma (PD) if 0 < C
�u(Tij ) � 1,

(ii) hawk-dove (HD) if C
�u(Tij ) > 1.

The strategies impatient and patient correspond to hawk
and dove in the HD, and defect and cooperate in the PD,
respectively (see Appendix). Hence, the game is a PD if the loss
of letting another agent pass is greater than the cost of conflict.
In this case, the strategy impatient strictly dominates the
strategy patient and the game has only one Nash equilibrium
(NE) where both agents play impatient. Hence, in an area of a
crowd where all agents play a prisoner’s dilemma against all
of their neighbors, the equilibrium outcome is that all agents
end up playing impatient.

However, if the loss of letting another agent pass is smaller
than the cost of conflict, neither of the strategies dominates
the other and the game is a HD. This game has three Nash
equilibria. Two of the equilibria are in pure strategies: (agent
i plays impatient, agent j plays patient) and (agent i plays
patient, agent j plays impatient). The third equilibrium is in
mixed strategies, where the probability to play impatient is
P (impatient) = �u(Tij )/C and the probability to play patient
is P (patient) = 1 − �u(Tij )/C for both agents [39].

Due to the convexity assumption (2), the loss �u(Tij )
increases with increasing Tij . Hence, as the cost of conflict C

is constant, the proportion of impatient agents in the mixed
strategy NE increases when going further away from the
exit. At some distance, �u(Tij ) becomes greater than C and
the game turns into a PD. To adopt the terminology used
by Maynard Smith [26], we note that the mixed strategy
equilibrium is an evolutionarily stable strategy (ESS), while
the two pure strategy equilibria are not.

It should be emphasized that the outcomes of the above
game are what the agents think will happen in different
encounters. The agents’ decision making is based on these
expectations. Nevertheless, the realizations of the encounters
in a real moving crowd may differ from the expectations as
the crowd is a large complex system and all of the interactions
among the crowd are not considered in the simple assumptions
of this section. In Sec. VI, we couple the simple decision
making model with a continuous-time egress simulation
model. The agents’ individual movement parameters are set
to depend on their strategies; that is, the impatient agents are
set to push forward more aggressively. Hence, when coupling
the game strategies with egress simulation, the actual outcome
of an interaction is not necessarily exactly what the agents’
assumed when selecting their strategies. Before that, we study
the properties of the derived game. In Sec. III, the form of
the cost function u(Tij ) is derived from simple assumptions.
Section IV describes the spatial setting and learning dynamics
that are used in the computational part. In Sec. V, we compute
equilibria of the game in a static spatial setting and study their
properties.

III. THE COST FUNCTION

In Sec. II, we presented the general assumptions on the cost
function u(Tij ). The cost depends on the average estimated
evacuation time Tij and the available safe egress time TASET

and it describes the threat of not being able to evacuate before
the conditions get lethal.

In the general description of the model, we only made
the assumption of Eq. (2) that the cost function is increasing
and convex. However, to be able to analyze the model
computationally, the function needs to be specified. In the rest
of this paper, we assume for simplicity that the time gained by
overtaking, �T , has a constant value of 1 s.

To describe the shape of the cost function, we define another
parameter denoted by T0. It describes how short the time
difference between Tij and TASET has to be before the agents
start playing the game. If Tij < TASET − T0, the game is not
played and all agents behave patiently.

We derive the explicit form of the cost function satisfying
the following assumptions (see Fig. 1).
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FIG. 1. Illustration of the parameters of the cost function. The
function in the figure has the parameter values TASET = 100, T0 = 50,
and C = 2.

(1) When Tij < TASET − T0, the game is not played and
u(Tij ) ≡ 0.

(2) When Tij > TASET − T0, the cost function starts to
increase quadratically.

(3) u′(TASET) = C. This assumption means that when Tij �
TASET, the game turns into a PD.

