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Hydrodynamic dispersion within porous biofilms
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Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous
structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow
and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste
products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport
in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the
method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the
width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport
may be described via two coupled partial differential equations or telegrapher’s equations for the averaged
concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that
penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport
can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized
by a second-order tensor whose components depend on (1) the topology of the channels’ network; (2) the solute’s
diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional
dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly
thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly
contribute to transport.
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I. INTRODUCTION

Biofilms are sessile communities of microbes that develop
on solid or liquid interfaces, embedded within extracellu-
lar polymeric substances (EPS) [1]. These aggregations of
microorganisms represent the dominant form of microbial
life on Earth and have considerable sanitary, ecological,
and economic impact. Effects can be desirable (wastewa-
ter processes, bioremediation, industrial and drinking water
treatment, sequestration of carbon dioxide) or undesirable
(paper manufacture, microbially influenced corrosion within
pipelines, heat exchangers, or on ships) and, potentially,
harmful (contamination in the food industry, disease, chronic
infections, sustainability of water supply networks). Within the
last few decades, understanding and controlling biofilm growth
have emerged as major scientific challenges. An important
component of these challenges is to understand how chemicals
and particles are transported within biofilms, in order to (1)
elucidate their resistance to antimicrobial agents; (2) design
efficient control and staining strategies; (3) develop reliable
growth models; and (4) describe the exchange of signaling
molecules or genetic material between cells. These transport
phenomena generally result from coupled biological, physical,
and chemical processes occurring over a large spectrum of
temporal and spatial scales.

In the early days of biofilm research, mathematical and con-
ceptual models treated these consortia of microorganisms as a
homogeneous coating of a solid surface. Later on, experiments
showed that biofilms can form intricate architectures with
pores, voids, and channels. For example, Stoodley et al. [2]
used confocal laser scanning microscopy (CLSM) to perform

particle image velocimetry (PIV) analysis and map the velocity
field within biofilms grown under different conditions. They
reported fluid flow inside biofilm channels and observed situa-
tions in which water flowed against the main current of the bulk
water phase. Massol-Deyá et al. [3] used CLSM and scanning
electron microscopy to observe multispecies aerobic biofilms
growing in a granular activated-carbon fluidized-bed reactor.
They describe channel-like and coral-reef structures. Hidalgo
et al. [4] used CLSM to obtain tomographic pH images of
highly heterogeneous biofilms. Advances in optical coherence
tomography (OCT) also suggest complicated geometries.
Wagner et al. [5] analyzed the structure of heterotrophic
biofilms on relatively large volumes using OCT and revealed
an incredible level of complexity.

Wimpenny et al. [6,7] and Loosdrecht et al. [8] suggest
that these heterogeneities may result from a combination
of factors including shear stress, diffusion limitations, and
substrate concentration. Davey et al. [9] showed that the
architecture of Pseudomonas aeruginosa biofilms is actively
regulated by the production of rhamnolipid surfactants. Houry
et al. [10] show that planktonic bacteria propelled by flagella
can create large transient pores in the cell cluster and suggest
that swimmers “may improve biofilm bacterial fitness by
increasing nutrient flow in the matrix.” It has also emerged—
for example, see discussions by Plalkovà et al. [11]—that wild
strains in real environments tend to form more heterogeneous
structures than laboratory strains. These results have led to
the idea that biofilms are complex structures, rather than dense
impermeable gel-like layers. These studies have also identified
two classes of channels, as discussed in Ref. [6] and illustrated

012718-11539-3755/2013/87(1)/012718(16) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.012718


Y. DAVIT et al. PHYSICAL REVIEW E 87, 012718 (2013)

FIG. 1. (Color online) Examples of heterogeneous biofilms and
fluid channels. (a) Top view of a polymicrobic biofilm grown
on stainless steel where water channels have formed between
the cell clusters (public domain, reproduced from Ref. [13]). (b)
Cross-sectional view of intracluster channels obtained using optical
coherence tomography (reproduced, with permission, from Ref. [5]).
(c) Top view of a Bacillus thuringiensis biofilm where the arrow
indicates a transient channel created by swimmers (reproduced from
Ref. [10]).

in Fig. 1 (see also images in Ref. [4] and [12]): intracluster
channels that may result from mechanical interactions with the
fluid phase, fracturing of cell clusters, predation, or swimmers;
and extra-cluster channels that form between cell clusters. We
remark that most studies have focused on biofilms grown on
flat surfaces and that the intra- versus extra-cluster distinction
may be inappropriate for biofilms grown on more intricate
substrata. In the remainder of this work, we will use the generic
terminology “channel” to specify passages (over a range of
sizes and from different origins) through which fluids may
flow and “porous biofilms” to describe heterogeneous biofilms
involving channels, voids, or pores.

