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Sedimentation of knotted polymers
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We investigate the sedimentation of knotted polymers by means of stochastic rotation dynamics, a molecular
dynamics algorithm that takes hydrodynamics fully into account. We show that the sedimentation coefficient s,
related to the terminal velocity of the knotted polymers, increases linearly with the average crossing number
nc of the corresponding ideal knot. This provides direct computational confirmation of this relation, postulated
on the basis of sedimentation experiments by Rybenkov et al. [J. Mol. Biol. 267, 299 (1997)]. Such a relation
was previously shown to hold with simulations for knot electrophoresis. We also show that there is an accurate
linear dependence of s on the inverse of the radius of gyration R−1

g , more specifically with the inverse of the
Rg component that is perpendicular to the direction along which the polymer sediments. When the polymer
sediments in a slab, the walls affect the results appreciably. However, R−1

g remains to a good precision linearly
dependent on nc. Therefore, R−1

g is a good measure of a knot’s complexity.
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I. INTRODUCTION

The topology of knots has been studied for almost two
centuries. The earliest work dates back to the 19th century
[1,2], when P. G. Tait first proposed the current classification
of knotted loops based on the crossings observed in their
two-dimensional projection. Since then, knot theory has been
applied to a wide number of areas in physics and beyond:
Of particular relevance to our work are the applications to
biophysics, as several biopolymers are observed to form knots.
A particularly important case is that of DNA [3–9]. DNA has
been long known to routinely form simple knots in solutions
[10], and it has been argued that specific enzymes must be
at work within a cell to avoid excessive DNA knotting [11],
which could be detrimental for the correct genome function.
More recently, knots have been discovered also in the native
states of proteins, where they are, however, quite rare [12].
Knots are further present in synthetic polymers. Recently, an
organic trefoil knot was created synthetically by self-assembly
methods [13].

DNA knots are even more common within bacteriophage
heads [14,15]. Arsuaga et al. showed that the tight geometric
confinement to which the genome is subjected is a significant
contributor to the knot formation [6,16]. Such bacteriophages
are the “viruses of bacteria,” and they work by releasing their
DNA into the cytosol of their host. This release, or DNA
ejection, is essentially entropically driven, as the DNA of
phages is confined to essentially crystalline density, which
is highly costly entropically. Also, wild-type phages when
burst open reveal a knotted double-stranded DNA. Modeling
has shown that the spectrum of knots observed in the
bacteriophage P4 [6] can be understood on the basis of simple
polymer physics models that view DNA as a semiflexible and
self-avoiding polymer, provided that an aligning interaction
between contacting DNA segments is included [7].

The existence of knotted double-stranded DNA is by no
means restricted to the inside of bacteriophages. Using a
variety of enzymes, knotted DNA has even been generated in a
test tube [17]. They form in vivo in nonreplicating cells [18–20]
and during replication; see, e.g., [21,22]. Very recently it was

shown that topoisomerase IV is responsible for the knotting
and unknotting of sister duplexes during DNA replication [23].

As the knots are so frequent and important in the biophysics
of DNA, there is clearly a demand for their easy identification.
However, how can one tell whether a DNA molecule, whose
(hydrated) thickness is about 2.5 nm, is knotted, and which
knot it forms? There is a large body of work on experi-
mental gel electrophoresis paving the way for relating the
DNA topology to migration velocity (see, e.g., [24] and the
references therein). Motivated by their previous finding that
knots with the same minimal crossing number comigrate on
gels [25], Stasiak and co-workers presented in their seminal
paper experimental results on DNA gel electrophoresis [3]
and showed that the measured electrophoretic mobility ν of
the DNA knots used in the experiments increases linearly
with the average crossing numbers nc of the ideal forms
(defined below) of these knots [3,4]. This dependence makes
the identification of DNA knot topology much faster than,
e.g., by using electron microscopy methods; it also allows
the determination of knotting probability in an ensemble of
DNA molecules without the need to examine each of these
singularly.