The general purpose of these assumptions is to make the
model produce coherent results for different crowd sizes and
different values of TASET. A cost function that meets these three
assumptions is a quadratic function of Tij defined by the given
parameters. Hence, in all situations, the game to be played
depends only on the difference Tij − TASET; that is, regardless
of the size of the crowd or the value of TASET, the agents with a
given value of Tij − TASET will play the same game. With this
property the model produces coherent results in all possible
situations.

A cost function that meets the three assumptions is

u(Tij ) =
{

0, if Tij < TASET − T0,
C

2T0
(Tij − TASET + T0)2, if Tij > TASET − T0,

(6)

and the derivative of the cost function is

u′(Tij ) =
{

0, if Tij < TASET − T0,
C
T0

(Tij − TASET + T0), if Tij > TASET − T0.

(7)

Now, using Eq. (3), we get the loss (gain) of overtaking:

�u(Tij ) � u′(Tij )�T = C

T0
(Ti − TASET + T0)�T. (8)

Using the assumption that �T = 1 s, we get the value of the
parameter C/�u(Tij ) of the game matrix (5):

C

�u(Tij )
� T0

Tij − TASET + T0
. (9)

Hence, the losses (gains) of the game only depend on the
parameters TASET and T0 and not on C. Also note that (9)
implies assumption 3 above. Figure 1 illustrates the shape and
the parameters of the cost function.

IV. SPATIAL SETTING AND BEST-RESPONSE DYNAMICS

Each agent plays the presented game against his nearest
neighbors. In an evacuation situation, it is natural to assume
that agents are only able to interact with the agents next to
them and not with the ones that are behind other agents.

In a cellular automata environment, the natural choice is
to use the Moore neighborhood, where an agent’s neighbors
are the agents occupying the surrounding eight cells. Most
studies on spatial games in square lattices use either the Moore
neighborhood or the von Neumann neighborhood, in which
each agent has four neighbors. In real life dense crowds, the
number of immediate neighbors is usually closer to eight than
to four, and thus, the selection of the Moore neighborhood is
natural for this study.

The presented game model can be implemented as well in
continuous space, where the agents can be located anywhere
in a two-dimensional space. In this case, an agent’s neighbors
are the agents within a given radius r of the agent. To
ensure interactions with only the nearest neighbors, a suitable
condition for two agents to be counted as neighbors would be
a skin-to-skin distance of less than 40 cm.

The evacuating agents are considered to observe the
strategies of their neighbors and select their own strategies
accordingly. The agents update their strategies frequently
based on their best-response functions. The best responses
are considered to be myopic in nature; that is, the agents do
not consider the past or possible future updates but only react
to the current strategies of their neighbors.

The best-response strategy s
(t)
i of agent i on iteration period

t is given by his best-response function BRi , defined by

s
(t)
i = BRi(s

(t−1)
−i ; Ti,T−i) = arg min

s ′
i∈S

∑
j∈Ni

vi

(
s ′
i ,s

(t−1)
j ; Tij

)
.

(10)

The function vi(s ′
i ,s

(t−1)
j ; Tij ) gives the loss defined by game

(5) to agent i when he plays strategy s ′
i and agent j has played

strategy s
(t−1)
j on period (t − 1); that is, vi(s ′

i ,s
(t−1)
j ; Tij ) is

equal to the corresponding matrix element. Here s
(t−1)
−i is used

to denote the strategies of all other agents than agent i on
period t − 1 and T−i includes the estimated evacuation times
of these agents. Notice that between t − 1 and t , which we call
a time step, there is only one agent updating its strategy once.
During a simulation round all n agents update their strategies
once, so that a simulation round consists of n time steps.

When computing the equilibrium configurations, we update
the strategies of the agents with the shuffle update rule [40].
With the rule, on each simulation round, the order in which the
agents update their strategies is randomized. We consider the
random updating order to describe the behavior of evacuees
more realistically than a fixed order. When we implement the
best-response updating scheme in continuous-time simulations
of moving agents (see Sec. VI), we set each agent to update
its strategy frequently as a Poisson process.
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V. EQUILIBRIUM CONFIGURATIONS

In this section, we study the spatial equilibria of the above
presented game. We consider a static situation, that is, a
snapshot or an instant of an evacuation situation, and calculate
the equilibrium of the game at that moment.