The realization that biofilms can form intricate porous
systems has led to the emergence of models which include
fluid flow. For example, Dupin et al. [14] and Thullner and
Baveye [15] determined the velocity field within the bulk fluid
phase, viscosity μf , and within the biofilm by considering a
fictitious weighted viscosity within the biofilm phase, μb =
γμf with γ � 1. Kapellos et al. [16] developed a simulator
that couples a cellular automaton with multiscale methods.
They used a single-domain volume-averaged formulation,
originally developed for Darcy-scale fluid-porous interfaces
(see in Ref. [17]), to model the fluid flow within the bulk
fluid and biofilm phases. Surprisingly, these studies have
focused on momentum transport, and have not addressed the
effects of biofilm permeability on mass transport. Within these
structures, transfer of a molecule, or a particle, is influenced
by a number of mechanisms, including advection, which
may significantly impact the transport properties of important
chemical species, such as nutrients or antimicrobial agents.
Models should carefully incorporate these mechanisms into
the mathematical description of biofilms.

Solute transport in biofilms, regardless of their architecture,
is often characterized by the ratio De/Daq, of the effective
diffusion coefficient De and reference (culture medium or
growth fluid) diffusion coefficient Daq. Various experimental
techniques have been used to calculate the effective diffusion

coefficient; a review of these techniques can be found in
Ref. [18] and further discussions are available in Refs. [19,20].
For the purposes of this paper, we outline the main exper-
imental devices that have been used to measure effective
diffusion coefficients, including recent developments. Bungay
et al. [21] used the oxygen microelectrode technique, while
Matson and Characklis [22] used a two-chamber method
to measure oxygen and glucose diffusion coefficients in
sludge flocs. de Beer et al. [23] used a combination of
oxygen microelectrode measurements and CLSM to correlate
concentration gradients with the structure of aerobic biofilms.
Lawrence et al. [24] observed the diffusion of fluorescein
and fluor-conjugated dextran in Pseudomonas fluorescens
using fluorescence recovery after photobleaching (FRAP) and
CLSM. Bishop et al. [25] calculated the effective diffusion
coefficient from the structure of frozen 10–20-μm slices of
biofilm. Stewart et al. [26] measured the diffusion coefficient
of tagged daptomycin in cells clusters of Staphylococcus
epidermis using CLSM. Recently, methods involving nuclear
magnetic resonance (NMR) were proposed to obtain effective
diffusion coefficients in situ [27,28]. Advances in x-ray
microtomography also offer new perspectives for studying in
situ transport properties in porous structures [29,30] and for
estimating the corresponding diffusion coefficients.

Although Daq is well defined for a given temperature,
solute, and growth medium, the interpretation of De is
ambiguous. Active biological processes, such as uptake rates,
or physicochemical properties of the biofilm, the solute, and
the bulk fluid phase, are difficult to correlate with De. Many
studies have focused on identifying those parameters that
most strongly influence De. Several authors have proposed
empirical relationships between De/Daq and the biofilm
density ρ for passive transport [31]. Hinson and Kocher [32]
used the fraction of EPS as an additional parameter. Stewart
[18] investigated the influence of chemical properties on
De/Daq, such as the charge of the EPS or the molecular weight
of the solute molecules. These correlations could be extended
in many ways to account for other biochemical processes. Such
formulas are extremely important because they can be widely
used by experimentalists. However, many fundamental aspects
of solute transport are still a matter of debate [33]. For example,
the following points have received little attention from a
mathematical modeling point of view. Biofilms are known
to form heterogeneous structures (see [34]), with spatially and
dynamically varying diffusion coefficients. This raises several
fundamental questions, such as: How does such heterogeneity
influence De? Is it valid to use a single effective value of the
diffusion coefficient, or should a spatially resolved coefficient
be used? With regard to advection within biofilms, is it possible
to characterize solute transport in terms of the ratio De/Daq

when there is fluid flowing within the biofilm? Is it even
possible to define effective diffusion coefficients in this case?
With regard to reaction, do uptake rates and degradation of the
solute influence the ratio De/Daq or do they only affect the
effective reaction rate?

In addition to the above theoretical issues, there is often
ambiguity in the interpretation of experimental estimates for
De. Recently, Wagner et al. [5] emphasized this problem by
comparing estimates of biofilm porosities obtained using OCT
and CLSM. For a Reynolds number of 4000 in the bulk fluid
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phase, the porosity of the biofilm was found to be about
0.98 using CLSM and 0.35 using OCT. The authors suggest
that OCT provides a more reliable framework for studying
biofilm structures because it does not require fluorescence
staining, and therefore does not rely on the transport properties
of the biofilm, and is not limited by laser penetration depth.
This is an important observation because CLSM is widely
used to measure structural biofilm properties, and this may
lead to erroneous conclusions. These results have wider
implications that go beyond the issue of CLSM applicability:
they suggest that caution should be exercised when interpreting
experimental data for biofilms.