How can we compute nc in practice? To do so, we first need
to deform a knot into its ideal form, which is defined as the
one with the highest ratio of volume to surface area [26–29].
In other words, this is a knot that is formed with as short
a ropelength (polymer) as possible. The average crossing
number, nc, is defined as the average number of crossings
of all possible two dimensional projections of the knot in
its ideal form [26]. Clearly, the larger nc becomes, the more
complex is the corresponding knot. Knots are typically indexed
according to their minimal number of crossings, nmin, which
is the minimum number of crossings over all projections;
therefore, nc � nmin, i.e., the number of crossings that cannot
be opened without breaking the knot contour.

The reason why the electrophoretic mobility of knots in-
creases with average crossing number, hence their complexity,
can be understood with a simple physical argument. If a DNA
knot is subject to a force f , for instance, due to an electric
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field, then the (terminal) velocity it will reach can be estimated
by the formula f = γ v, where γ is an effective friction;
this is because the dynamics of DNA is highly overdamped
in solution. For a sphere of radius ρ the effective friction
could be estimated with Stokes law as 6πηρ, where η is the
solvent viscosity. The typical “size” (radius) of a polymer is
commonly measured by means of its radius of gyration Rg .
If the knots have the same contour length, it is then intuitive
that the more complicated ones will be more globular, hence
smaller in shape: Their terminal velocity, hence mobility, will
then be larger. We note that for this argument hydrodynamic
interactions are crucial; without these, the friction of a polymer
would scale, according to the Rouse model, with the number
of beads rather than with the radius of gyration (which scales
as N0.588 for a self-avoiding polymer).

This line of reasoning is essentially the one in [3,30],
where the authors used a method to calculate the expected
sedimentation coefficient s of DNA molecules with a given
topology [30] and found that s increases linearly with
nc. However, the original computation that employed the
Kirkwood-Riseman approximation neglected the effect of flow
on polymer conformation and was essentially an estimate
valid only at infinitesimally small forcing. To quantitatively
establish the claim on the linear relationship between ν or s and
nc one needs to simulate the sedimentation of knotted polymers
using a computational method that studies the molecular
dynamics of the polymer in the presence of hydrodynamics
and of a gravity field. This is what we set out to do in the present
paper. As our work comprises the first numerical simulations of
knot sedimentation including full hydrodynamic interactions,
our results and framework may be used in the future to
enhance accuracy in knot determination by sedimentation
experiments. We also highlight the importance of boundaries,
which significantly affect the sedimentation coefficients we
record. Our results may be seen as complementary to the
dynamic Monte Carlo simulations in Refs. [31,32], which
established the linearity of the electrophoretic motility with
nc via direct simulations of the dynamics of a knot in a gel,
under an electric field.

Our paper is organized as follows. In Sec. II we explain our
computational model for polymer sedimentation: the model
for the DNA, the method for simulating the dynamics, and the
used simulation geometries. In Sec. III we present the results
and conclude in Sec. IV.

II. THE COMPUTATIONAL MODEL

A. The polymer model

The polymer is modeled as a circular chain of pointlike
beads with mass mb. The adjacent pairs are connected by
means of the finitely extensible nonlinear elastic (FENE)
potential,

UF = −K

2
r2

max ln

(
1 −

(
r

rmax

)2
)

, r < rmax, (1)

where r is the length of the bond and rmax = 1.5σ is the
maximum bond length. All bead pairs interact through a shifted

truncated Lennard-Jones (LJ) potential,
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6
√
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(2)

where rij is the distance between beads i and j . The potential
parameters are chosen as σ = 1.0, ε = 1.0, and K = 30/σ 2.
This truncated repulsive Lennard-Jones potential models a
good solvent.

B. Polymer and solvent dynamics

In the modeled sedimentation process the polymer is im-
mersed in a solvent and is driven by a constant (gravitational)
force. This makes sedimentation an inherently nonequilibrium
process. For such processes hydrodynamics typically plays
a significant role. Hydrodynamic interactions are taken into
account by modeling the solvent using stochastic rotation
dynamics (SRD), a computationally efficient Navier-Stokes
integrator [33]. We use a hybrid version of the algorithm where
the polymer follows Newton’s dynamics and SRD is applied
to both the solvent and the polymer. The polymer molecular
dynamics is implemented using the standard velocity Verlet
algorithm [34]. The above described model has been success-
fully used in modeling elasticity and hydrodynamics of linear
DNA molecules [35].

