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applications to human motor control

. . £
Armin Biess

Bernstein Center for Computational Neuroscience and Max-Planck-Institute for Dynamics and Self-Organization, 37077 Géttingen, Germany

(Received 21 July 2012; revised manuscript received 17 October 2012; published 31 January 2013)

The study of the kinematic and dynamic features of human arm movements provides insights into the
computational strategies underlying human motor control. In this paper a differential geometric approach to
movement control is taken by endowing arm configuration space with different non-Euclidean metric structures
to study the predictions of the generalized minimum-jerk (MJ) model in the resulting Riemannian manifold
for different types of human arm movements. For each metric space the solution of the generalized MJ model
is given by reparametrized geodesic paths. This geodesic model is applied to a variety of motor tasks ranging
from three-dimensional unconstrained movements of a four degree of freedom arm between pointlike targets
to constrained movements where the hand location is confined to a surface (e.g., a sphere) or a curve (e.g.,
an ellipse). For the latter speed-curvature relations are derived depending on the boundary conditions imposed
(periodic or nonperiodic) and the compatibility with the empirical one-third power law is shown. Based on these
theoretical studies and recent experimental findings, I argue that geodesics may be an emergent property of the
motor system and that the sensorimotor system may shape arm configuration space by learning metric structures

through sensorimotor feedback.
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I. INTRODUCTION

One of the classical models of computational human motor
control theory is the minimum-jerk (MJ) model that describes
the kinematic features of arm movements between pointlike
targets in a horizontal plane [1]. The MJ model is formulated in
terms of Cartesian hand position coordinates x and is derived
from a kinematic cost functional that minimizes the squared
time derivative of the hand acceleration or jerk integrated over
the total movement duration 7', i.e.,

T1dx(t) d*x(t)
8Cvmy =0, Cyvy = —,— )} dt, 1
MJ MJ /o < PTERTS >[ (M

where (,); denotes the inner product with respect to the
Euclidean metric I = diag(1,1). The solution of the MJ
variational problem (1) subject to the two-point boundary
conditions

x(0) =x9, x(T)=xy
x0)=0, x(T)h=0 2)
¥0) =0, x¥(T)=0

is given by
x(t) = xo + (x; — x)(67° — 15¢7* +107%), (3)

where v =1t/T denotes normalized time and xg,x; are
the initial and final target locations, respectively. Thus the
MJ solution results in straight hand paths and bell-shaped
hand-speed profiles, which are in excellent agreement with
experimental data. Although this model was developed more
than three decades ago and new modeling approaches have
been proposed [2-6], it is still widely used in basic research
of human motor control [7], robotics [8,9], and rehabilitation
research [10-12]. The success of this model lies, besides its
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predictive power, in its simplicity and analytical tractability.
However, the MJ model is limited in its application to the
description of motor tasks in Euclidean space, which is
not necessarily the geometric structure underlying human
movements. Interestingly, more than a century ago Mach
and Poincaré [13,14] pointed out the fundamental differences
between sensory and motor spaces to Euclidean space with
regard to continuity, dimensionality, spatial extension, homo-
geneity, and isotropy. Different geometrical structures have
been applied to model various sensorimotor spaces, such
as perceptual, tactile, and haptic spaces. Perceptual space
has been investigated most extensively, and different non-
Euclidean geometric structures have been proposed, ranging
from Riemannian manifolds with varying curvature [15,16] to
nonmetric spaces with affine or projective geometry [17,18].
Fasse and colleagues [19] have argued that some aspects of
human perceptual-motor behavior may not admit a metric
description, and Flash and Handzel have modeled human
tracing movements using affine geometry [20]. A theory of
movement timing based on geometrical invariance and affine
geometry has been proposed in [21].

In recent studies [22,23] a reinterpretation of the MJ model
in form of a geodesic model in Euclidean space has been
provided and a generalization to arbitrary Riemannian arm
configuration manifolds has been formulated. The resulting
generalized MJ model (or geodesic model) can be applied
to arbitrary Riemannian manifolds and, as I will show, is
applicable to a wider class of motor tasks. Apart from
the extension of scope, a Riemannian formulation has the
advantage of being inherently coordinate independent. In
models of human motor control one has to distinguish
between external coordinates or frames of references that the
investigator is choosing to describe a motor action (e.g., an arm
movement) and the internal coordinates of a putative neural
representation of this event in the central nervous system
(CNS). Although some progress has been made to identify
the neural correlates of movements [24-27], very little is
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known about possible coordinate system(s) used by the CNS. A
coordinate-free description of models of human motor control
provides therefore an unbiased approach that is independent
of the arbitrary choice of coordinates by the investigator.

That the choice of coordinates can be problematic in models
of human motor control has been recently pointed out by
Sternad and colleagues [28] in the context of motor variability
and the uncontrolled manifold (UCM) concept [29]. The UCM
method aims to identify control variables based on the analysis
of motor performance variability in tasks with redundancy.
It relies on the analysis of covariance matrix anisotropy in
execution space (e.g., joint angular space) as evidence for the
coordinates of movement control as well as on orthogonality
to distinguish task-relevant from task-irrelevant directions.
However, anisotropy and orthogonality of a covariance matrix
depend significantly on the investigator’s arbitrary choice of
external coordinates, and thus, no consistent inferences about
neural movement control can be drawn from such an analysis.
In contrast, in a Riemannian description movement variability
can be assessed independently from the choice of coordinates.

Of similar importance to movement control is the identi-
fication of movement invariants, i.e., of movement variables
that do not change under general coordinate transformations.
Invariants provide useful signatures of the computational
model at hand and their identification is at the core of
Riemannian geometry.

The paper is organized as follows: In Sec. II I recapitulate
the main properties of the geodesic model and list the main
features of the model when applied to a configuration manifold
that is endowed with the kinetic energy metric. In Sec. III arm
configuration space is shaped by constructing metric tensors
from hand and elbow displacements in task space. In contrast
to the kinetic energy metric, which is associated with the
dynamics of the movement, these metrics are derived from task
space and may thus be related to visual space. Interestingly,
when applying the geodesic model to these preshaped metric
spaces, a large variety of motor tasks can be described
ranging from unconstrained point-to-point movements in
three-dimensional space to constrained movements where the
end effector is following a predefined surface or a curve. For the
latter speed-curvature relations are derived depending on the
boundary conditions imposed (periodic and nonperiodic) and
the relation to the empirical one-third power law is analyzed.