All the techniques discussed above differ in terms of their
physical significance, and parameters, such as De, should
be defined in relation to a specific experiment. Particularly
relevant to this discussion is the spatial resolution of the
experimental method under consideration. For example, the
NMR technique used in Ref. [28] has an in-plane resolution
of 7.5 × 250 μm, whereas x-ray microtomography and/or
OCT can resolve to several micrometers. CLSM can achieve
a similar resolution, but this is strongly dependent on the fluo-
rescent staining. Two-chamber experiments only capture bulk
information within each chamber. The parameters that are
measured using these techniques are averaged over different
volumes, and their physical interpretation is different. For
example, if the biofilm contains fluid channels of approximate
width 10 μm, then a technique with a resolution of 100 μm is
measuring a concentration field and/or a diffusion coefficient
averaged over both the cell clusters and the channels. On the
other hand, a technique with a resolution of several microm-
eters can delineate between the two and/or provide a local
diffusion coefficient for layered cell clusters. Experimental
studies should carefully address these issues.

Upscaling techniques, such as volume averaging with
closure (see [35]), can be used rigorously to define the
ratio De/Daq and, therefore, to address the above theoretical
and experimental issues. With such techniques, averaged
equations at the biofilm scale can be obtained from transport
equations at the channel and cellular scales, provided that
several spatial and temporal scale constraints are satisfied.
An important feature of this approach is that the set of
homogenized partial differential equations contains effective
coefficients that can be directly related to the topology of
the problem at the microscale, thereby allowing physical
understanding of the contribution of the different processes.
In addition, these methods may be used to develop novel ways
of measuring effective diffusion coefficients. In particular,
real geometries and velocity fields obtained via imaging
techniques, e.g., tomography, may be directly used for the
computation of effective coefficients. This strategy is an
alternative to the standard inverse optimization method where
effective coefficients are determined by optimization of model
parameters using biofilm-scale data. A clear advantage of the
upscaling method when compared with inverse optimization
is that the effective parameters and the scale constraints are
unambiguously defined. A disadvantage of this approach is
that the experimental techniques that capture the information
necessary for such calculations are new and the complete
imaging-upscaling strategy has not yet been fully applied to
real systems.

Even so, there is another advantage to homogenization
techniques that does not require accurate knowledge of real
geometries: it yields the domains of validity of the models. The
mathematical procedure of homogenization generally involves
order of magnitude estimates which apply to dimensionless
numbers. For instance, in the case of Taylor dispersion, one
usually requires that the Péclet number is such that the time for
a molecule to diffuse radially is much smaller than the time for
longitudinal transport. In addition, the averaging procedure, as
presented in this paper, applies to an ensemble of geometries
that is defined by length scale constraints. Therefore, models
are not limited to a given geometry, but to a class of geometries,
and the domains of validity apply to this entire class. Similarly,
dimensionless numbers can be used to study important features
of the models on simplified systems. For example, we can
readily answer one of the questions presented above: Do uptake
rates and degradation of the solute influence the ratio De/Daq

or do they only affect the effective reaction rate? In Refs. [36]
and [37], it is shown using two-dimensional unit cells that
the longitudinal dispersion coefficient decreases with the
Damköhler number, Da, or equivalently the Thiele modulus,
when Da � 10. The quantitative behavior will change with
the geometry but not the order of magnitude estimate. This
is important because it means that for, say, Da � 1, we
can consider that the effective diffusion is the same for the
reactive and nonreactive cases. Unfortunately, there is little
experimental data that can be used to estimate Da, essentially
because its estimation requires knowledge of the diffusion
coefficient, the form of the reaction rate, and the values of the
reaction parameters. Stewart and Raquepas [38] calculated the
Thiele modulus for reactive antimicrobial agents and found
values in the range 0.44–18.2, suggesting that both situations
may be encountered.

In this work, we will focus on the nonreactive case and use
the volume averaging method to study some physical aspects
of solute dispersion within porous biofilms. As discussed
above, the analysis also applies to the reactive case when
the dispersion coefficients do not depend upon uptake rates,
i.e., when Da � 1. Similar developments were presented in
Refs. [35,39,40], but these papers focused on upscaling solute
transport from the cellular to the cell cluster scale. The effect of
advection within channels was studied in Ref. [40] but only in
the limiting case where spatial gradients at the microscale are
negligible, a situation termed local mass equilibrium. Here,
we do not assume local mass equilibrium and show that
relaxing this assumption leads to significant changes to the
macroscale equations. Our modeling framework requires that
biofilms should not be defined as cell clusters alone, but as a
two-phase mixture of a cell cluster phase (ω) interspersed
with a fluid-flow-channel phase (κ). We use a multiscale
strategy to derive an effective diffusion tensor for this situation.
Within the cell-EPS matrix (i.e., the cell clusters) the solute
is transported by diffusion alone, but the diffusion coefficient
can vary “arbitrarily” (although smoothly) in space. In the
channels, the solute is transported by advection and diffusion.