The solvent consists of pointlike particles, each of mass ms .
One SRD step comprises two smaller steps: the streaming step
and the collision step. In the streaming step the positions of
solvent particles are updated as

�ri(t + 	t) = �ri(t) + �vi(t)	t, (3)

where �ri(t) and �vi(t) are the location and the velocity of the
particle i at time t , respectively, and 	t is the SRD time step.
The whole simulation space is divided into a grid of cubic
cells of equal size. In each cell the velocities of particles are
updated in the collision step as

�vi(t + 	t) = �vcm(t) + 
[�vi(t) − �vcm(t)], (4)

where �vcm(t) is the center-of-mass velocity of the cell. Operator

 is a rotation matrix whose rotation angle α is fixed but the
rotation axis is chosen randomly in each time step for each
cell. The method conserves energy and momentum in each
cell. In order for the method to maintain Galilean invariance
the grid is shifted randomly at each step [36].

The polymer is coupled to the solvent in the collision step,
Eq. (4). Here, the polymer beads are treated like the solvent
particles. The resulting polymer beads’ velocities are then used
in the following velocity Verlet steps performing molecular
dynamics (MD). MD and SRD take turns so that after every
500 MD steps of time step δt = 0.002 is performed a single
SRD step of time step 	t = 1. The other parameters were
chosen as follows: The edges of the cubic cells are of unit
length, the average density of solvent particles is five particles
per unit cell, and the rotation angle α = 3π/4. The mass of the
solvent particles is ms = 4 and the mass of the polymer beads
is mb = 16.
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C. The simulation geometry and polymer configurations

The simulation space is a parallelepiped with periodic
boundary conditions along the y and the z directions for both
the polymer and the solvent particles. The polymer is driven by
a constant force in the negative z direction. To model different
experimental setups where sedimentation takes place in a large
container and in a channel we run the simulations with either
periodic boundary conditions also along the x direction, or
in the presence of two no-slip walls parallel to the yz plane
and normal to the x direction. When the solvent particle hits
the no-slip wall its momentum is reversed, so it is bounced
back to the direction of incidence [37]. In addition to this,
for the polymer there is a repulsive Lennard-Jones potential
similar to Eq. (2) with a cutoff at distance 0.1 (in simulation
units) from the wall. The dimensions of the parallelepiped are
Lx × Ly × Lz = 50 × 50 × 300 when the periodic boundary
conditions are applied and Lx × Ly × Lz = 5 × 50 × 300
when the no-slip walls are present.

In each simulation we use a circular polymer with the
number of beads Nb = 215. However, initial configurations
differ since we examine polymers with different knot topolo-
gies. The different knot topologies are created with the
KNOTPLOT program [38,39]. Individual realizations of the real
conformations corresponding to a single knot topology were
created by thermalizing the knots using different stochastic
forces due thermal fluctuations. Due to this and the twist
potential not included in the standard coarse-grained DNA
model, our simulations address the case of relaxed—not
supercoiled—knots. In electrophoresis the setup corresponds
to the migration of knots driven by a low voltage. Snapshots of
the initial configurations and of typical conformations (during
sedimentation) are shown in Fig. 1 for three different knot
types.

On each polymer bead we apply a constant force f =
mba = 0.1 in the negative z direction, where a is the accelera-
tion. Once the polymer has reached its terminal velocity vt we

)b()a( (c)

FIG. 1. (Color online) Initial configurations (top row) and typical
configurations during sedimentation runs (bottom row) for three
knots: trefoil [31, (a)], Stevedore’s knot [61, (b)], and 101 knot (c).
These are three examples of twist knots, with the trefoil being a torus
knot as well.

calculate the time average of the sedimentation coefficient

s = vt

a
(5)

in the negative z direction. Applying the constant force to the
polymer induces momentum in the polymer which transfers to
the solvent via the SRD collision step, Eq. (4).