The equilibria are calculated using the best-response dy-
namics, described in Sec. IV, which quickly converges to
an equilibrium. When updating their strategies, the agents
monitor their neighbors’ strategies on the previous time step
and select their best-response strategy. In this section, the
best-response dynamics is only used to achieve the equilibrium
configuration in a given static situation, and thus, also any
other method of calculating the equilibrium could be used
as well. In Sec. VI, we use similar best-response dynamics
to model agents’ decision making in a dynamically changing
environment during an evacuation.

A. Equilibria in discrete grids

We study the game in a cellular automata environment with
40 × 40-cm square cells that can be occupied by one agent. In
evacuations, people tend to form a half-circle-shaped crowd in
front of an exit. To simulate this situation, we study the game
in a grid where all cells within a given radius from the exit
are occupied by agents. Each agent plays the game against
its Moore neighborhood, that is, the agents in the surrounding
eight cells. Note that the agents on the sides of the crowd have
empty cells in their neighborhood and, thus, fewer than eight
neighbors.

The equilibrium configurations and the convergence of
the best-response dynamics in the spatial HD game has
previously been studied by Sysi-Aho et al. [25]. In their
simulations, they used a square lattice with periodic boundary
conditions. In contrast to our model, where the parameter of
the HD game depends on the agents’ locations, they used
a constant value for the whole grid. Figure 2 illustrates the
proportion of hawks (impatient agents) as a function of the
game parameter in the setting of Sysi-Aho et al. The figure
shows that the fraction of hawks depends stepwise on the
game parameter �u(Tij ) defined by Eq. (9). To be precise,
there are eight different levels the proportion of hawks can
have. The reason for this stepwise dependence is the Moore
neighborhood, in which the game is played, which implies
just eight possible proportions. Each agent plays against eight
other agents and the agents’ best responses depend on the
strategies of the others. Hence, for the equilibrium state, for
each parameter value the number of doves (patient agents)
in each hawk’s neighborhood and the number of doves in
each dove’s neighborhood can be determined. These numbers
directly determine the proportion of hawks and doves. When
using the von Neumann neighborhood, where each agent has
four neighbors, the proportion of hawks can only have four
different levels. For a more detailed analysis of the topic,
see [25].

In our game model, the parameter C/�u(Tij ) of the HD
game changes as a function of the distance to the exit. The
result is a polymorphic population, where the crowd is divided
into areas with different proportions of impatient agents. In
front of the exit, where the value of the parameter is larger,
there are fewer impatient agents and when moving further back

FIG. 2. The black squares show the average fraction of hawks
(impatient agents) in equilibrium configurations as a function of the
parameter �u(Tij )/C. The values are averages of 20 simulations in
a 50 × 50-cell lattice with periodic boundary conditions. The dashed
line describes the fraction of hawks in the game’s mixed strategy
equilibrium, which is achieved in a nonspatial well-mixed setting.

in the crowd the proportion increases. When the crowd is large
enough, the maximum number of eight different areas occur,
as shown in Fig. 3. Right in front of the exit, it is profitable
to be impatient only if there are no other impatient agents in
the neighborhood. A little further away, the best response is
to be impatient even if there is another impatient agent in the
neighborhood. Finally, in the very back row, the best response
is to be impatient even if all neighbors are impatient. In this
area, the game is no longer a HD, but turns into a PD, as the
value of C/�u(Tij ) falls below one. In smaller crowds, not all
of the eight different areas can be found.