Our primary goal is to answer the following questions:
(1) Are hydrodynamic dispersion effects significant within

porous biofilms?
(2) Can we define an effective diffusion which describes

fluid flow within the channels and spatially varying diffusion
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FIG. 2. Schematic diagram highlighting the multiscale nature of biofilms. Two different ways of averaging are presented depending on the
scale constraints that are satisfied: on the left, the averaging volume is defined on a small portion of the biofilm; this is appropriate if the average
diffusion coefficient within the cell clusters varies slowly throughout the biofilm and if channels are relatively small (i.e., RI � LI); on the
right, the averaging volume is defined over the entire height of the biofilm, with a diffusion coefficient within the cell clusters which varies with
depth and macrochannels (i.e., only RII � LII). Three spatial scales can be identified: the biofilm scale, the channel scale, and the cell scale.
Each region illustrates a representative elementary volume of the corresponding larger scale. We remark that, for averaging II, the macroscale
concentration fields within the biofilm will only vary along the X direction and boundary conditions should be treated carefully. In this work,
we will focus primarily on upscaling from the channel scale to the biofilm scale with averaging I and defer averaging II to future work.

coefficients within the cell clusters? What are the physical
processes corresponding to these effective dispersion coeffi-
cients?

(3) Should we always use the effective diffusion model to
describe solute transport within porous biofilms? What are the
alternatives?

The remainder of this study is organized as follows.
In Sec. II, we briefly review experimental evidence for
hydrodynamic dispersion within porous biofilms. In Sec. III,
we detail our microscale problem. A representative elementary
volume (REV) of the system is presented in Fig. 2 and the
corresponding mathematical model at the channel scale is
presented in Sec. III. We are interested in hierarchical systems
for which lκ � R � L, where lκ is a characteristic width
of the channels, R is the radius of the REV, and L is a
characteristic macroscale length for the biofilm. In Sec. IV, we
perform a perturbation analysis, termed the volume averaging
with closure technique, to derive the macroscale models. For
brevity, the key results are presented in the main text, while
technical details are provided in the Appendix or in specific
references. In Sec. VII, we discuss potential applications of
these models, their limitations, and future work. In Sec. VIII,
we summarize the main modeling results and the answers to
the above questions.

II. EXPERIMENTAL EVIDENCE OF HYDRODYNAMIC
DISPERSION EFFECTS IN BIOFILMS

It is now commonly accepted that channels are an essential
part of biofilms (see [20]) and that advection effects are
integral to solute transport within such systems. Even so,

the channels and cell clusters are traditionally treated as two
distinct phases. In Ref. [19], when discussing the issue of
diffusion limitation inside cell clusters, Stewart states that
“structural heterogeneity in a biofilm changes the geometry
of the diffusion problem, but it does not alter the fundamental
phenomena.” Our goal in this section is to challenge this view.
We argue that, while the microscale balance equations rely
on advective and diffusive transport models, the fundamental
phenomena captured by the notion of effective diffusion
depend on both the scale of observation and the structural
heterogeneities. Indeed, the homogenization of a problem
with diffusion and advection at the microscale will produce
a continuum representation in which the phase delineation has
disappeared but in which the effective parameters depend on
the heterogeneities. For example, effective dispersive fluxes
will contain hydrodynamic dispersion effects that originate
from fluctuations in the velocity field and tortuosity effects that
describe the geometry of the microstructure. Similarly, within
porous biofilms, we anticipate that there will be hydrodynamic
dispersion effects produced by fluctuations in the velocity
fields and tortuosity effects that will reflect the topology of
the channel network within the biofilm. In this section, we
provide experimental evidence that hydrodynamic dispersion
may indeed occur. Our demonstration is based on the following
two classes of experiments: (1) biofilm-scale measurements
of effective diffusion that have reported De/Daq > 1; and
(2) channel-scale measurements of the velocity field within a
biofilm which suggest that advection effects may be important.

We start with biofilm-scale measurements and focus on
studies that have reported peculiarities in the ratio De/Daq. In
most cases, the ratio De/Daq ranges between 0.1 and 1 (e.g., in
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TABLE I. Examples of studies in which the effects of dispersion and advection have been observed in biofilms and biopellets.

Object Chemicals Technique Diffusion ratio Reference

NaNO3 Two-chamberBiofilm NaCl 0.1 < De/Daq < 1.1 Horn and Morgenroth [41]
μ electrodesOxygen

Biopellets Oxygen μ electrodes 0.2 < De/Daq < 1.5 Hille et al. [42]
Biofilm/agar Gd-DTPA MRI De/Dagar = 1.44 Ramanan et al. [43]
Biofilms Review Review 0.11 < De/Daq < 2 Melo [33]

Ref. [19]). In these situations, the path of a solute molecule in
a cell cluster is constrained by the presence of obstacles (cells,
extracellular polymeric substances, abiotic particles) and a
notion of tortuosity can be invoked [33]. Interestingly, in some
low-density biofilms and in fungal biopellets, this ratio has also
been reported to be larger than unity (cf. Table I). Melo [33]
argues that the tortuosity, �, defined by De = Daq/�, can be
lower than unity if the solute undergoes convection inside the
biofilm. This is an interesting idea, but it also suggests that a lot
of physics is hidden within De and that a notion of tortuosity
alone might not be sufficient. Hydrodynamic dispersion can be
used to interpret these results if the Péclet number, Pe = υd

Daq
,

where υ is an average velocity and d a characteristic length, is
sufficiently large. In the case of the biopellets, the flow is not
limited by the EPS, and even larger ratios, De/Daq > 1, have
been reported when the cell density is relatively low (e.g., in
Ref. [42], Fig. 3, p. 1207).