When periodic boundary conditions are applied in the z

direction the unphysical increase in the momentum of the
fluid due to the body force has to be judiciously taken into
account and compensated for. This we do by removing the
momentum I/Ns from every solvent particle at each streaming
step. I = f Nb	t is the impulse applied to the polymer due to
the constant force between SRD steps. The same impulse is
then divided equally to each of the Ns solvent particles. The
procedure preserves the local momenta in the fluid induced
by the sedimenting polymer but removes the unphysical net
momentum building up due to the periodic boundaries.

The no-slip walls instead naturally dissipate the induced
energy. Hence, there is no need for momentum correction for
the sedimentation simulations within the channel. The solvent
is kept at a constant temperature by scaling the momenta so
that the equipartition theorem always holds.

III. RESULTS

The sedimentation coefficient for each polymer knot
topology was obtained by averaging over 55 sedimentation
simulations. In each simulation the sedimentation coefficient
was averaged over 50 000 measurements. We computed the
knot invariant Alexander polynomial [40,41] of the polymer
after each run to verify that the knot was not lost due
to phantom bond crossings during simulation. The knot
topologies were sustained throughout the simulation runs,
which is in accord with previous findings that the probability
of phantom crossings is very small for polymers modeled by
LJ and FENE potentials [42,43].

The standard error of the mean was used as the estimate
of error. In what follows, we denote an affine dependence of
a variable y on a variable x, i.e., y = Ax + B, where A and
B are constants, as y ∼ x. Also, by “linear dependence” we
mean affine dependence. Stasiak and co-workers use linear
dependence in this same manner. We give the formulas for
the linear fits in figure captions along with the Pearson
product-moment correlation coefficient rp (see, e.g., [44]) for
comparing the linear relationships. These regression formulas
will, of course, change when changing physical parameters
such as the viscosity of the fluid.

First we investigate the sedimentation of knots in the bulk
(i.e., by using periodic boundary conditions rather than con-
fining walls). Figure 1 shows initial and typical configurations
during sedimentation runs for three knots. In Fig. 2(a) the
sedimentation coefficients s for polymer knots are plotted
against the average crossing numbers nc for their respective
ideal forms. These crossing numbers are obtained from [27].
A very good linear relationship between s and nc is obtained
for the common DNA knot topologies that are also reported
in the original papers of Stasiak and co-workers. For the more
complicated, higher order knots, the dependence of s on nc

deviates somewhat from linearity. This aside, our direct MD
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FIG. 2. (Color online) Periodic boundary conditions. (a) Sedi-
mentation coefficient s and (b) the inverse of the radius of gyration
R−1

g as a function of knot average crossing numbers nc for respective
ideal knot conformations. Knots from left to right in all figures as a
function of nc are as follows: 31, 41, 51, 52, 61, 62, 63, 71, 73, 72, 75,
74, 76, 77, 81, and 91. Linear fits: (a) s = 0.057nc + 3.9, rp = 0.951;
(b) R−1

g = 0.0028nc + 0.13, rp = 0.988.

simulations including full hydrodynamic interactions confirm
well that there should be a linear increase of s with nc, as
proposed by Stasiak and co-workers, at least for relatively
simple knots.

Stasiak and co-workers explained the linear relationship
between nc and the knot migration speed as due to the fact
that nc is directly proportional to the compactness of the
knots. As a measure of molecular compactness they used
the mean of inverse distances in a molecule [45], [R−1] =∑N

i,j (i �=j )〈r−1
ij 〉, where 〈r−1

ij 〉 is the mean reciprocal separation
of segments i and j [3]. The quantity [R−1] indeed appears
in the approximate hydrodynamic theory used to compute
sedimentation coefficients from polymer conformations [30];
at the same time, though, this is hard to calculate in practice
(see, e.g., [46]). Hence, it is not easy to show that nc increases
linearly with [R−1] as would be required for the linear
relationship between nc and the electrophoretic mobility ν

to be proven rigorously.
The inverse radius of gyration R−1

g is also, by definition,
a good measure of molecular compactness, and it can be
readily and efficiently computed in simulations, as R2

g =
(1/N )

∑N
i=1〈(ri − Rcm)2〉, where Rcm is the center of mass.