II. METHODS

A. Arm configuration space and coordinate systems

The arm is modeled as a linkage of rigid bodies. The arm’s
configuration space Q can be regarded as an n-dimensional
torus 7" = S!' x --- x S, i.e., as the n-fold direct product
of the circle S'. In the present article I consider types of
movements for which the degrees of freedom (DOFs) at
the wrist and finger joints can be ignored (for example,
in an experimental setting the wrist can be fixated and the
forearm, hand, and fingers can be treated as one rigid body).
Accordingly, an arm configuration can be described by means
of four coordinates (n = 4), for example, in terms of four joint
angles g = (8,1,¢,¢)7. The first three angles determine the
rotation around an ideally spherical shoulder joint (elevation
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FIG. 1. An arm configuration can be defined by different sets
of coordinates, for example, by four joint angular coordinates ¢ =
0,1,¢,¢)T. Another possible set of generalized coordinates consists
of the center of mass of the hand location x and the swivel angle «
around the shoulder-hand axis, i.e., ¢’ = (x,y,z,a)”. The shoulder
joint is fixated and located at the origin of the XY Z coordinate
system. The vector p denotes the elbow location, d = |x| is the
shoulder-hand distance, r is the radial distance to the elbow location
from the shoulder-hand axis, /; denotes the upper arm length, and /,
is the distance from the elbow joint to the center of mass of the hand
(forearm and hand are modeled as one rigid body). The insert shows
the definition of the swivel angle «.

0, azimuth n, torsion ¢ ), whereas the rotation around the elbow
joint is given by the flexion angle (¢).

Another possible set of four generalized coordinates is
defined by ¢’ = (x,y,z,a)T, which consists of the hand
coordinates x augmented by the swivel angle « that describes
the rotation of the upper arm and forearm triangle around the
shoulder-hand axis (Fig. 1). Note that there exists a one-to-one
map between these coordinate sets. The coordinate differen-
tials are related via the transformation matrix A = (Af):
ag'+
ag”
where the summation convention has been used, implying a
summation over the same lower and upper Greek indices from
1 to 4. Explicit expressions for the one-to-one map between
the two sets of coordinates are provided in Appendix A.
The transformation matrix A is given in [23]. Yet another
natural coordinate system can be generated by replacing the
Cartesian hand coordinates (x,y,z) by cylindrical coordinates
(p,9,z2), where the body-axis coincides with the z axis. This
new set of coordinates ¢” = (p,¢,z,«¢) may be well adapted
to the body-centered notions of far-near (p), left-right (¢),
and up-down (z). Obviously, there are many coordinates that
are equally well suited to define an arm configuration. One
advantage of the application of Riemannian geometry to
models of human motor control is the inherent independence
from this arbitrary choice of coordinates.

dg"™ = A(q)dq" with Al = , 4)

B. Geodesic model

In this section the geodesic model is recapitulated by con-
sidering the one-parameter family of optimization problems
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given by the mean-squared derivative (MSD) cost functionals
in Riemannian space:

T ID" () D"y(t
ssnzo,an/ ) Dy@\ . (5)
0 dr" drm

subject to the boundary conditions
y(©0)=a, y(T)="»
Dy(0) __ Dy(T) _
Z=o, 2P0
: : (6)
D""'y(0) D" 'y(T)
— -0, — = =0
d[”71 dl"71

Note that the functional (5) defines for n = 3 the Riemannian

generalization of the classical MJ functional (1). The inner

product (,) in (5) is defined with respect to an arbitrary
D

Riemannian metric g. The operator - denotes the covariant
derivative in the direction of the trajectory y(¢), i.e., Qt =
Vi@, and V is the Levi-Civita connection, which is the

symmetric connection compatible with the metric. The k-fold
covariant derivative along the trajectory is denoted by d%i k=
1,2,....

The Euler-Lagrange equations for the variational prob-
lems (5) follow from the application of the calculus of variation
on manifolds [30,31]. For n > 0 one obtains [32-34]

Dy (1) +§(_1)l- R (D”’*"y(r) D"“y(r)) dy (1)
i=0

dt2rl dt2n727i dti+1 dt
=0, (7

where R is the Riemann curvature tensor defined by
R(X,Y)Z = [Vx,VylZ — V|x y|Z for arbitrary vector fields
X,Y,Z and [ , ] denotes the commutator [35]. The solution
of the Euler-Lagrange equation (7) subject to the boundary
conditions is given by reparametrized geodesic paths y(t) =
y(o(t)) between two points a and b in the Riemannian
arm configuration manifold [23]. The spatial and temporal
aspects of the movement decouple: the spatial properties (path,
posture) are determined by the geodesic equation

Vyey'(0)=0, n=12,... (8)
subject to the boundary conditions
YOy =a,  y"E)=b, )

where a prime denotes differentiation with respect to arc

length. The temporal properties (speed) follow by
reparametrization of arc length into time and are governed by
o) _ 1,2 (10)
=0, n=12...,
dtzn
subject to the 2n-boundary conditions
c(0)=0, o(T)=2X,
6(0)=0, o(T)=0,
: 3 (1n
dn—l 0 dn—l T
o), e,
dim—! di—1
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where X is the total length of the geodesic path. Equation (10),
subject to (11), can be solved analytically in terms of the
generalized hypergeometric function 2F; [36]:

2n - D"
—22Fl(n;l—n;n+1;t), (12)
n—D"n

where T =1¢/T denotes normalized time. In particular, it
follows forn =1,2,3 :

YT, n=1,
(—213 4+ 37, n=2, (13)
¥(67° — 15t* +1073), n=3.

o, (1) =%

Gn(t) =

Note that the optimal solution predicts the same geodesic path
y (o) for different values of n, but results according to (10) in
different parametrizations along the geodesic path. For exam-
ple, the original MJ model (n = 3) is obtained for Euclidean
task space M = (R?,1), where I = diag(1,1) is the Euclidean
metric. The equations (5), (8), and (10) take then the form

T dPx(t) d*x(t)
853 =0, 85 = —,———) dt, 14
3 3 /0 < PR TE >[ (14)

d®s(1) _

d*x(s)
=0 and =0, (15)

ds? dt®
where s is the Euclidean arc length. Combining the solutions
of (15) subject to the boundary conditions (9) and (11),
respectively, leads to the well-known MJ solution (3).
Instead of two-point boundary conditions (11), periodic
boundary conditions can be imposed:

c(0)=0,0(T)=3%,
6(0)=¢(T),

: (16)
d2n—20.(0) d2n—20(T)
din—2 gpn—2

Using a Fourier “ansatz” (see Appendix B) the optimal solution
for all orders of n is

(1) =31, n=12,..., (17)

It follows that for periodic movements normalized Riemannian
arc length, & = 0/ %, is equal to normalized time, and thus
time can be measured directly in terms of arc-length.

Movements along geodesic paths lead to constants of
motion, which are given by [23,33,34]

—1yt s gn 2 n—1 . dzn*j d’
== ( ") + 3 E2 52 )
j=1

2 dt" dt?n=J dti

In particular, for n = 1,2,3 one derives
1

) _
307, n=1,

I, =166 —162, n=2, (19)
0O —a@Ws + %6'2, n=>3.

Note that these constants of motion are invariants because o
is a scalar. Invariants are useful signatures of a computational
model that can be easily subject to experimental tests. For
example, the original MJ model leads to I3 = (30/25)? /TS,
where S is the total Euclidean distance to the target.
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Another class of invariants may be derived from symmetries
of the metric tensor in the form of Killing vector fields. For
further details the readers are referred to [23,35]. Finally, the
functional (5) scales under a change of amplitude, y(¢) =
wy(t), and time, 7 = B¢, according to S, = a)zﬂl’z”Sn, and
thus the optimal solution is invariant under these trans-
formations. It is important to emphasize that the results
provided in this section hold for any Riemannian manifold

M = (T%9).