Even when De/Daq < 1, it is not straightforward to
determine the relative contributions of diffusion and advection
to solute transport. It is commonly accepted that De/Daq < 1
corresponds to a diffusion-dominated transport. For instance,
Horn and Morgenroth [41] clearly state that “[...] convective
transport would have resulted in De/Daq > 1. The results

presented indicate that for biofilms older than a few days and
with mean biofilm density higher than 20 kg/m3 convective
transport can be neglected.” We question this interpretation.
In the case of porous biofilms, De/Daq < 1 means that the
combined effects of the advective and diffusive “components”
(a clear definition of these components is given later in this
paper) leads to a reduction in the diffusion coefficient, but
this does not mean that the advective component is negligible
compared to the diffusive one. A ratio smaller than unity, say
De/Daq = 0.9, may very well mean that Ddiffusion

e /Daq = 0.2
without advection effects. For example, if hydrodynamic
dispersion occurs within the channels, then the transition from
De/Daq < 1 to De/Daq � 1 is continuous, and there is a region
of parameter space for which De/Daq < 1 is compatible with
hydrodynamic dispersion. For example, Ramanan et al. [43]
estimated the diffusion coefficient of a complex of gadolinium
and diethylenetriamine pentaacetic acid (Gd-DTPA) using
magnetic resonance imaging with an in-plane resolution of
150 μm × 150 μm. They observed the concentration fields in
agar, a highly permeable gel, and in a phototrophic biofilm.
The diffusion coefficient in the biofilm was found to be
larger than that in the highly permeable gel. Using this
comparison, the authors deduced that transport in the biofilm,
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advection-dispersion equation with a wave perturbation that disappears in the long-time limit.
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TABLE II. Diffusion coefficients in pure water at 25 ◦C and
corresponding Péclet numbers for example solutes.

Daq in Pe = 21×10−8

Daq
Pe = 7.5×10−10

Daq

Solute 10−10 m2 s−1 Ref. from Ref. [2] from Ref. [44]

Oxygen 20.0 [19] ≈1.0 × 10+2 ≈4.0 × 10−1

Carbon dioxide 19.2 [19] ≈1.0 × 10+2 ≈4.0 × 10−1

Sucrose 5.2 [19] ≈4.0 × 10+2 ≈1.4
Hexokinase 0.59 [45] ≈3.5 × 10+3 ≈1.3 × 10+1

Linear DNA
8 × 10−4 [45] ≈2.6 × 10+6 ≈9.4 × 10+4

104 base pairs

although they observed De/Daq < 1, was by both diffusion and
advection.

The second part of our argument relies on direct ex-
perimental confirmation that the Péclet number within the
fluid channels may lie in the range that yields hydrodynamic
dispersion effects. Our calculations of the Péclet numbers are
based on average velocities, calculated using PIV measure-
ments performed in Refs. [2] and [44]. We remark that these
correspond to extra-cluster channels for biofilms grown on flat
surfaces and, to the best of our knowledge, experimental data
for intracluster velocities or biofilms grown on more complex
substrata (e.g., in porous media) do not yet exist. Figure 5 in
Ref. [2] supplies an average velocity of ≈3 × 10−3 m/s for
a characteristic length of ≈70 μm; and Fig. 5 in Ref. [44]
indicates a velocity of ≈1.5 × 10−5 m/s for a characteristic
length of ≈50 μm. Using these values, we can calculate
the Péclet number associated with the transport of various
chemicals for a temperature of 25 ◦C. The results presented
in Table II show that the Péclet number may take large
values, especially for macromolecules. The results for large
linear DNA macromolecules are presented to illustrate the
limit Daq → 0 and to show that a large Péclet number does
not necessarily correspond to large hydrodynamic forces.
For Pe � 1–10, fluctuations in the velocity field within the
fluid channels will induce hydrodynamic dispersion effects.
We remark that the reference diffusion coefficient should
correspond to the solvent in the water channels, rather than
pure water, and that Daq in Table II is therefore an upper
bound for the reference diffusion coefficients. Consequently,
the values of the Péclet numbers presented in Table II should
be viewed as lower bounds.