In Fig. 2(b) the inverse radii of gyration R−1
g measured for

the sedimenting polymer knots are shown as a function of
nc. We obtain a good linear relation R−1

g ∼ nc for the knots
investigated by Stasiak and co-workers. Interestingly, the slight
deviations from the linear dependence s ∼ nc show up in
almost exactly the same way in R−1

g ∼ nc. That is, also the
relation R−1

g ∼ nc tends to break down for highly complex
knots such as 81 and 91, just as the s ∼ nc relation did.

By a careful look at the s vs nc curves, one may note
that the sedimentation coefficients for the knots within knot
families with 6 and 7 minimal crossings deviate from the
linear dependence s ∼ nc. The sedimentation coefficients s

obtained for all knots with nmin = 6 and nmin = 7 are shown
in Fig. 3. For the knots 61, 62, and 63, s has a close to linear
dependence on nc; however, the slope differs from the one
characterizing the general linear dependence on nc for all the
knots. Within the knot family with nmin = 7, s violates linearity
more significantly. For more complex knots (such as 81 and 91),
deviations from linearity increase, as previously mentioned.
All this is in good accord with the experimental observation

FIG. 3. (Color online) Periodic boundary conditions. Sedimen-
tation coefficient s for knots with minimal crossing numbers (a)
nmin = 6 and (b) nmin = 7 as functions of knot average crossing
number nc. Within the knot family nd = 7 the linear relation
s ∼ nc does not hold. Linear fits: (a) s = 0.21nc + 2.4, rp = 0.997;
(b) s = 0.11nc + 3.3, rp = 0.894.

that the linear relationship between the speed of electrophoretic
migration speed and nc breaks down for complex knots [47].

Figure 4(a) shows s as a function of R−1
g for the first knot

type (subscript 1) of each knot family nmin ∈ {0,3,4, . . . ,10}.
A very accurate linear relation with the Pearson product-
moment correlation coefficient rp = 0.995 is observed. In
other words, the linear relationship between s and R−1

g (at
least for sedimentation runs in the bulk) appears to hold more

R 1
g

s
31

61

81

91

51

101

41

71

01

FIG. 4. (Color online) Periodic boundary conditions. (a) Sedi-
mentation coefficient s as a function of the inverse radius of gyration
R−1

g . Only the knots with subscript 1 are depicted. Also the unknot
01 and the knot 101 are included. The dashed (red) line is the
estimate for s based on the Stokes’ formula Eq. (6); see text.
(b) Magnification of panel (a) where more complex knots of the
families 6 and 7 are included. (c) s as a function of the inverse
of the perpendicular component of radius of gyration R−1

g⊥. (d)
Sedimentation coefficient as a function of the inverse of radius of
gyration of the corresponding ideal knot configurations R−1

g id . Linear
fits: (a) s = 22R−1

g + 0.91, rp = 0.995; (b) s = 18R−1
g + 1.6, rp =

0.926; (c) s = 19R−1
g⊥ + 0.70, rp = 0.990; (d) s = 6.2R−1

g id + 3.1,
rp = 0.983. Knots in (d) from left to right: 31, 41, 51, 52, 61, 71,
62, 63, 73, 72, 75, 74, 91, 76, 81, and 77. (The ideal knot configurations
were originally generated for publications [51,52]. Kindly provided
by Eric Rawdon. Some ideal knot configurations can also be found
at [53]).

012728-4



SEDIMENTATION OF KNOTTED POLYMERS PHYSICAL REVIEW E 87, 012728 (2013)

accurately than the one between s and nc. (That is because the
dependencies of s and R−1

g on nc show similar deviations from
linearity, as observed above.) In Fig. 4(b) s vs R−1

g is shown
for all the knots in the families with crossing numbers 6 and 7.
For these more complex knots the linear relationship s ∼ R−1

g

is roughly that for all the knots; see Fig. 4(a). In contrast, the
deviation of s ∼ nc for the more complex knots from s ∼ nc

for all the knots is clear; see Figs. 2(a), 3(a), and 3(b) and the
related formulas for the linear fits.

