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Vascular networks due to dynamically arrested crystalline ordering of elongated cells
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Recent experimental and theoretical studies suggest that crystallization and glass-like solidification are useful
analogies for understanding cell ordering in confluent biological tissues. It remains unexplored how cellular
ordering contributes to pattern formation during morphogenesis. With a computational model we show that a
system of elongated, cohering biological cells can get dynamically arrested in a network pattern. Our model
provides an explanation for the formation of cellular networks in culture systems that exclude intercellular
interaction via chemotaxis or mechanical traction.
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I. INTRODUCTION

By aligning locally with one another, cells of elongated
shape form ordered, crystalline configurations in cell cultures
of, e.g., fibroblasts [1,2], mesenchymal stem cells [2], and
endothelial cells [3]. Initially the cells form small clusters
of aligned cells; the clusters then grow and the range over
which cells align increases with time [2,4]. To study the
emergence of such crystalline cellular ordering, it is useful
to make an analogy with liquid crystals [2]. For example, a
“cellular temperature” can be defined to describe the cell-type
specific persistence (low cellular temperature) or randomness
(high cellular temperature) of cell motility, where cells of high
cellular temperature (e.g., fibroblasts) are less likely to form
crystalline configurations than cells of low temperature (e.g.,
mesenchymal stem cells) [2]. It was similarly proposed that
collective cell motion in crowded cell sheets can be understood
as a system approaching a glass transition [5,6]. Although these
studies provide useful insights into the ordering of cells in
confluent cell layers, it remains unexplored how crystallization
and glass-like dynamics contribute to the formation of more
complex shapes and patterns during biological morphogenesis.

Cells’ organizing into network-like structures, as it occurs,
for example, during blood vessel development, is a suitable
system to study how cellular ordering participates in pattern
formation. In cell cultures, after stimulation by growth factors
(vascular endothelial growth factors, fibroblast growth fac-
tors), endothelial cells elongate and form vascular-like network
structures [7–9]. The mechanisms that drive the aggregation
of endothelial cells and their subsequent organization into
a network is a subject of debate. Most models assume an
attractive force between cells, either due to chemotaxis [10–18]
or due to mechanical traction via the extracellular matrix
[19–24]. In vitro experiments show that astroglia-related rat
C6 cells and muscle-related C212 cells can form network-like
structures on a rigid culture substrate [25], which excludes
formation of mechanical or chemical attraction between cells.
Therefore, a second class of explanations proposed that
cells form networks by adhering better to locally elongated
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configurations of cells [25] or elongated cells [26]. Here we
show that in the absence of mechanical or chemical fields,
such mechanisms are unnecessary: Elongated cells organize
into network structures if they move and rotate randomly, and
if they adhere to adjacent cells. As the cells align locally with
one another, a network pattern appears. Additional, long-range
cell-cell attraction mechanisms, e.g., chemotaxis or mechano-
taxis, act to stabilize the pattern and fix its wavelength.

II. MODEL DESCRIPTION

To model the collective movement of elongated cells,
we use the cellular Potts method (CPM), also known as
the Glazier-Graner-Hogeweg model [27,28], a lattice-based,
Monte Carlo model that has been used to model developmen-
tal mechanisms including somitogenesis [29,30], convergent
extension [31], and fruit fly retinal patterning [32]. The CPM
represents cells as connected patches of lattice sites with
identical spin σ ∈ N; lattice sites with spin σ = 0 represent
the extracellular matrix (ECM). To simulate stochastic cell
motility, the CPM iteratively displaces cell-cell and cell-ECM
boundaries by attempting to copy the spin of a randomly
selected site �x into a randomly selected adjacent lattice site
�x ′, monitoring the resulting change �H of a Hamiltonian:

H =
∑

(�x,�x ′)

J (σ (�x),σ (�x ′))[1 − δ(σ (�x),σ (�x ′))]

+
∑

σ

λA[a(σ ) − A]2 +
∑

σ

λL[l(σ ) − L]2. (1)

A copy attempt will always be accepted if �H � 0, if
�H > 0 a copy attempt is accepted with the Boltzmann prob-
ability P (�H ) = exp (−�H/μ(σ )), with μ(σ ) a “cellular
temperature” to simulate cell-autonomous random motility.
For simplicity, here we assume that all cells have identical
temperature. The time unit is a Monte Carlo step (MCS), which
corresponds with as many copy attempts as there are lattice
sites.