III. MICROSCALE MODELING FORMULATION

As discussed previously, the biofilm can be decomposed
into two distinct phases: a cell-EPS matrix phase (ω) and
the fluid-channels phase (κ) (see Fig. 2). Within the cell-EPS
matrix phase, the solute is transported by diffusion alone but
the diffusion coefficient can vary in space. In the channel
phase, the solute is transported by diffusion and advection.
Delineating explicitly between the bulk water phase and the
channels is an important problem that should be carefully
addressed in the future. However, for the purposes of this
study, we consider an idealized channel phase and suppose
that all interfaces are static. This assumption is valid if the
time scales associated with the transport phenomena and the
growth processes are markedly different (e.g., in Ref. [46]),

and can be further justified by the stated aim to understand
mass transport itself, rather than its coupling with growth.

By considering conservation of mass for a given solute, the
following system of equations can be used to describe transport
in this system:

∂cω

∂t
= ∇ · [Dω(r)∇cω] in Vω, (1)

nωκ · [Dω(r)∇cω] = nωκ · (Dκ∇cκ ) on Aωκ, (2)

cω = cκ on Aωκ, (3)

∂cκ

∂t
+ ∇ · (vκcκ ) = ∇ · (Dκ∇cκ ) in Vκ . (4)

In these equations, cα is the pointwise concentration
(nutrient or antimicrobial agent) in the phase (α) with
(α = ω,κ); Dω(r), also referred to as Dω for simplicity, is
the diffusion coefficient within the cell-EPS phase (it may
vary with spatial position); Dκ is the diffusion coefficient in
the channel phase; Vα is the open bounded set that represents
the α phase within the REV; Aωκ is the interface between the
channel phase and the cell-EPS phase; nωκ is the unit vector
normal to Aωκ pointing from ω to κ; and vκ is the velocity
field in the fluid phase. We will suppose that the velocity field
is known pointwise throughout the entire system, in order to
focus on mass, rather than momentum, transport (the reader
is referred to Ref. [47] for an extensive discussion on fluid
flow in biological media). We will also assume that Dω can be
actively modified by the microorganisms but that its average
value over a REV varies slowly throughout the biofilm.

For simplicity, we will only use averaging I in Fig. 2,
with an extension to averaging II that would involve similar
models but that requires one to consider the solid and the
biofilm–bulk-fluid boundaries. We remark that averaging II
will produce macroscale models for the biofilm with reduced
dimensionality, i.e., a three-dimensional biofilm will be treated
as a two-dimensional (2D) interface. This idea is reminiscent
of the notion of an effective boundary condition that was
discussed by Veran et al. [48] in the case of rough reactive
walls. We will explore this idea further in future work. In
addition, we emphasize that this distinction only represents
a schematic view of the problem and that, from a theoretical
point of view, the only relevant criterion is the separation of
length scales, i.e., we require R � L.

In Eq. (2), we have assumed that the velocity field vanishes
on Aωκ so that the interfacial flux across the boundary is
purely diffusive. We have further assumed that the system is at
thermodynamic equilibrium, and that equality of the chemical
potentials on Aωκ leads to continuity of the concentrations
there. In practice, this purely thermodynamic constraint could
be easily relaxed by applying a suitable constitutive law for
the chemical potentials. For instance, in diluted cases, this
equality is often written in terms of a jump condition for the
concentrations, cω = Kcκ on Aωκ , in which K is a function
of the pressure and the temperature. For the purposes of the
upscaling performed in the remainder of this study, the only
constraint that is mandatory is that this relationship between cω

and cκ should be affine. For simplicity, we restrict attention to
the case cω = cκ on Aωκ , noting that an extension to cω = Kcκ

012718-6



HYDRODYNAMIC DISPERSION WITHIN POROUS BIOFILMS PHYSICAL REVIEW E 87, 012718 (2013)

on Aωκ would be straightforward, using a simple change of
variables.

IV. MULTISCALE PERTURBATION ANALYSIS

In this section, the transport equation in each phase is
averaged in space (as defined in Fig. 2), and the pointwise fields
are decomposed into an averaged part plus a perturbation. The
averaged component is allowed to vary on a characteristic
length scale R within a macroscopic domain of length L, while
the perturbation varies with a characteristic length lκ , where
we assume L � R � lκ in order to perform an asymptotic
analysis.

A. Definitions

First, we define the volume of the phase (α = ω,κ),
Vα = ∫

Vα
dV , and the total volume of the REV, V = Vω + Vκ .

We denote the superficial average of any tensor field πα (for
tensors of order 0, 1, or 2) by 〈πα〉 = 1

Vα

∫
Vα

πα dV . We
define the volume fraction (which we take to be constant
throughout the biofilm) of the α phase, εα = Vα

V
, and the

intrinsic average, 〈πα〉α = 1
εα

〈πα〉. We will also use 〈π〉ωκ =
εω〈πω〉ω + εκ〈πκ〉κ .