Figure 4 illustrates the effect of the parameters on the
equilibrium configurations. In each case there are 628 agents,
but the parameters TASET and T0, which determine the cost
function u(Ti), are varied. In Figs. 4(a)–4(d), TASET = T0 and
the cost function has a value of zero at the exit and starts to

FIG. 3. An equilibrium configuration for 3180 agents with param-
eter values TASET = T0 = 2800 s. Black squares represent impatient
agents and white squares represent patient agents. The value of the
parameter C/�u(Tij ) depends on the distance to the exit and the areas
with different black-white patterns correspond to the eight different
levels of hawks in Fig 2.
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(a) TASET = 100s, T0 = 100s (b) TASET = 500s, T0 = 500s

(c) TASET = 1500s, T0 = 1500s (d) TASET = 5000s, T0 = 5000s

(e) TASET = 500s, T0 = 400s (f) TASET = 500s, T0 = 1000s

FIG. 4. Equilibrium configurations with 628 agents for different
values of the parameters TASET and T0. The black squares represent
impatient agents and the white squares represent patient agents.

increase quadratically as a function of Ti . When the available
safe egress time is small, there are patient agents only in a
small area in front of the exit and a vast majority of the agents
are impatient. As the value of TASET increases, the number of
patient agents starts to increase. Finally, in the equilibrium of
Fig. 4(d), all agents play the HD game with such parameter
values that the best response of an agent is to be impatient only
when all of its neighbors are patient. Hence, there are no two
impatient agents as neighbors in the whole crowd.

In Fig. 4(e), TASET is larger than T0 and, hence, the agents
right in front of the exit do not play the game. The cost
function starts to increase quadratically when Ti exceeds 100.
In Fig. 4(f), TASET is smaller than T0 and the derivative of the
cost function is already quite large in front of the exit. Hence,
also in front of the exit, there is a larger proportion of impatient
agents than in the other figures.

The convergence of the best-response algorithm is quite
fast. Regardless of the number of agents, the equilibrium was
found in fewer than ten iteration rounds, where all agents
updated their strategies. The fast convergence is important for
the applicability of the model in a simulation environment. If
an equilibrium is found with a few iterations of a very simple
updating scheme, it is conceivable that similar patterns occur
also in real-life situations. Naturally, in addition to the fast
convergence, also the model needs to be realistic in order to
achieve realistic patterns.

B. Equilibria in continuous space

In order to apply the game to a continuous space, we define
the neighborhood of each agent as an area around them. The
agents play the game against the other agents within a skin-to-
skin distance of less than 40 cm. This means that the number
of neighbors is not constant as in the discrete grid.

Figure 5 illustrates equilibrium configurations for the
continuous model. The parameters used in Fig. 5(a) are similar
to those used in Fig. 4(b) in the discrete grid, and Fig. 5(b)

(a) TASET = 500s, T0 = 500s (b) TASET = 1500s, T0 = 1500s

FIG. 5. (Color online) Equilibrium configurations in a continuous
setting with 628 agents. The black agents are impatient and the gray
ones are patient.

is similar to 4(c). The occurring patterns are very similar to
the discrete equilibria. Nevertheless, because the number of
neighbors is not constant as in the grid model, also the division
of the crowd into different areas is not as clear.

VI. EFFECT OF STRATEGY CHOICE ON EGRESS FLOWS

The behavior of impatient agents is different from the
patient ones and the differences need to be considered when
simulating pedestrian flows. We have implemented the game
model with the best-response dynamics to the FDS + EVAC

simulation software [41]. FDS + EVAC uses the social-force
model of Helbing et al. [5,42,43] to model the movement of
each agent. Each agent follows its own equation of motion:

mi

d2xi(t)

dt2
= fi(t) + ξ i(t), (11)

where xi(t) is the position of agent i at time t , fi(t) is the force
exerted on agent i by the surroundings, mi is the mass of agent
i, and the last term, ξ i(t), is a small random fluctuation force.
The velocity of agent i is given by vi(t) = dxi/dt .

The force on the agent i has many components:

fi = mi

τi

(
v0

i − vi

) +
∑
j �=i

(
fsoc
ij + fc

ij+
) +

∑
w

(
fsoc
iw + fc

iw

)
,

(12)

where the first term on the right-hand side describes the motive
force on the evacuating agent. Each agent tries to walk with its
own specific walking speed, v0

i = |v0
i |, towards an exit or some

other target, whose direction is given by v0
i . The relaxation time

parameter τi sets the strength of the motive force, which makes
an agent accelerate towards the preferred walking speed. The
first sum describes agent-agent interactions and the sum over
w describes agent-wall interactions.