The dependence s ∼ R−1
g is in agreement with the simple

physical argument given in the Introduction; it has also been
derived for DNA supercoils [48], based on the Kirkwood-
Riseman expression valid for linear Gaussian chains of radius
of gyration Rg [49]. Using the Kirkwood-Riseman expression
entails assuming that the sedimentation is nondraining, i.e.,
that the motion of the solvent particles in the region of the
polymer is largely suppressed (this is essentially the same
approximation used in computing sedimentation coefficients
in [30]). Consequently, backflow couplings between solvent
flow and polymer conformations are completely neglected in
that approach (unlike in our SRD simulations).

It is instructive to compare the values of s measured from
our simulations with the result expected from the Stokes’
formula for friction (see Introduction). For a spherical ball
of radius ρ the sedimentation coefficient would be

s = M

6πηρ
. (6)

In Fig. 4(a) we plot with the dashed line the sedimentation
coefficient s obtained using this formula when the radius ρ

is replaced by ρ = 1.33Rg . Here, M is the total mass of the
polymer and η = 4.78 is the viscosity of the fluid estimated
for SRD using formulas derived in Ref. [50]. Hence, the
correspondence between s measured from the simulations and
estimated from the Stokes’ formula is reasonably good.

Even though these simplified theories (Stokes drag and
Kirkwood-Riseman nondraining approximations) work rea-
sonably well, the effect of the velocity field on the polymer
(backflow) cannot be wholly disregarded (nor can the near-
field flow which is not captured by such approximations). The
most relevant effect in our simulations which is not captured
in the more simplified treatments is that the components of Rg

aligned, R2
g‖ = (1/N)

∑
i(ri,z − Rcm,z)2, and perpendicular,

R2
g⊥ = (1/N )

∑
i[(ri,x − Rcm,x)2 + (ri,y − Rcm,y)2], to the di-

rection of gravitational force differ appreciably [see Fig. 5(a)],
at least for the values of acceleration a used here. The dominant
contribution to the linear dependence s ∼ R−1

g comes from

s ∼ R−1
g⊥; see Fig. 4(c). Both R−1

g‖ and R−1
g⊥ depend linearly

on nc to a good precision. However, the linear dependence
s ∼ R−1

g‖ (not shown) is deteriorated. This in keeping with the
friction being determined dominantly by the dimension Rg⊥.
Interestingly, in comparison with the knots, the unknot (01)
is very strongly elongated in the direction aligned with the
gravitational force. Hence, in sedimentation the deformation
of the knots differs markedly from linear and unknotted ring
polymers.

To further assess the validity of the inverse of the radius of
gyration as a measure the polymer knot complexity we plot
the dependence of the measured sedimentation coefficients

0

FIG. 5. (Color online) (a) Different, appropriately normalized,
components of radius of gyration with periodic boundary conditions.
Circles, R̂g = Rg/

√
3; squares, R̂g⊥ = Rg⊥/

√
2; triangles, Rg‖. $b)

Different Cartesian components of radius of gyration with slit walls.
Circles, Rgx ; squares, Rgy ; triangles, Rg‖ = Rgz.

s of the knots on the inverse radius of gyration of the
topologically corresponding ideal knots of constant length
R−1

g id ; see Fig. 4(d). The obtained linear dependence of

s ∼ R−1
g id is more precise than s ∼ nc; see Fig. 2(a).

In order to consider the effect of boundaries, which is not
necessarily negligible in the laboratory (or could be used to
control the drag exerted by the fluid on the polymer), we also
simulated sedimentation of knotted polymers between two no-
slip walls. Due to the interaction of the fluid particles with the
walls the friction felt by the polymer is enhanced, and as a result
the polymer conformation is more elongated in the direction
parallel to the walls. Hence, even for wide channels Rg‖ devi-
ates from Rg⊥ more clearly than for the case of free solvent.
When the channel is sufficiently narrow the polymer will be
confined directly by the walls; see Fig. 5(b). We show results
for a channel of width 5. For comparison, we measure Rg ≈ 7
for the trefoil in free solvent. The linear relation between s and
nc is not as precise as in the bulk (periodic boundary conditions,
no walls); see Fig. 6(a). At the same time the linear dependence
of R−1

g on nc is still preserved; see Fig. 6(b). This suggests that
R−1

g still reflects well the knot topology, but the sedimentation
process is disturbed by the walls.