We will perform a perturbation analysis by considering
decompositions of the form

πα = 〈πα〉α + π̃α. (5)

The motivation for this decomposition is that the separation
of length scales will impose physical constraints on the
perturbation and we will exploit these constraints to make
approximations. At this point in the developments, however,
it is not possible to determine the validity of these approxima-
tions, so that we can only estimate a posteriori the domains
of validity of the models. Further, these assumptions, such as
the separation of length scales, are not intrinsic to a medium,
rather they are process dependent. In other words, for the same
biofilm, a homogenized model may be valid for a given value
of the flow rate but invalid for a larger one. Equally, it may be
valid for a given experimental time scale and not for a shorter
one.

The volume average definitions stated above are general
in form, and may be used in several ways. Determining the
most relevant averaging volume is highly problem specific,
depending on the properties of the biofilm and the flow, and
on the degree of complexity and precision required.

B. Averaged equations

Transport equations (1) and (4) are averaged in space in
the following way to obtain a biofilm-scale description of
the system. First, integrals of derivatives are expressed as
derivatives of integrals plus surface terms by exploiting general
transport and spatial averaging theorems [49]. Secondly, we
use the decomposition specified by Eq. (5), along with the
assumed separation of scales, lκ � R � L, to eliminate
nonlocal terms, i.e., integrals that cannot be calculated locally
on the representative volume. Some guidelines are given
in Appendix A, and detailed descriptions can be found in
Refs. [35,50]. In this way, we arrive at the following system

of macroscopic equations for 〈cω〉ω and 〈cκ〉κ :

εω

∂ 〈cω〉ω
∂t

−
(

1

V

∫
Aωκ

nωκDω dA

)
· ∇ 〈cω〉ω

= εω∇ ·
[
〈Dω〉ω

(
∇ 〈cω〉ω + 1

Vω

∫
Aωκ

nωκ c̃ω dA

)]

+ 1

V

∫
Aωκ

nωκ · (Dω∇c̃ω) dA + εω∇ · 〈
D̃ω∇c̃ω

〉ω
, (6)

εκ

∂ 〈cκ〉κ
∂t

+ εκ 〈vκ〉κ · ∇ 〈cκ〉κ

= εκ∇ ·
[
Dκ

(
∇ 〈cκ〉κ + 1

Vκ

∫
Aωκ

nκωc̃κ dA

)]

+ 1

V

∫
Aωκ

nκω · (Dκ∇c̃κ ) dA − εκ∇ · 〈ṽκ c̃κ〉κ . (7)

We remark that Eqs. (6) and (7) contain integrals involving
correction terms to the average concentrations. To close the
problem and obtain a macroscopic formulation for 〈cα〉α
(α = ω,κ), it remains to express these correction terms c̃α

as a function of 〈cα〉α and its derivatives. This is done in
two steps. First, the boundary-value problem governing the
perturbations is derived. A careful analysis in terms of linear
differential operators and/or Green’s functions then yields a
suitable closure.

C. Perturbations

Since π̃α = πα − 〈πα〉α , equations for the perturbations
can be obtained by subtracting suitable multiples of Eqs. (6)
and (7) from Eqs. (1) and (4), respectively. In addition, we
may neglect derivatives of averaged quantities because, in the
continuum limit, the REV can be treated as a “macroscopic
point,” i.e., there is a separation of the length scales R � L

(cf. detailed discussions in Ref. [35]). In the general case, the
fluctuations satisfy a transient problem and the homogenized
equations contain time convolutions (e.g., in Ref. [51]). Such
a formulation is useful for describing short-time phenomena
and accounts for time nonlocality. Since these short-time
phenomena are not relevant for our biofilm application, we
will consider only a steady-state problem for the fluctuations.
This hypothesis is standard and is generally referred to as the
quasistationarity of the perturbation problem [35].

The result of this procedure can be written, in the
phase (ω), as

(〈∇Dω〉ω − ∇Dω) · ∇ 〈cω〉ω
= ∇ · (Dω∇c̃ω) − 〈∇ · (Dω∇c̃ω)〉ω in Vω. (8)

The boundary conditions are

nωκ · (Dω∇ 〈cω〉ω − Dκ∇ 〈cκ〉κ )

= nωκ · (Dκ∇c̃κ − Dω∇c̃ω) on Aωκ (9)

and

〈cω〉ω − 〈cκ〉κ = c̃κ − c̃ω on Aωκ . (10)

In the phase (κ), we have

∇ · (vκ c̃κ ) − 〈∇ · (vκ c̃κ )〉κ + ṽκ · ∇ 〈cκ〉κ
= ∇ · (Dκ∇c̃κ ) − 〈∇ · (Dκ∇c̃κ )〉κ in Vκ . (11)
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Equations (8)–(11) are coupled to Eqs. (4) and (6) and need
to be reformulated to facilitate solution. Our goal is to separate
the contributions that act on the microscopic level from those
that act on the macroscopic level. The first step is to identify the
three different macroscopic source terms in these equations:
∇〈cω〉ω, ∇〈cκ〉κ , and 〈cω〉ω − 〈cκ〉κ . Since Eqs. (8)–(11) are
linear in c̃α they can be written asL(c̃) = SV (∇〈cω〉ω,∇〈cκ〉κ ),
and B(c̃) = SA(∇〈cω〉ω,∇〈cκ〉κ ,〈cω〉ω − 〈cκ〉κ ), respectively,
in which c̃ = (c̃κ ,c̃ω). L is the linear operator defined in the
bulk phases, B is the linear operator representing the boundary
conditions, and SV ,SA are the corresponding source terms.
By invoking the superposition principle for this boundary-
value problem, the solution can be decomposed into three
components, each corresponding to one of the source terms.
Again recall that we are interested in the continuum limit
R � L, so that these sources can be considered as constant
forcing terms and the solution may be written as