The agent-agent and agent-wall interaction forces consist
of two parts. The physical contact forces are denoted by fc

ij

and fc
iw. Pedestrians’ psychological tendency to keep a certain

distance to other pedestrians and walls is described by the
psychological social forces fsoc

ij and fsoc
iw .

The cross section of a human body is elliptical. This is taken
into account in the model by describing each agent with three
overlapping circles and adding rotational equations similar to
(12). For simplicity, these equations are not given in this paper.
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For a more detailed description of the movement model, see
Refs. [5,41–45].

We describe the difference between the patient and impa-
tient agents in the model by altering three parameters of the
social-force model.

(i) Impatient agents do not avoid contacts with other agents
as much. This is reflected by a smaller magnitude of the social
force fsoc

ij for the impatient agents.
(ii) Impatient agents accelerate faster to their target velocity.

This is implemented by decreasing the individual relaxation
time τi for the impatient agents.
(iii) Impatient agents move more nervously. This is imple-
mented by increasing the individual random fluctuation force
ξ i(t) for the impatient agents.

The stronger fluctuation makes an impatient agent push
around more in the tight crowd, which can be considered
characteristic for impatient behavior. Increasing the target
velocity for the impatient agents would have quite similar
effect as the decreasing of the relaxation time τi . In this model,
we decided to alter the value of τi , which describes the pace in
which the agent accelerates to its target velocity. Altering also
the target velocity would not improve the model, but it would
add an extra parameter.

Some aspects should be emphasized about the coupling of
the behavioral game model and the social-force egress flow
model. The agents are assumed to monitor their neighbors
and, based on their behavior, conclude whether they are
patient or impatient. The behavioral game model determines
which strategy, patient or impatient, each agent selects in a
given situation. In this section, we assume that the agents
decide their strategies (patient/impatient) based on the game
model described in this paper and adjust their behavior to
the given strategy by changing their individual parameters of
the social-force model. Hence, the simulation results of this
section answer the following question: What happens in a
crowd if the agents select their strategies based on the game
model of Secs. II and III and adjust their behavior to their
strategies by changing their individual movement parameters
as described?

A. Simulations with fixed strategies

We ran test simulations to study the outcomes of the
interaction between impatient and patient agents with the
above defined parameter changes for the impatient agents.
In the simulations described in this section, the strategies of
the agents are fixed; that is, the agents do not update their
strategies during the simulations. This enables us to better
study the performance of the impatient and patient agents on
individual level as well as the effect that different proportions
of impatient and patient agents have on the egress flow on the
crowd level.

We ran simulations with 50 impatient and 50 patient agents
randomly located in a 7 × 7-m room with one 1.2-m-wide
exit. The strategies of the agents were fixed and the egress
of the crowd through the exit was simulated for 60 s. The
simulation was repeated 40 times with different random initial
locations. Figure 6 displays the average number of patient and
impatient agents inside the room over time and shows that
the impatient agents are able to leave the room faster. The
result is in line with the assumption of game (5) that impatient

FIG. 6. The egress of 50 patient and 50 impatient agents with
fixed strategies from a room with one 1.2-m-wide exit. The graph
displays the average number of patient and impatient agents inside
the room over time.

agents can overtake their patient neighbors. Hence, when we
use these parameter values for the patient and impatient agents,
the outcome of the simulation corresponds approximately to
the agents’ assumption that impatient agents overtake their
patient neighbors.

In the social-force model used here, we do not model the
possible injuries that would result from conflicts between
impatient agents. However, the threat of these injuries is
considered by the agents in the form of the parameter cost
of conflict C, when they select their strategies. A possible way
of modeling injuries would be to make an impatient agent fall
down with some probability if there are other impatient agents
in the neighborhood. This would be a topic for future modeling
and would require developing the social-force model to enable
agents falling down. In this study, we assume that the threat of
injury is considered when selecting strategies, but the actual
injuries do not occur during the simulations.