Indeed, the precision of the relationship s ∼ R−1
g for a

polymer in the channel is deteriorated due to the walls;
compare Figs. 4(a) and 7(a). Although the difference in
Pearson product-moment correlation coefficients is not very
large, the precision in identifying knot topologies through
s deteriorates under confinement (for example, consider the
order of the knots 51 and 61). From Fig. 5(b) it is clear that for
polymers squeezed between the walls the component of the

FIG. 6. (Color online) Slit walls. (a) Sedimentation coefficient
s as a function of average crossing number nc. (b) The inverse of
the average radius of gyration R−1

g as a function of knot average
crossing number nc. Fitted lines: (a) s = 0.0084nc + 1.3, rp = 0.964;
(b) R−1

g = 0.0031nc + 0.10, rp = 0.992.
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FIG. 7. (Color online) Results for sedimentation within a slab,
with no-slip walls parallel to the direction of sedimentation. Sedi-
mentation coefficient s as a function of (a) the inverse of the radius
of gyration Rg and (b) the inverse the perpendicular component of
the radius of gyration Rg⊥ (a) s = 2.7R−1

g + 1.0, rp = 0.987; (b)
s = 2.2R−1

gy + 0.98, rp = 0.995.

radius of gyration that is perpendicular to the walls Rgx has no
dependence on nc. This happens already for wide channels (not
shown). The linear dependence of s on R−1

gy , the component
measured in the perpendicular direction on which periodic
boundaries are applied, is preserved to a good precision [see
Fig. 7(b)] and contributes dominantly to the obtained s ∼ R−1

g

[Fig. 7(a)].

IV. CONCLUSION

In conclusion, we have investigated sedimentation of
knotted polymers using stochastic rotational dynamics, a
computational model where hydrodynamics is taken fully into
account, for the first time. Our motivation was to directly test
the dependence of the sedimentation coefficient s on the ideal
average crossing number nc, without making any assumptions
about the segment distribution or hydrodynamic interactions.
The linear dependence of s on nc was seen to hold with fair to
good accuracy for the knot topologies for which Stasiak and co-
workers predicted this dependence. However, for some knots
of higher complexity (such as 7-crossing number knots, 81 and
91), deviations from this dependence increase. This is in line

with the experimental and theoretical results obtained for gel
electrophoresis of knots [31,32,47]. Our direct sedimentation
simulations further justify the argumentation commonly used
in the literature to explain the observed linearity of s on nc in
gel electrophoresis experiments.

Our simulations show that the inverse radius of gyration of
the polymer, R−1

g , is also proportional to the average crossing
number nc, and therefore provides another good measure of a
knot’s complexity. Interestingly, the deviations from linearity
in the R−1

g vs nc curve pretty much mirror those in the s vs
nc curve. As a result, we observe that the linear relationship
between s and R−1

g is far more precise than the one between
s and nc. As the solvent flow affects the knot conformations,
and renders them more anisotropic, we monitored separately
the dependence on the component of the radius of gyration
parallel and perpendicular to the sedimentation direction: We
found that it is the inverse of the latter which is more accurately
linearly proportional to s.

Our fluctuating hydrodynamics simulations finally suggest
that confinement, or the presence of boundaries, significantly
affects the dependence of s on R−1

g and may lead to a
deterioration of the linearity between s and nc. The deviations
from linearity in the s vs R−1

g curves are due to Rg component
perpendicular to the walls losing all dependence on nc.

We hope that our simulations will spur further results on
knot sedimentation, aimed at verifying the deviations from
linearity in the s vs nc curve which can be observed due to
confinement, or at high knot complexity. Eventually, finding
a more precise relation for complex knots will lead to an
improvement in the knot identification techniques when the
average crossing number is high.
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