The first term of Eq. (1) defines an adhesion energy, with
the Kronecker δ selecting site pairs at cell-cell and cell-ECM
interfaces. In the model two contact energies are defined:
Jcell,cell for σ > 0 at both lattice sites and Jcell,ECM for σ = 0
at one lattice site. The second and third terms are shape
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FIG. 1. Effect of chemotaxis and cell shape on pattern forma-
tion. (a) Round, chemotacting, and adhesive cells (10 000 MCS);
(b) elongated, chemotacting, and adhesive cells (10 000 MCS); and
(c) elongated, nonchemotacting, and adhesive cells (250 000 MCS).
In all panels 700 cells are seeded on the center 500 × 500 pixels of
an 800 × 800 lattice.

constraints that penalize deviations from a target shape, with
A and L a target area and length, and a(σ ) and l(σ ) the current
area and length of the cell; λA and λL are shape parameters. We
efficiently estimate l(σ ) by keeping track of a cellular inertia
tensor as previously described [14].

In a subset of simulations, we further assume that cells
secrete a diffusing chemoattractant c, which we describe with
a partial differential equation:

∂c(�x,t)

∂t
= D∇2c(�x,t) + s[1 − δ(σ (�x),0)] − εδ(σ (�x),0), (2)

with diffusion constant D, secretion rate s, and decay rate
ε. After each MCS, a forward Euler method solves Eq. (2)
for 15 steps with �t = 2 s with zero boundary conditions. To
model the cells’ chemotaxis towards higher concentrations of
the chemoattractant, during each copy attempt from �x to �x ′ we
increase �H with a �Hchemotaxis = λc(c(�x) − c(�x ′)), with λc

a chemotactic strength [33]. One lattice unit (l.u.) corresponds
with 2 μm. We use the following parameter settings, unless
specified otherwise: μ = 1, Jcell,cell = 0.5, Jcell,ECM = 0.35,
λA = 1, λL = 0.1, λc = 10, A = 100 l.u.2, L = 60 l.u., D =
10−13 m2s−1, ε = 1.8 × 10−4 s−1, and s = 1.8 × 10−4 s−1.
Unless stated otherwise, a simulation is initialized with 175
cells randomly distributed on a 220 × 220 area at the center of
a 400 × 400 lattice.

III. RESULTS

As Fig. 1 shows, and in agreement with previous reports
[14], if we allow for chemotaxis, rounded cells accumulate into
rounded clusters [Fig. 1(a)] and elongated cells aggregate into
networks [Fig. 1(b)]. Interestingly, however, chemotaxis is not
required for network formation: Cell-cell adhesion between
elongated cells suffices for forming networks [Fig. 1(b)].
Supplemental Movies S1 and S2 corresponding with Figs. 1(c)
and 1(b) [34] suggest that the gradual alignment of cells
with their neighbors is key to network formation and network
evolution. To characterize this cell alignment, we define θ (�x,r)
as the angle between the direction of the long axis �v(σ (�x))
of the cell at �x, and a local director �n(�x,r), a weighted
local average of cell orientations defined at radius r around
�x: �n(�x,r) = 〈�v(σ (�y))〉{�y∈Z2:|�x−�y|<r}. Figures 2(a) and 2(b)
depict the value of θ (�x,3) for simulations without chemotaxis

r = 20

r = 40

global

chemotaxis
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

or
de

r 
pa

ra
m

et
er

 (
S

)

time (MCS)

ccchhhhhhno chemotaxis

(a) (b)

(c)

FIG. 2. Crystalline cell ordering during network formation. (a)-
(b) θ (�x,r) with r = 3 for a simulation with chemotaxis (a) and
without chemotaxis (b) after 25 000 MCS. (c) Temporal evolution of
orientational order parameter S(r) for r = 20 (black curves), r = 40
(gray curves), and r → ∞ (light gray) without chemotaxis (solid)
and with chemotaxis (dashed). Order parameter is averaged over 10
simulation repeats (gray shadows represent standard deviation).