It should also be noted that the actual exit capacity β may
depend on whether there is congestion in front of the exit.
However, these changes in the capacity are very difficult to
notice by an individual in the middle of the crowd. Hence, in
this model we assume that the agents estimate the capacity
only based on the width of the exit.

The proportion of impatient agents in the population
affects egress flows through exits. We studied this effect with
simulations, where 200 agents evacuated through a 0.8-m-wide
exit. At the start of the simulation, the exit door was shut and
the agents formed a half circle in front of the door. In the static
situation with the door shut, the agents updated their strategies
until an equilibrium was reached. Then, the strategy of each
agent was fixed to the equilibrium strategy for the rest of
the simulation and the exit door was opened. The proportion
of impatient agents in the simulations was altered by using
different values of TASET when calculating the equilibrium.

We used 11 different values of TASET and ran 100 sim-
ulations for each value. Figure 7 illustrates the average
and median flows through the exit as a function of the
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FIG. 7. Average flow for 200 agents through a 0.8-m-wide exit
with different proportions of impatient agents in the population.

proportion of impatient agents. Fastest flows are achieved
when the population consists of only patient agents and
the flow decreases significantly as the number of impatient
agents increases. This outcome is closely related to the
well-known faster-is-slower effect, where individuals pushing
harder towards an exit lead to jams and reduced flows.

B. Simulations with adaptive strategies

In evacuation situations, the conditions may change dra-
matically over time. A harmless looking situation may quickly
turn very dangerous. Also a threatening situation may calm
down for example by the interference of fire fighters. In a
simulation model, the agents should be able to react to such
changes in conditions. We ran simulations with the model in
scenarios where the available safe egress time TASET changed
over time and the agents interacted continuously updating
their strategies frequently throughout the simulation. In the

TABLE I. The scenarios used in the simulations of Fig. 8. TASET

and T0 define the cost function at the start of the simulation. �TASET

describes the linear change in the value of TASET in 1 s.

Scenario TASET (s) T0 (s) �TASET

1 200 100 −2
2 100 100 −2
3 100 100 −0.5
4 10 100 + 4
5 10 100 + 1

scenarios, the value of TASET was set to linearly increase or
decrease over time. In the simulations, each agent was set
to update its strategy several times each second. Because the
best-response dynamics converges to an equilibrium in a few
iteration rounds, the crowd can be considered to be close to
the equilibrium of the current “snapshot” situation. This holds
all the time. It should be noted that such equilibrium, although
computed in a dynamically changing environment, is myopic
in the sense that it does not take into account the agents’
forthcoming moves or other such issues. This assumption may
hold well for agents in a rapidly changing and/or uncertain
environment. The assumption of several updates per second
for each agent is not realistic for a real crowd. Estimating
the update frequency and simulating such situations would
be an interesting topic for future research. Table I presents
the studied scenarios and Fig. 8 shows the results of the
simulations. The results show that the fraction of patient and
impatient agents quickly reacts to the changing conditions,
which, in turn, affects the flow through the exit.

Figure 9 shows the cumulative exit counts of each of the
50 simulation runs for scenario 1 and scenario 5 of Table I. In
scenario 1, the egress proceeds steadily and almost similarly
in all simulations for the first 50 s. At that point the increased

FIG. 8. Results of simulations with a time-dependent available safe egress time TASET. Two hundred agents were set to evacuate through a
0.8-m-wide exit and, in different scenarios, the value of TASET changed over time. The results for each scenario are averages over 50 simulations.
The figures display the cumulative number of evacuated agents (the curves starting from the origin) and the percentage of impatient agents
among the agents inside the room. Figure 8(a) shows three scenarios where the value of TASET linearly decreases over time. Figure 8(b) shows
two scenarios with linearly increasing TASET. The scenarios are presented in Table I. For reference, both figures display the average cumulative
exit counts with populations consisting of only impatient and only patient agents.
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FIG. 9. (Color online) The cumulative exit counts for each of the 50 simulations of (a) scenario 1 and (b) scenario 5.

threat has caused so many agents to turn impatient that they
start to cause clogging at the exit. The clogging is a stochastic
phenomenon and, thus, causes high variation between the
different simulation runs. This is even more apparent in the
simulations of scenario 5: In some runs clogging blocks the exit
for long periods, while in some other runs of the same scenario,
the egress proceeds steadily throughout the simulation without
any disturbances. Hence, multiple simulations are needed to
get a picture of the safety of a given scenario.