1. Kinetic-energy metric

One natural metric follows from the dynamic equation of
motion of the arm, which can be written in covariant form
as [23,37]

M,AY =1, (20)

where A* denotes the covariant acceleration and 7, the joint
torques. The manipulator inertia matrix (kinetic energy metric)
M, defines a metric and is derived from the kinetic energy K
according to

M, (q) = %- 2D
The corresponding line element is given by
do® = My.(q)dq"dq’ (22)
and the kinetic energy can be expressed as
K =162. (23)

In previous studies [22,23] the predictions of the geodesic
model using this metric have been analyzed in detail and the
following properties could be derived.

First, geodesic paths with respect to the kinetic energy
metric correspond to least-effort paths, suggesting that the ki-
netic energy metric may be associated with the proprioceptive
feedback stream. Second, in this metric space the MJ model is
equivalent to the minimum torque-change model [2], i.e., one
derives

T IDA(r) DA(®r) _ T IDt(t) Dt(t)
,/0< dr  dt >dt_/0 < dr  dt >dt’ 24

where the inner product (,) is taken with respect to the
metric (21). It is important to remark that these models are
fundamentally different when expressed in Euclidean space.
Third, the minimum peak value of kinetic energy model by
Soechting and co-workers [3] is compatible with the geodesic
model, as I will show next. This model has been proposed to
resolve the redundancy in a point-to-point movement task,
in which the final arm posture (defined by four DOFs) is
not specified by the three spatial coordinates of the given
final target location. According to Soechting’s model the final
arm posture is determined by the trajectory that adopts the
minimal-peak value of kinetic energy.

To reanalyze this model within the Riemannian framework,
boundary conditions of the form

x(Z) =x; 25)

q(0) =qo.

are imposed. The vectors g and x ; denote the predefined
initial arm posture and the final target location, respectively.
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In the four-dimensional configuration manifold the final
arm postures are described by a one-dimensional manifold
corresponding to all accessible arm postures compatible with
the final target location. Biomechanical joint range models
can be used to select the accessible final arm postures (for
details see [22]). There is thus a one-parameter family of
geodesic paths y, connecting the initial arm posture with the
possible final ones. The parameter « is chosen to be the swivel
angle at the final target location (Fig. 1). The peak value of
the kinetic energy K, associated with each path y, can be
derived from (23) using (13) for n = 3. Assuming that the
total movement time is independent of the path, i.e., T, =T
for all @ (isochrony principle), one finds

) 1/15\°
Ky = 5(%) 2, (26)

where ¥, is the total length of the geodesic path y,.
Minimizing over the total length of geodesic paths results in
a path with a minimal-peak kinetic energy, implying that the
minimum peak value of kinetic energy model is an outcome
of the geodesic model.

2. Jacobi metric

Another metric that is related to the dynamics is the Jacobi
metric. If the torques can be derived from a potential function
V(g), the dynamic equation of motion (20) takes the form

M;WAU = _va. s (27)
where a comma indicates a partial derivative, i.e., V,, = %.

For such a system the total energy E is conserved, i.e.,
E=K+V= % wq"q" + V = const. The Jacobi metric is
conformally related to the kinetic energy metric M, and is
defined by

M/W =2[E — V(q)]M/w’ (28)

with line element d6% = M wdq™dg”. It can then be shown
that the dynamic equation of motion (27) is equivalent to the
geodesic equation with respect to the Jacobi metric, i.e.,

d’q" | o dg’dqt _

dé? " ds ds
This result poses the question whether it can be regarded as
the optimal solution to the MSD costs in Riemannian space
equipped with the Jacobi metric. Clearly, this is generally not
the case because the dynamics depends on the specific choice
of the potential function and is thus not necessarily compatible
with the result (10) derived from the MSD costs.

0. (29)

III. RESULTS

A. Metrics related to displacements in task space

The kinetic energy and Jacobi metric are two examples of
metrics in the arm configuration manifold that are related to
the arm dynamics. The most general form of the metric in the
four-dimensional arm configuration manifold is given by

do? = g(x)dxtdx" (uv=1,...,4). (30)

Assuming that there exists a metric tensor g,,(x) in the
configuration manifold, it would be a difficult task to determine
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the ten components from empirical movement data. A more
heuristic approach is therefore chosen in this paper, where
Riemannian metrics are constructed “by hand,” for example,
by combining elbow and hand displacements in task space. I
argue that these metrics can be associated with the visual input
streams since their effect is to straighten the hand path. The
imposed metric structure shapes arm configuration space and
in combination with the geodesic model generates a specific
motor behavior.

The first distance measure that I consider is defined in
the coordinates ¢’* = (x,y,z,«) and is given by the metric
tensor

N, (q" = diag[1,1,1,kr*(d)] . (31)

Here, r denotes the radius to the elbow location around the
shoulder-hand axis and d = |x| is the shoulder-hand distance
(Fig. 1). ¥ (k > 0) defines a positive relative weight factor.
The corresponding line element has the form

do? = Nl’w(q’)dq dg" = dx* +dy* + dz* + kria?,
=ds*> + krida?®, (32)

where ds? = dx* 4+ dy? + dz? is the Buclidean line element
associated with the end-effector location x. The circular elbow
radius r depends on the distance d according to (0 < d <
I + ),

1
r(d) = ﬁ\/4d21f —(P-B+d?)’. (33)

The motivation for this choice of metric is twofold. First,
the line element (32) measures the distance covered by the
hand increased by the distance of the elbow position around
the rotational DOF «. Note that the circular elbow radius
r decreases with increasing shoulder-hand distance d. The
underlying assumption here is that the motor system intends
to minimize displacements of the whole arm system. Second,
the line element (32) reduces for constant swivel angle « to the
Euclidean line element do?> = ds?, in particular, for movement
in a horizontal plane it is do = dz = 0 and ds* = dx* + dy*.
The geodesic model applied to this Riemannian space thus
includes the classical MJ model as a special case. The metric
tensor (31) can be expressed in the coordinates g* = (6,1,¢,¢)
by the following transformation:

Nuw(q) = AL(@N; (@A), (34)

where N} (¢) has the same form as (31) with d = I} + 13 +
21115 cos ¢. Although the components of N, (¢g) involve large
algebraic expressions, they can be easily determined using
symbolic software packages (e.g., Mathematica, Maple).

I study next the predictions of the generalized MJ model
(n = 3) for point-to-point arm movements in the Riemannian
manifold equipped with the metric (31).