[Fig. 2(a)] and with chemotaxis [Fig. 2(b)], with dark gray
values indicating values of θ (�x,3) → π/2. Network branches
are separated by large values of θ (�x,3), indicating that within
branches cells are aligned, whereas branch points are “lattice
defects” in which cells with different orientations meet.

Supplemental Movies S3 and S4 [34] show how the cells
align gradually over time in the absence and presence of
chemotaxis. To characterize the temporal development of
cell alignment in more detail, we use an orientational order

parameter S(r) = 〈 3 cos2 θ( �X(σ ),r)−1
2 〉σ [35] with �X(σ ) the center

of mass of cell σ . S ranges from 0 for randomly oriented cells
to 1 for cells oriented in parallel.

Figure 2(c) shows the evolution of the global orientational
order parameter limr→∞ S(r) and of the local orientational
order parameters S(20) and S(40). Both with chemotaxis
(dashed lines) and without (solid lines), S(20) grows more
quickly and reaches higher ordering than S(40). The reason
for this is that in cells of length 50–60 l.u., S(20) (covering
cells up to a radius r = 20 from the cell’s center of mass)
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only detects lateral alignment of cells, whereas a radius S(40)
also detects linear lineup of cells. Thus, cell-cell adhesion of
long cells quickly aligns cells with the left and right neighbors,
while it aligns them more slowly with those in front and behind.
This results in networks with short branches of aligned cells.
Interestingly, chemotaxis aligns cells more rapidly, both along
the short and long sides of cells, resulting in networks with
much longer branches than with adhesion alone.

Next we analyze the mechanisms that drive the orientational
ordering in the cell networks. Visual inspection of the
simulation movies suggests that single cells move and rotate
much more rapidly than locally aligned clusters of cells. A
network of locally aligned cells forms rapidly from initially
dispersed cells. Merging of branches seems to be a much
slower process, and potentially prevents a further evolution
to global nematic order. To quantify these observations we
measured the translational and rotational diffusion coefficients
of cells as a function of the size of the network branch
to which it belongs. We loosely define a network branch,
or cluster of aligned cells, as a connected set of at least
two cells with relative orientations <5◦, i.e., in Figs. 2(a)
and 2(b) dark gray values separate the clusters. To detect
clusters computationally, we first identify the connected sets
for which θ (�x,3) � 5◦, which are surrounded by lattice sites of
σ = 0 or sites with θ (�x,3) > 5◦. We then eliminate connected
sets of fewer than 50 lattice sites. The CPM cells sharing
at least 50% of their lattice sites with one of the remaining
sets form a cluster. The translational diffusion coefficient Dt

derives from the mean square displacement (MSD) of a set of
cells: 〈| �X(σ,t) − �X(σ,0)|2〉σ = 4Dtt . Similarly, the rotational
diffusion coefficient, Dr, derives from the mean square rotation
(MSR) of a set of cells: 〈(α(σ,t) − α(σ,0))2〉σ = 2Drt , with
α(σ,t) − α(σ,0) the angular displacement of a cell between
time 0 and t . During a simulation, cells may move between
clusters, and clusters can merge. Therefore, to calculate Dt and
Dr of cells as a function of cluster size, for 100 simulations
of 250 000 MCS we measured trajectories of each individual
cell with one data point per 500 MCS, and kept track of the
size of the cluster it was classified into at each time point. We
defined cluster size bins, with the first bin collecting all clusters
consisting of two to five cells, and the next bins running from
6 to 10, 11 to 15, etc. We split up the trajectories into chunks
of 10 consecutive data points, during which the cells stayed
within clusters belonging to one bin. To calculate Dt and Dr

we performed a least square fitting on the binned MSD and
MSR values for these trajectory chunks.