VII. SUMMARY

Starting from intuitive assumptions regarding the inter-
action of myopic agents in an evacuating crowd under
congestion, we have derived a spatial game model. The model
describes the behavior of pedestrians in situations where a
bottleneck along the egress route slows down the pedestrian
flow and the time available for evacuation is a limited resource.
Each agent can adopt one of two different strategies: impatient
and patient behavior. The agents play the game against their
neighbors in the crowd. The model derived from simple
assumptions turns out to be a hawk-dove game or a prisoner’s
dilemma, where the parameter of the game varies depending
on the agents’ locations in the crowd.

Equilibria of the game are calculated with different param-
eter values in a spatial setting, where the agents form a half
circle in front of an exit. The equilibrium configurations are
polymorphic in the sense that, depending on the location in the
crowd, the proportions and patterns of patient and impatient
agents vary.

The game is coupled with the widely used social-force
egress simulation model. The agents select their strategies
based on the presented game model by making the indi-
vidual movement parameters dependent on the strategy. The
impatient agents are set to push harder towards the exit. The
agents update their strategies frequently, based on a myopic
best-response learning scheme, as they observe the changes in
the situation and the actions of their neighbors.

The jams created at bottlenecks along the exit route
are often considered to be caused by irrational behavior,
a state of psychological panic. However, this study shows
that, under threatening conditions, clogging may be caused
by crowd members who act rationally according to simple
and intuitive assumptions. The rationality of the agents is
implemented through a best-response reaction rule, which
optimizes the behavior given the actual local conditions.
Still, as the hawk-dove game constitutes a social dilemma,
something like a “tragedy of the commons” may result from
the rational individual behavior, as the evacuation takes longer
for everyone.
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APPENDIX

A 2 × 2 game, where the players maximize their payoffs,

D C

D a, a r, s

C s, r b, b

(A1)

is the PD game if r > b > a > s. Note that if the matrix
elements are interpreted as costs to be minimized, which is
the case in the PD game (5), the condition is s > a > b > r .
Irrespective of the choice of the other player, playing D is
the rational choice that always yields a higher payoff than
playing C. The strategy pair (D,D) is also the unique Nash
equilibrium of the game. Nevertheless, if both players would
play C, they would get higher payoffs than when both play D,
but (C,C) is not a Nash equilibrium. So there is an obvious
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paradox hidden in this game. Due to this nature of the game,
one can interpret strategy C as cooperation and strategy D as
defection from cooperation. PD is the most well-known 2 × 2
game in economics and game theory literature.

Game (A1) is a HD game if r > b > s > a (a > s > b > r

in the case of cost minimization). A HD game is the basic
game in evolutionary game theory [26]. The game has two
Nash equilibria: (C,D) and (D,C) [or (D,H ) and (H,D)
as they are denoted in the context of HD games]. The HD
game also has one NE in mixed strategies, where both players
play D with probability p = (r − b)/(r + s − a − b), and C

with probability 1 − p. In PD the NE pair (D,D) is an ESS,
while in HD only the mixed strategy Nash equilibrium is
an ESS.

Evolutionarily stable strategy is a strategy which, if adopted
by all members of a population, cannot be invaded by any
alternative (mutant) strategy through the operation of natural
selection. Mathematically, ESS means that the corresponding
strategy pair is the stable point of the dynamical system
describing an infinite population of players repeatedly pairing
at random to play the game and reproducing their kind in
numbers proportional to their performance.
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