Spatial movement properties. The path predictions follow
by solving numerically the geodesic equations (8) (for details
see [23]). Since the metric tensor has a simpler form in
the coordinates ¢'*, it is useful to perform all calculations
in this coordinate system. The geodesic equation takes the
form

d2qm 4 F/M dq/u dq/)‘ _

do? Y do do 0, (35)
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with nonvanishing Christoffel symbols of the second kind:
(02 -15)" —a"] ,
a4
-’ —a .
[( 1 22 ] q/l , (37)
Pl (@~ ) 285 + )]

= —« (36)

"“o_
F4i -

and i = 1,2,3. Boundary conditions of the form (25) are
imposed:
gO)=q,. ¢"@)=xP, (=123, (38

where x(f"-) denotes the i component of the given final target
location x y. That is, the final arm configuration is not yet
specified.

Temporal movement properties. The temporal properties of
the movement are determined by (10) and (11), leading to

15 % )
< 7l =) (39)

o =

Spatiotemporal movement properties. The movement tra-
jectory follows by reparametrization of the path, i.e., g (¢) =
q""(o(t)). The velocity vector of the movement is obtained
from the chain rule according to

dq(t)  dq" (o)
=6
dt do

|a =o(t) “0)

where is the tangent vector of the geodesic path in
configuration space. The hand speed v follows directly from
the line element (32), giving

dq"" (o)
o

2

v=+062%—kria?, 41)

where v = Z—f. For constant swivel angle « equation (32) leads

to do = ds and the geodesic model becomes identical with
the classical MJ model (1).

Invariances. The Killing vectors of the metric N,,(¢")
are determined next. Since the metric tensor is rotationally
invariant and does not depend on the swivel angle «, the
following four Killing vectors can be identified:

0 0

& =ya—z—15, (42)

§(2)=Z%—x3%, (43)
0 0

§a) = X@ —Yay (44)
0

Ey = Pyl 45)

Note that each Killing vector induces a movement invariant
Jay = N, (q")Ej,t" along geodesic motion with tangent vector

th = ddq—:. These movement invariants can be subject to
experimental tests for model validation.

Simulations. Simulation results for the generalized MJ
model (n = 3) with free-end-point conditions are shown in

Figs. 2(a)-2(c). Figure 2(a) shows the hand paths to nine
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FIG. 2. (Color online) Predictions of the geodesic model with task space metric (32) for movements between pointlike targets in a
fronto-parallel plane. (a) Predictions of hand paths to pointlike targets arranged in a fronto-parallel plane. The hand paths (shown in gray) vary
and lead to different final arm postures at the target locations. The straight hand paths (shown in blue) correspond to the shortest geodesics
connecting the initial with the final targets. (b) Normalized speed profiles, # = v/(S/T), for movements to the upper-middle target. S is the
Euclidean arc-length of the hand path and 7' denotes the total movement time. (c) Swivel angle trajectories for movements to the upper-middle
target. (d) Radial distance to the elbow location from the shoulder-hand axis for movements to the upper-middle target. The profiles shown in
black correspond to the movement along the shortest geodesic to the upper-middle target. Simulation parameters are provided in Table I.

targets arranged in a fronto-parallel plane. Note that the hand
paths to each final target are derived from geodesic paths in
the Riemannian manifold M = (T*,N /’w) between a given
initial arm configuration and all the accessible final arm
configurations compatible with the given target location. It
follows from the line element (32) that the shortest geodesic
path out of the one-parameter family of geodesic paths is the
straight hand path with constant swivel angle throughout the
movement. Note that the minimal geodesic path (¢ = const)
leads with (41) to a MJ speed profile along the path, whereas
trajectories with varying swivel angle (« # const) deviate
slightly from the MJ prediction. Figures 2(b) and 2(c) show
the speed profiles and swivel angles, respectively, to one target
(upper middle). For comparison, the same graphs using the
kinetic energy metric are presented in Fig. 3. Clearly, the
shaping of the configuration manifold by different metric
structures induces different motor behavior. Another feature
can be observed from these simulations: Without adding
a stochastic element, the hand paths show variability in
task space due to redundancy at the end point. Since each
hand path corresponds to a different geodesic path in the
configuration manifold, hand-path variability can be described
by the concept of geodesic deviation.

Similar metrics to the one in (31) can be constructed. For
example, consider a metric defined by the line element

do? = dx* + kdp® = ds® + kdp?, (46)

which is composed out of the squared hand and elbow
displacements. Note that the elbow location p depends on
the end-effector location x and the swivel angle o (see
Appendix A). In contrast to (34), this line element also
measures translational displacements of the elbow position.
Thus, the geodesic model results in movements with minimal
changes of elbow and wrist displacements. Yet another metric
can be defined by the line element

do? = dx* + kdx?, = ds* + kdx?

CM ?

(47)

where x . is the center of mass of the whole arm system. The
center of mass is determined under the assumption that the
limbs are of cylindrical shape with constant mass density. For
this simple arm model an analytical expression for the center
of mass can be derived (Appendix C). One finds

Xcu [(my + ma)p + max], (48)

" 20my +m2)
where m; and m, are the masses of the upper arm and the
forearm + hand, respectively. Thus the center of mass lies in
the plane spanned by the upper and forearm.

B. Linear combinations of metrics

New metrics can be constructed by linear combinations
of metrics since the sum of two Riemannian metrics defines
another Riemannian metric. For example, to model the
combined effect of visual and proprioceptive feedback, a new
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TABLE I. Simulation parameters.

Parameter Value Reference
Arm model
Upper arm length / 0.30 m Adjusted
Forearm + hand [/, 0.375 m Adjusted
Upper arm mass 11, 2.52 kg Adjusted
Forearm mass m, 2.07 kg Adjusted
Distance to center of mass, 0.142 m Adjusted
upper arm a;
Distance to center of mass, 0.244 m Adjusted
forearm a,
Moment of inertia /; 0.351 kg m? [23]
Moment of inertia I, 0.019 kg m? [23]
Moment of inertia /3 0.269 kg m? [23]
Moment of inertia I4 0.024 kg m? [23]
Moment of inertia I5 0.152 kg m? [23]
Point-to-point
movements—task space metric
Initial arm posture q5 =[—0.15 m, 0.15m, —0.25m, 1.24 rad] Adjusted
Weight parameter k=1 Adjusted
Total movement time T=1s Adjusted
Target locations X =[-0.35 0.5 0.2;—-0.15 0.5 0.2;0.05 0.5 0.2; Adjusted
—0.35 0.5 0;—-0.15 0.5 0;0.05 0.5 0; —0.35
0.5 —0.2,-0.15 0.5 —0.2;0.05 0.5 —0.2]m.
Point-to-point
movements—Kinetic energy metric
Metric tensor M, [23]
Initial arm posture qo = [0.63, — 1.80,2.78,2.15] rad £ q5 Adjusted
Weight parameter k=1 Adjusted
Total movement time T=1s Adjusted
Target locations as above
Point-to-point movements on a sphere
Initial position [%0,90] = [7/6, — /3] Adjusted
Final position [Fr,07] = [27/3, — /3] Adjusted
Weight parameter k=10 Adjusted
Center location of sphere m = [0,0.6, — 0.3]m Adjusted
Radius of sphere R=04m Adjusted
Total movement time T=1s Adjusted
Tracing movements of planar contours
Total tracing time T=3s Adjusted
Perimeter of contours P =0.67m Adjusted
Ellipse Major axis a=0.13m Adjusted
Minor axis b =0.08m Adjusted
Cloverleaf Size a = 0.069 m Adjusted
Limacon Size a=01m Adjusted
Lemniscate Size a=0.051m Adjusted
Shape b=2.6 Adjusted
Line-element parameter w=0.1 Adjusted

metric can be defined by

where w is a weighting factor, M,, is the kinetic energy
metric, and N, is the metric in task space (34) expressed
in the coordinates {g"}. The setting w = 1 results in pure
visual feedback, whereas w = 0 corresponds to proprioceptive
feedback only. Generally, through the linear combination of

metrics different distance measures can be integrated into a
single description and the resulting cost functional can be

decomposed into a sum of functionals:

B "ID"y@) D"y@)
Sn - lzwl/(; < dl‘n ’
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FIG. 3. (Color online) Predic-
tions of the geodesic model with
kinetic energy metric for move-
ments between pointlike targets in a
fronto-parallel plane. Same settings
as in Fig. 2. The components of
the metric tensor are provided in
[23]. Predictions of hand paths to
the same point-like targets as in

% 02 no?r#alize doi?me 0.8 1 Fig. 1. (a) The shortest geodesics
connecting the initial with the final
(c) 125 (d) 30 targets are shown in blue. Normal-
100 ized speed profiles (b), swivel an-
28 gles (c), and elbow radial distances
R 75\_/ 26 (d) to the upper-middle target. The
_§’ 50 € profiles shown in black correspond
= 25 %24 to the movement along the shortest
0 22 geodesic to the upper-middle target.
Simulation parameters are provided

25 20 in Table L.
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where the metric in arm configuration space is g = ), w;g;
with weights w; > 0.

C. Constrained arm movements along surfaces

In this section arm movements are studied for which the
end effector is constrained to move along a predefined surface.
Consider a parametric surface in three-dimensional space
given by x = x(u,v) with parameters # and v. The induced
metric on the surface due to the embedding into Euclidean
space (pullback metric) is

ds® = E(u,v)du® + 2F (u,v)dudv + G(u,v)dvz, (29
where

Jx ox

E(u,v):a—u-a—u, (52)
dx Jx

F(u,v)=a~%, (53)
Jdx 0Jx

G(u,v) = PR (54)

Metrics of arm configuration space can be thus obtained
by replacing the Euclidean line element in (32) with (51),
resulting in

do? = E(u,v)du2 + 2F (u,v)dudv + G(u,v)dv2

+xri(u,v)da’ . (55)

For simplicity, I will consider in the following arm movements
where the hand is constrained to a spherical surface with
radius R. Such movements may arise, for example, by holding
a handle that is fixated at one end by a spherical joint.
The origin of the coordinate system is set into the shoulder
joint. The spherical surface is then given by x(d,¢) —m =
(R sin ¥ cos ¢, R sin ¥ sin ¢, R cos ), where m is the center of
the sphere. The line element (55) transforms to

do? = R*(d9? + sin®> 0d¢?) + kr’(9,@)da®,  (56)

normalized time

where the shoulder-hand distance is given by r(d,¢) =
|x(9,¢) + m|. The metric (56) adopts one Killing vector field

(57

It is useful to distinguish the two cases of constant and
changing swivel angle .

Case 1: a = const. In this case the swivel angle in (56) is
kept fixed and only the end-effector movement on the sphere
is of interest. The metric reduces then to the well-known line
element on the sphere S,

do? = ds®> = R*(d9? + sin®> 9d¢?), (58)
which adopts three Killing vector fields. The spatial prediction
of the MSD cost functionals in this Riemannian space are

determined by geodesic paths, i.e., great circles, for all orders
of n. The end-effector speed is governed by

d>s(t)
T = 0 (59)
with boundary conditions (11).

This Riemannian formulation is compared next to the
standard modeling approach in Euclidean space by applying
the original MJ model (1) to the sphere. More generally, I
consider the one-parameter family of MSD cost functionals in
Euclidean space forn = 1,2,3:

T ldx(t) d"x(t)
C, = ,———) dt 60
' /0 < e od >, (60)
subject to the constraint
xX(t) = R?, (61)
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and boundary conditions

x(0)=x9, x(T)=xy
x(0) =0, x(T)=0
: D (62)
n—1 n—1
d"x(0) _o, d"'x(T) —0
dl"_l dl«n—l

where [ = diag(1,1,1) is the Euclidean metric in three-
dimensional space. Note that the difference between the
Riemannian and Euclidean formulation is the embedding of the
sphere in Euclidean space, which is not required in the former.

The standard method of Lagrange multipliers applied
to (60) and (61) leads to the following dynamic equation of
motion:

X
=1:%¥=—n, 63
n ¥=—n (63)
R S (64)
R
n=3:x(6)=10x + 15kx"™ + 6xx " 65)
R
with the normal vector n = —x/R.

Solutions to these equations can be found by first expressing
the movement trajectory as x () = x(s(¢)) and deriving higher-
order time derivatives using Frenet’s formulas. This leads to

X =it (66)
¥ = §t+ki’n, (67)

¥ = (5 — k2t + (K5 + 3kss)n + ($Pkr)b - (68)

The vectors {t,n,b} are the tangent, normal, and binormal
vectors of the path, respectively, and define an orthonormal
moving frame along the trajectory. k denotes the curvature of
the path and  its torsion. Comparison of the expressions (63)—
(65) with these formulas, leads to conditions for k,t, and s.
Using this method the solution of (63)—(65) for n = 1,2,3 is
given by great circles, i.e.,
1

k=—,1=0, 69
R (69)

and temporal profiles s(¢) described by the following ordinary
differential equations (ODEs):

n=1:§=0,

n=2:s%—6kis?=0, (70)
n=3: s - 15k2E2sW + 4555+ §3) + 15k*s*5 = 0,
subject to the boundary conditions
n=1:s0)=0;, s(T)=S§,
n=2:s50)=50)=0;, s(T)=S,
n=3: s0)=350)=50)=0;

s(Ty=3S, $(T)=5T)=0.

Note that these ODEs (70) are the Euler-Lagrange equations
associated with the one-parameter family of cost function-
als (60) when inserting the Eqs. (66)—(68) and using the

$(T) = 0, o

PHYSICAL REVIEW E 87, 012729 (2013)

result (69). Interestingly, the Riemannian and Euclidean
formulation lead to different movement predictions on the
sphere: Whereas both models predict great circles [Fig. 3(a)],
the predictions for the speed profiles differ for n > 1. These
findings can thus serve as a test to which extent a Riemannian
or an Euclidean description is more suitable. Unfortunately, the
difference in speed profiles on a sphere, as shown in Fig. 3(b),
may be too small to be detected experimentally. However,
the effect is genuine and may be measurable for point-to-point
movements along more general second-order surfaces. Finally,
due to the symmetry of the sphere, the coordinate system may
be oriented such that along great circles only one coordinate
varies (). The equations (70) can thus be further simplified
without loss of generality by inserting § = R9.