The translational diffusion Dt increases slightly with cluster
size [Fig. 3(a)]. This may reflect that the probability of hopping
between small clusters will be larger than the probability of
hopping between larger clusters, resulting in an overrepresen-
tation of slow cells in the small clusters. Interestingly, the
rotational diffusion Dr drops with the cluster size [Fig. 3(b)],
indicating that cells in large clusters rotate more slowly. These
results suggest that the rotation of cells in big clusters is
limited, which reduces the probability that two clusters rotate
and merge into a single larger cluster. Therefore, if the size
of clusters increases, their rotation speeds drop, as does the
probability of cluster fusion. Thus, although further alignment
of clusters would reduce the pattern energy H [Eq. (1)], the
pattern evolution essentially freezes.
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FIG. 3. Relation between cluster size and cell displacement.
Clusters are calculated for each morphology between 500 and
250 000 MCS (100 simulation repeats), with an interval of 500 MCS;
see text for details. The error bars represent the standard error of the
linear fits used to estimate diffusion coefficients.

To corroborate our hypothesis that network patterns are
transient patterns that increasingly slowly evolve toward
nematic order, we looked for model parameters that could
speed up pattern evolution. Figure 4(a) shows the effect of
surface tension (γcell,ECM) on the ability of cells to form net-
works after 100 000 MCS, as expressed by the configuration’s
compactness C = Acells

Ahull
, where Ahull is the area of the convex

hull of the largest connected group of cells and Acells is the
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FIG. 4. (a) Relation between compactness and surface tension,
with and without chemotaxis. The compactness was calculated at
100 000 MCS and averaged over 100 simulations (error bars represent
standard deviation). Simulations were initialized with 350 cells on
260 × 260 path on the center of a 420 × 420 lattice. (b)–(d) Evolution
of a simulation initialized with 128 cell blob on the center of a
420 × 420 grid.
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summed area of the cells inside the hull. A value of C → 1
indicates a spheroid of cells, where for networks C would
tend to zero. For values of γcell,ECM = Jcell,ECM − Jcell,cell

2 > 0,
the equilibrium pattern should minimize its surface area with
the ECM. Indeed at increased surface tensions the cells settle
down in spheroids or networks with only few meshes, although
they initially still form network-like patterns (see Movie S5
[34]). To confirm that also for γcell,ECM = 0.1 (i.e., the values
used in Figs. 1–3) spheroids are stable configurations, we
initialized our model with a spheroid [Fig. 4(b)]. Although
initially some cells sprout [Fig. 4(c)] from the spheroid due
to their elongation, they then align gradually and the cell
cluster remains spherical. No network formation was detected
in simulations of 100 000 MCS [Fig. 4(d)], suggesting that
spheroids represent the global minimum of the Hamiltonian.
Interestingly, in presence of chemotaxis networks form for a
wide range of surface tensions [inset Fig. 4(a) and [14]].

IV. DISCUSSION

Our analysis suggests that in the cellular Potts model
elongated, adhesive cells can form networks in a parameter
regime where a spheroid pattern is the minimal energy state.
The cells initially align with nearby cells, thus forming the
branches of the network. In order for the pattern to evolve
further toward the minimal-energy spheroid pattern, the locally
aligned clusters of cells must join adjacent branches for which
they must move and rotate. Our analysis of the rotational and
translational diffusion of cells in Fig. 3 shows that this becomes
more difficult for cells belonging to larger clusters. Thus the
networks evolve ever more slowly to the minimal energy state
and get dynamically arrested in a network-like configuration,
a phenomenon reminiscent of the glass transition as, e.g.,

observed in attractive colloid systems [36], collective cell
migration of biological cells in vitro [5,6], and colloid rod
suspensions [37] in which gels can form from clusters of
parallel rods [38–40].