Several experimental studies have been performed to
measure hand movements on a spherical surface. The results
are not completely conclusive: Whereas Liebermann and
colleagues [38] found that geodesics were seldom followed,
Sha and co-workers [39] observed an increasing similarity
to geodesic paths with practice. It is important to note that
different experimental protocols were used in the two studies,
and none of them recorded the whole arm configuration during
the movement (see remarks in Case 2). Speed profiles along
the hand paths were in both studies similar to those predicted
by Eq. (59), indicating that a Riemannian model formulation
provides a better fit to the actual movement data.

Case 2: o # const. The full metric (56) needs to be taken
into account for boundary conditions where the swivel angles
at the beginning and the end of the movement are different.
Figure 4(a) shows several movement paths on the sphere to a
final target location with different final arm postures (different
swivel angles). Note that only for « = const the end-effector
path is described by a great circle, which might account for
the different experimental findings.

Figure 4(c) shows the variation of the swivel angle for
these movement paths. Changes of the swivel angle occur
more towards the end of the movement where the radial elbow
distance r is small. The latter movement strategy results in an
overall shorter path as measured by the line element (56).

D. Constrained arm movements along curves with strictly
positive curvature

A modified form of the line element (32) can also be applied
to movement tasks, where the end effector is constrained to a
predefined curve. If the curve can be parametrized by an angle
0,i.e.,x = x(0), the Euclidean distance becomes ds?> = £2d0?

with & = j—g, and the line element (32) transforms to

do® = £2d6” + krida® . (72)

It is well known that tracing movements are described by the
empirical one-third power law that relates the hand speed to
the curvature of the path [40]. However, the line element (72)
does not yet encompass the one-third power law and I will
investigate next whether the metric can be adapted accordingly.

Before proceeding, the one-third power law is briefly
recapitulated for the readers’ convenience. According to this
law the periodic tracing of a closed contour with curvature k

012729-9
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g 2
:}')'1_5 """"""""""" FIG. 4. (Color online) Predictions of the
§ y geodesic model with task space metric (56)
g 1 Y/ for movements between pointlike targets on a
S \ sphere. (a) Predictions of hand paths. Note that
05 7 the great circle path is obtained for constant
0 swivel angle. (b) Normalized speed profiles
© @ ° 0.2 no?r#alizedoi?me 0.8 1 (gray), ¥ = v/(S/T), for movements along the

100 30

hand paths shown in (a). The solid line shows
the speed profile along the great circle path.

75

-25

The dashed line is the speed profile predicted
by the classical MJ model when constrained
to the sphere. (c) Swivel angle trajectories. (d)
Radial distance to the elbow location from the
shoulder-hand axis. Simulation parameters are
provided in Table I.
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results in a hand speed given by

v=gk?, (73)

where g is the constant gain factor and g ~ 1/3. Assuming
that the contour can be parametrized by an angle 6, the gain
factor g follows with v = £6 from the relation

gdt = kPgde (74)

leading to

1 2
g=7 f KPgan (75)
0

where T is the period of the movement. The one-third power
law can thus be written in closed form as

2
v(0) = (% f kﬁ(e’)g(e’)d9’>kﬁ(9). (76)
0

For a planar elliptic path parametrized by x(¢) =
[a cos ¢,b sin ¢], where a and b are the major and minor semi-
axes, respectively, one obtains & = \/ a?sin ¢? + b cos ¢2,
k = ab&~3,and g = 27 (ab)'/?/ T. Thus the hand speed along
the elliptic contour according to the one-third power law is

2
v(p) = 7”\/612 Sing? + b2cos 2 . a7
If instead a polar coordinate representation of the ellipse
is used with x(0) = [r,(0)cos0,r,(0)sinf] and r,(0) =
ab/+/b?cos26 + a?sin2 6 [the polar radius is denoted here
as r, to distinguish it from the function r defined in (33)] one
finds

21w | b*cos? 0 + a*sin? 0
(78)

f) = — .
v(® T \ b2cos?0 + a?sin? 6

Note that the two angles are related by 6 = arctan(f tan @).

0.6 0.8 1

normalized time

The one-third power law can be incorporated into the met-
ric (72) by inserting a conformal factor Q2(9) = [k#(9)]> > 0,
leading to

do? = k*(0)£2(0)d0? + kr*(0)da’ . (79)

It is assumed in the following that the contour has strictly
positive curvature (k > 0). This restriction will be later
removed and a generalization to contours with arbitrary values
of k will be given. Note further that the metric (79) does not
depend on the swivel angle « and thus adopts the Killing vector
field

(80)

The geodesic equation derived from the line element (79) is

0
0" + [@ log (kﬁ(9)§(9))1|9/2

K J 5 ”
- [Wa_er @}“ =0

d
a + [% log r(Q)]o/O/ =0,

81
(82)

where 6 and « are functions of an affine path parameter A €
[0,1] and a prime denotes differentiation with respect to A.
The affine parameter A can be replaced by the normalized arc
length6 =0/ 2.

I will show next that the one-third power law is an outcome
of the geodesic model with modified metric (79). For this
purpose I consider the case of constant and varying swivel
angle o separately.

Case 1: o = const. The line element (79) for constant
swivel angle reduces to

do? = k*P£%do? . (83)
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From (83) one derives
6 =kPEd, (84)
which leads with v = £6 to the speed-curvature relation
v=ckP. (85)

A comparison with (73) shows that the gain factor g is
given in the Riemannian formulation by the time derivative of
the Riemannian arc length. The latter adopts different forms
depending on the type of boundary condition imposed.

Periodic movements. The one-third power law (73) follows
from (85) for

6 = g = const . (86)

It remains to be shown that within the framework of the
geodesic model ¢ is indeed a constant. For periodic tracing
movements of closed contours (e.g., an ellipse) with periodic
boundary conditions (16), Eq. (17) leads to

6 =%/T = const, 87)

and thus the g factor is given by the constant g = X /T, which
defines an average “speed” with respect to Riemannian arc
length. The form (76) of the one-third power law can be
obtained by noting that the total arc length X of the contour is

2
= / kP (0)e©)do', (88)
0

and combining Eq. (85) with Egs. (87) and (88). Note further
that (87) can be written as j—f = 1, and thus, arc length is up to
a constant time shift a direct measure of time. It is shown next
that the one-third power law satisfies the geodesic equation,

which reads for & = const:
0
0" + [£ log (kﬁ(e)g(e))}e/2 =0. (89)

First, for periodic movements normalized arc length in (89) can
be replaced by normalized time (reparametrization). Second,
the one-third power law (73) leads to 8 = g(k?&)~! and § =
—g2(kPg)73 L (kP&), which satisfy the geodesic equation (89)
identically. For example, in the case of an elliptical contour
(represented in the ¢ parametrization) the square bracket
in (89) vanishes and the solution of the geodesic equation is
¢ = 21, which leads with v = £¢ to the result (77). The
one-third power law is thus compatible with the geodesic
model when applied to the metric space defined by (83).