Figure 4(a) suggests that the cellular Potts simulations
undergo a glass transition as the surface tension drops: For
high surface tension the system evolves toward equilibrium,
for lower surface tensions the system becomes jammed in a
network-like state. Thus our model provides an explanation
for the formation of vascular networks in the absence of
chemical or mechanical long-range, intercellular attraction
[25]. Interestingly, intercellular attraction via chemotaxis
stabilizes the formation of networks in our simulations [14]
and can drive sprouting from spheroids (not shown). This
suggests that networks are an equilibrium pattern of our
system in presence of intercellular attraction. Nevertheless,
the present analysis of arrested dynamics provides insight into
the system with intercellular attraction: Chemotaxis reinforces
local ordering over a distance proportional to the diffusion
length of the chemoattractant, producing networks of a scale
independent of surface tension [14].
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A. Deutsch, J. M. Pérez-Pomares, and M. A. Herrero, PLOS
ONE 6, e24175 (2011).

[18] M. Scianna, L. Munaron, and L. Preziosi, Prog. Biophys. Mol.
Biol. 106, 450 (2011).

[19] D. Manoussaki, S. R. Lubkin, R. B. Vemon, and J. D. Murray,
Acta Biotheor. 44, 271 (1996).

[20] D. Manoussaki, in ESAIM: Proceedings (2002), Vol. 12,
pp. 108–114.

[21] J. D. Murray, C. R. Biol. 326, 239 (2003).
[22] L. Tranqui and P. Tracqui, C. R. Acad. Sci. III-Vie. 323, 31

(2000).

012725-4

http://dx.doi.org/10.1016/0014-4827(68)90134-1
http://dx.doi.org/10.1088/1478-3975/5/1/016007
http://dx.doi.org/10.1088/1478-3975/5/1/016007
http://dx.doi.org/10.1088/1478-3975/7/4/046007
http://dx.doi.org/10.1073/pnas.1010059108
http://dx.doi.org/10.1073/pnas.1010059108
http://dx.doi.org/10.1073/pnas.1101436108
http://dx.doi.org/10.1073/pnas.95.24.14389
http://dx.doi.org/10.1073/pnas.95.24.14389
http://dx.doi.org/10.1006/dbio.2000.9744
http://dx.doi.org/10.1006/dbio.2000.9744
http://dx.doi.org/10.1073/pnas.1007508108
http://dx.doi.org/10.1073/pnas.1007508108
http://dx.doi.org/10.1103/PhysRevLett.90.118101
http://dx.doi.org/10.1103/PhysRevLett.90.118101
http://dx.doi.org/10.1093/emboj/cdg176
http://dx.doi.org/10.1016/j.bulm.2004.04.004
http://dx.doi.org/10.1016/j.bulm.2004.04.004
http://dx.doi.org/10.1007/978-3-540-30479-1_44
http://dx.doi.org/10.1007/978-3-540-30479-1_44
http://dx.doi.org/10.1016/j.ydbio.2005.10.003
http://dx.doi.org/10.1088/0951-7715/19/1/000
http://dx.doi.org/10.1088/0951-7715/19/1/000
http://dx.doi.org/10.1371/journal.pcbi.1000163
http://dx.doi.org/10.1371/journal.pone.0024175
http://dx.doi.org/10.1371/journal.pone.0024175
http://dx.doi.org/10.1016/j.pbiomolbio.2011.01.004
http://dx.doi.org/10.1016/j.pbiomolbio.2011.01.004
http://dx.doi.org/10.1007/BF00046533
http://dx.doi.org/10.1016/S1631-0691(03)00065-9
http://dx.doi.org/10.1016/S0764-4469(00)00110-4
http://dx.doi.org/10.1016/S0764-4469(00)00110-4


VASCULAR NETWORKS DUE TO DYNAMICALLY ARRESTED . . . PHYSICAL REVIEW E 87, 012725 (2013)

[23] P. Namy, J. Ohayon, and P. Tracqui, J. Theor. Biol. 227, 103
(2004).