Discrete movements. 1 will investigate next tracing move-
ments along contours which are not necessarily closed and
which are traced with zero initial and final velocity. Such
boundary conditions cannot be analyzed within the original
formulation of the one-third power law without further
modifications. In the framework of the geodesic model,
however, nonperiodic tracing movements can be modeled by
imposing two-point boundary conditions of the form (11)
leading to

& = padr(1 — )" 1, (90)

with peak value p, = Z ;5 % The speed-curvature rela-

tion (85) then takes the general form

v(0) = PO — (" 'k ©H), 1)

PHYSICAL REVIEW E 87, 012729 (2013)

where the expression for 7(9) follows from the geodesic model
through a sequence of parameter transformations, as I will
show next for the special case of n = 3. First, from (13)
one derives 6 (t) = (67° — 157* 4+ 107?) with normalized arc
length 6 = o/ 2. Second, the inverse of the latter function can
be approximated by

1F)~ BG;1—68,1—8)/B(1;1-8,1-8), (92)

where B is the incomplete 8 function given by
Z
B(z;a,b) =/ u' ' (1 —w)’ ' du, (93)
0

and § = 0.641 is a numerically determined fitting parameter.
Finally, the arc length 6 needs to be expressed in terms of
the angle 6. This relation depends on the specific form of
the contour and remains to be determined. Thus the speed-
curvature relation for n = 3 is

15% 2, n—f
v(0) = §7[4T(9)(1 — T(0)]°k(0) (94)
with
(@)= B(G(0);1—-6,1—-68)/B(;1-65,1-6), (95)
where ¥ is the arc length of the segment and 7' denotes the
total time needed to trace the segment. If the contour is closed

with total arc length X, and traced once with total tracing time
T,, Eq. (94) can be rewritten as

v(©) = F[4(0)1 — 1O v.(0) (96)

where v,(0) = %k(@)“S is the speed profile of the periodic
movement. It follows that the speed-curvature relation (96)
with (95) is given by the one-third power law modulated by a
M bell-shaped speed profile.

The yet-undetermined contour-specific function & () will
be derived next for an ellipse, cloverleaf, and limacon (Fig. 5),
which are represented in polar coordinates by

ab
Vb% cos? O+a? sin? 0
asin 20,

a(3 + cos6),
Integration of (83) leads to

, ellipse
rp(0) = cloverleaf o7

limacgon.

foﬁ (b? cos? u+a? sin® u)~'du

2 -
Jo " (b7 cos? u+a? sin® u)~'du

, ellipse

J2 (1343 cos 4u)Pdu

() = 033 con e cloverleaf (98)
” o
jgn(3+2005u) du ’ limagon.
Jo T (B4+2cosu)du

(If one uses the ¢ parametrization for the ellipse one finds
6(¢) = ¢/2m.) Figures 5(a)-5(c) show the speed profiles
along the three contours for periodic and nonperiodic boundary
conditions.

Case 2: a # const. The case of a varying swivel angle «
is relevant for discrete movements where the arm posture is
different at the beginning and the end of the movement. The
geodesic path is then described by the set of equations (81)
and (82). The speed-curvature relation can be derived from the
line element (79) leading to

v=+/62—kr2a?2k ¥ (99)
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Thus rotational movements of the elbow lead to an additional =~ Note that the line element results in a speed profile that

modification of the hand-speed profile. Note that for constant
swivel angle « the result (85) is recovered.

E. Constrained arm movements along curves
with arbitrary curvature

The one-third power law in the form (73) has a singularity
at k =0 and is only applicable to contours with strictly
positive curvature. In this final section a generalization to
smooth contours with arbitrary values of curvature is given
by modifying the line element from (83) to

do® = (k& + pu*/€%do* (100)
where p is a constant that needs to be adjusted empirically.
This leads to a speed-curvature relation of the form

v=060k>+ u*)P2. (101)

is symmetric in the curvature k, i.e., v(k) = v(—k), and is
regular at k = 0. Moreover, for k > 0 and u = 0 the original
line element (83) is recovered. As before, the speed-curvature
relation (101) transforms for periodic tracing movements to
v(O) = glk*©) + 1’172, (102)

with g = X /T, whereas for nonperiodic tracing movements
one obtains (n = 3)

v(0) = %5%41(9)(1 — T(O)PIK*O) + n>17P%, (103)

where t(0) is given as before by (95). A comparison of the
speed-curvature relations given by Eq. (73) and Eq. (102)
is provided in Fig. 6. The results derived in this section are
applied next to an asymmetric lemniscate contour (“figure of
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curvature k

FIG. 6. Comparison of the original one-third power law (dashed),
v/g = k73, with the modified power law (solid), v/g = (k* +
1>~V for u = 0.1. The modified power law is a symmetric function
in k and has no singularity at k = 0.

eight”) with parametric representation

a(cos ¢ + b)cos ¢

x(¢) = [+ sl , (104)
W($) = a(cos¢1-:_l;)il:;);¢ smq&’ (105)

and shape parameters a and b [Fig. 5(d)]. The contour-specific
function &(6) follows from the integration of (100) and is
evaluated numerically. The speed profiles for periodic and
nonperiodic tracing movements are shown in Fig. 5(d). Finally,
if a varying swivel angle « is additionally taken into account,
the speed-curvature relation takes the form

v =62 — kr2a(k* + p?) P2,

(106)

IV. DISCUSSION

In this paper the arm configuration manifold has been
endowed with different metric structures. Novel distance
measures were constructed from arm displacements in task
space and together with suitable boundary conditions (periodic
or nonperiodic) provided the input to the generalized MJ model
(geodesic model). The geodesic model has been applied to
a large variety of motor tasks ranging from unconstrained
movements between pointlike targets to constrained move-
ments where the end effector was confined to a surface or
curve. For all these tasks the spatial movement properties were
derived from geodesic paths with respect to the underlying
Riemannian manifold and movement timing resulted from a re-
parametrization of Riemannian arc length into time. For peri-
odic tracing movements along given contours, speed-curvature
relations have been analyzed and the compatibility with the
empirical one-third power law has been shown. Interestingly,
the geometric approach led to a generalization of the one-third
power law to nonperiodic boundary conditions and provided a
new interpretation of the gain factor as a time derivative of the
Riemannian arc length. In addition, movement invariants have
been derived from Killing vector fields, which describe the
symmetries of the metric tensor. Finally, movement variability

PHYSICAL REVIEW E 87, 012729 (2013)

can, in principle, be assessed independently of the choice
of coordinates in a Riemannian space. These features and
examples show that the preshaping of arm configuration space
by metric structures in combination with the geodesic model
lead to a unique, coordinate-independent modeling framework
for human arm movements.