[24] P. Tracqui, P. Namy, and J. Ohayon, J. Biol. Phys. Chem. 5, 57
(2005).
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[32] J. Käfer, T. Hayashi, A. F. M. Marée, R. W. Carthew, and

F. Graner, Proc. Natl. Acad. Sci. USA 104, 18549 (2007).
[33] N. Savill and P. Hogeweg, J. Theor. Biol. 184, 229 (1997).

[34] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.87.012725 for Movie S1, model without
chemotaxis, and Movie S2, model with chemotaxis, Movie
S3, θ (�x,3) without chemotaxis, and Movie S4, θ (�x,3) with
chemotaxis, and Movie S5, model without chemotaxis and
γcell,ECM = 0.3.

[35] P. G. De Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. (Oxford University Press, Oxford, 1993).

[36] G. Foffi, C. De Michele, F. Sciortino, and P. Tartaglia, J. Chem.
Phys. 122, 224903 (2005).

[37] M. J. Solomon and P. T. Spicer, Soft Matter 6, 1391 (2010).
[38] J. D. Bernal and I. Fankuchen, J. Gen. Physiol. 25, 111 (1941).
[39] M. P. B. van Bruggen and H. N. W. Lekkerkerker, Langmuir 18,

7141 (2002).
[40] G. M. H. Wilkins, P. T. Spicer, and M. J. Solomon, Langmuir

25, 8951 (2009).
[41] www.compucell3d.org
[42] M. H. Swat, G. L. Thomas, and J. M. Belmonte, Method. Cell.

Biol. 110, 325 (2012).
[43] www.sara.nl

012725-5

http://dx.doi.org/10.1016/j.jtbi.2003.10.015
http://dx.doi.org/10.1016/j.jtbi.2003.10.015
http://dx.doi.org/10.4024/230502.jbpc.05.02
http://dx.doi.org/10.4024/230502.jbpc.05.02
http://dx.doi.org/10.1103/PhysRevLett.98.038102
http://dx.doi.org/10.1103/PhysRevLett.98.038102
http://dx.doi.org/10.1529/biophysj.108.129668
http://dx.doi.org/10.1529/biophysj.108.129668
http://dx.doi.org/10.1103/PhysRevLett.69.2013
http://dx.doi.org/10.1103/PhysRevLett.69.2013
http://dx.doi.org/10.1103/PhysRevE.47.2128
http://dx.doi.org/10.1016/S0070-2153(07)81007-6
http://dx.doi.org/10.1371/journal.pcbi.1002155
http://dx.doi.org/10.1103/PhysRevLett.85.2022
http://dx.doi.org/10.1103/PhysRevLett.85.2022
http://dx.doi.org/10.1073/pnas.0704235104
http://dx.doi.org/10.1006/jtbi.1996.0237
http://link.aps.org/supplemental/10.1103/PhysRevE.87.012725
http://link.aps.org/supplemental/10.1103/PhysRevE.87.012725
http://dx.doi.org/10.1063/1.1924704
http://dx.doi.org/10.1063/1.1924704
http://dx.doi.org/10.1039/b918281k
http://dx.doi.org/10.1085/jgp.25.1.111
http://dx.doi.org/10.1021/la020161b
http://dx.doi.org/10.1021/la020161b
http://dx.doi.org/10.1021/la9004196
http://dx.doi.org/10.1021/la9004196
http://www.compucell3d.org
http://dx.doi.org/10.1016/B978-0-12-388403-9.00013-8
http://dx.doi.org/10.1016/B978-0-12-388403-9.00013-8
http://www.sara.nl