The methods presented in this paper may be used
to generate different motor behavior by designing suitable
metric structures in the arm configuration manifold and thus,
may find applications in robotics and rehabilitation research.
One may ask whether similar mechanisms may underlie the
control of human arm movements. More precisely, can arm
configuration space be shaped by sensorimotor feedback,
similar to the preshaping of space presented in this paper,
and are geodesics an emergent property of the motor system?
A recent study by Danziger and Mussa-Ivaldi [41] seems to
answer these questions in the affirmative. The authors studied
a highly redundant motor task, where subjects had to control
a computer-generated kinematic linkage of two DOFs by
continuous finger motion. Depending on the type of visual
feedback (entire linkage vs end effector only) the subjects
followed different movement strategies. Subjects who received
the entire visual feedback followed geodesic paths on a torus,
i.e., the configuration manifold of the two-link system. The
metric tensor is then given by the (non-Euclidean) pullback
metric due to the embedding of the torus into Euclidean
space. These findings seem to support the assumption “that
the nervous system, through practice, is capable to capture this
geometrical structure based on the information contained in the
visual feedback” [41]. However, many open questions remain.
Does every motor task induce a different metric structure
on the arm configuration manifold? How is the geometrical
information extracted from the sensorimotor input stream and
how is it ultimately encoded by the brain? Are there principles
from which the metric tensor for different motor tasks can be
derived? It is hoped that future studies with particular emphasis
on the geometrical aspects underlying human motor behavior
will provide some of the answers.
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APPENDIX A: FORWARD AND INVERSE KINEMATICS

The human arm is modeled as a chain of rigid links. For the
description of an arm configuration in terms of four joint angles
a parametrization as in [22] is chosen. In this representation
the elbow joint location p = (u,v,w)T and the center of mass
of the hand location x = (x, y,z)T are determined by the joint
angles ¢ = (8,1,¢,¢)" according to

u = —l;sinfsinn, (AD)
v= I;sinfcosn, (A2)
w = —I;cosO, (A3)
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x =u — I[(cos @ sinncos ¢ + cosnsing)sing

+ sin 6 sin n cos ¢], (A4)
y =v+[L[(cosf cosncos¢ —sinnsing)sin @

+ sin @ cos 1 cos ¢], (AS5)
z = w + l[sin6 cos ¢ sin¢ — cos O cos ¢], (A6)

where /| and [, are the upper and forearm lengths, respectively.
In all derivations it is assumed that |p x x| #Z 0 and |w| < [;.

Another set of four generalized coordinates is defined by
q = (x, y,z,a)T, which consists of the hand coordinates x and
the angle o that describes the rotation of the plane spanned by
the upper and forearm around the shoulder-hand axis. The
rotation angle « is determined by the joint angles according to

1 sin6@ cos ¢ + Ir(sin 6 cos ¢ cos ¢ + cos O sin @)
dsinfsin¢ ’

tana =

(A7)

where d = |x| is the shoulder-hand distance. To derive the
functional dependence of the joint angles ¢ on the coordinates
q’ (inverse kinematics), the joint angles are first expressed by
the elbow and hand location. One finds

—w
9 = acos <T) (A8)
n = atan2 (—u,v), (A9)
¢ = atan2 (I1(uy — vx),v(vz — wy) — u(wx —uz)), (Al0)
2 2 2 12 _ 12
¢ —acos( Y TE TR Ay
211,

where the two argument atan2-function is atan2(a,b) :=
atan(y) — sign(a)[1 — sign(b)]5. The inverse kinematic re-
lations follow by combining the equations (A8)—(Al1l) with
the relation that expresses the elbow location as a function of
hand position and rotation angle «. All elbow positions lie on
the intersection circle of two spheres that have centers at the
shoulder and hand position with radii /; and /,, respectively.
One finds

p(x.a) = R(@)R,(D)[ fex +re ()], (Al12)

where the radial distance to the center of the intersection
circle is f = ﬁ(l% — l% +d?) and the intersection circle
radius is r = ﬁ\/4d21f — (I} — 13 + d*)*. Furthermore, it

is @ = atan2 (y,x), © = asin(z/d), e, = (1,0,0)7, e,(a) =
(0, — cosa, — sina)”. R, and R, define rotation matrices
around the y and z axis, respectively, and are given by

cos? 0 —sin?
R,(¥) = 0O 1 O
sintt 0 cos®

(A13)

and

cosp —sing 0
sing cosg 0
0 0 1

R:(p) = (Al4)
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APPENDIX B: PERIODIC BOUNDARY CONDITIONS

In this Appendix the solution of the equation (10) subject
to the periodic boundary conditions (71) is derived. For the
determination of the temporal aspects it is sufficient to analyze
the functional

C fT d'ot) 2dt ! /1 d"o(r) 2d B
n— - = Ta

0 dtm T2n—1 0 dth
where 7 =¢/T and T is the period of the movement. The

function o (7) is periodic in the first and all higher derivatives.
A Fourier series “ansatz” for the first derivative leads to

d o0
o(®) _do >y cos@mkt) + by sin@mke).  (B2)
dt 2 p

Integration of (B2) with boundary conditions (16) results in

= @ by
o(t) =1+ E —— sin(2rkt) + —(1 — cos(2wkT)).
pa 2k 2k
(B3)

Inserting the expression (B3) into the functional (B1) and
performing the integration gives

e ! /1 d"o (1) 2d
L TR A don T
1 21
= 7ot <Z 5 Qrh™ 2 a + ) + 5n122), (B4)
k=1

where §,,, is the Kronecker delta. The minimum of the
functional for all n is attained for @, = by = 0,(k = 1,2, ...),
and thus (B3) leads to the solution o (t) = Xt.

APPENDIX C: CENTER OF MASS OF A CYLINDRICAL
ARM MODEL

In this derivation a simplified model of the arm is con-
sidered, where the upper and forearm are approximated by
cylindrical shapes of length /; and /5, respectively, and constant
mass density p. The center of mass of the arm system is
defined by

[y xdm B p [y, xdV

xCM = =
fvdm my +my

=L(/ xdv+/xdv), (1)
my+my \Jy, v,

where m;, m, and V,, V, are the masses and volumes of
the upper and forearm, respectively. Let A denote the cross-
sectional area of the limbs and e;, e, the unit vectors in the
direction of the upper arm and forearm axes, respectively, then

p w-—p
= —, 32:
A I

e , (C2)

where p and w denote the elbow and end-effector lo-
cations, respectively. The integrals in (Cl) can then be

012729-14



SHAPING OF ARM CONFIGURATION SPACEBY ...

evaluated as

PHYSICAL REVIEW E 87, 012729 (2013)

h 1 1
f xdV =f reidV =f re|Adr = ~1?Ae; = — Vil e, (C3)

Vi \4 0 2 2

b 1, 1
/ xdV = / (lie; + gex)dV = / (lier + gex)Adg = | Liler + Elzez A=|le + Elzez V. (4
V2 \Z] 0
Inserting (C3) and (C4) in Eq. (C1) leads to the location of the center of mass in terms of the elbow and wrist location:

R — . C5
Xem 2my + my) [((m1 + m2)p + maw] (&)

It follows that the center of mass is located in the plane spanned by the upper arm and forearm.
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