c̃α = bακ · ∇ 〈cκ〉κ + bαω · ∇ 〈cω〉ω + sα (〈cω〉ω − 〈cκ〉κ ) ,

(12)

with α = ω or κ .
A different analysis, using Green’s functions (cf. [52]),

yields similar expressions for the perturbations. In this case, the
solution is also decomposed into components corresponding
to the different source terms. The perturbations are then
expressed as integrals of the Green’s functions and the source
terms, over the spatial variable x′ that fixes the position of the
δ. In the continuum limit R � L, we can extract the sources
∇〈cω〉ω, ∇〈cκ〉κ , and 〈cω〉ω − 〈cκ〉κ from the integrals and treat
these as constant over the length scale of the REV. Therefore,
the mapping variables bαβ and sα can also be interpreted as
integrals of the corresponding Green’s functions over x′.

Substituting Eq. (12) into Eqs. (8)–(11) and collecting terms
involving ∇〈cκ〉κ , ∇〈cω〉ω, and 〈cω〉ω − 〈cκ〉κ leads to three
boundary-value problems (given in Appendix B) that govern
bακ , bαω, and sα . These problems are generally solved over a
representative portion of the medium, termed the unit cell, and
periodic conditions imposed on the boundary between the unit
cell and the rest of the system (note that for averaging II in
Fig. 2 boundary conditions for the top and bottom should be
defined carefully). The last step of this procedure is to ensure
uniqueness of the solution to Eq. (12), and of the mapping
fields. To do this, we fix 〈bακ〉α = 〈bαω〉α = 0 and 〈sα〉α = 0
to ensure that 〈c̃α〉α = 0.

V. CLOSED MACROSCOPIC FORMULATIONS

Now that we have explicit expressions for the perturbations,
we return to Eqs. (6) and (7) and obtain a closed form for these
macroscopic equations.

A. The two-equation model

Substituting Eq. (12) in Eqs. (6) and (7) leads to

εκ

∂〈cκ〉κ
∂t

+ εκ

∑
α=ω,κ

∇ · (Vκα〈cα〉α)

= εκ

∑
α=ω,κ

∇ · (Dκα · ∇〈cβ〉α) − h(〈cκ〉κ − 〈cω〉ω), (13)

εω

∂〈cω〉ω
∂t

+ εω

∑
α=ω,κ

∇ · (Vωα〈cα〉α)

= εω

∑
α=ω,κ

∇ · (Dωα · ∇〈cα〉α) − h(〈cω〉ω − 〈cκ〉κ ). (14)

In Eq. (14), the effective parameters Vαβ , Dαβ , and h can
be expressed explicitly as integrals of the mapping fields over
the unit cell. For the velocities, we have

Vαβ = − 1

Vα

∫
Aωκ

nα · {Dα[∇bαβ + (δαω−δακ )sαI]}dA

− 1

Vα

∫
Aωκ

nα · (Dαδαβ)dA + δαβ〈vα〉α. (15)

For the dispersion tensors, we obtain

Dαβ = 〈Dα[δαβ I + ∇bαβ + (δαω−δακ )sαI]〉α
− δαβ〈ṽαbαβ〉α. (16)

The mass exchange coefficient is

h = − 1

V

∫
Aωκ

nωκ · [Dω(r)∇sω]dA

= 1

V

∫
Aωκ

nκω · (Dκ∇sκ ). (17)

In these equations, we have used δαβ = 1 if α = β and
δαβ = 0 if α 
= β. Here, we have assumed, for simplicity, that
these effective properties are constant through the biofilm, so
that Eqs. (13) and (14) can be written in a conservative or
nonconservative form.

These upscaling approaches, in which the effective pa-
rameters are calculated on a representative portion of the
system, are becoming increasingly important given recent
advances in imaging techniques such as OCT, CLSM, or
x-ray microtomography. Instead of determining only volume
fractions, porosities, or densities, we can calculate numerically
the effective parameters relevant to a specific application by
directly using the images obtained.

Physically, Eqs. (13) and (14) mean that we have a
continuous macroscopic transport equation for each phase
(dual-continua description), in which mass is exchanged with
a characteristic time h−1. Similar models have been used
to describe mass transport in highly heterogeneous porous
media [53] and heat transfer problems [54]. Equations (13)
and (14) can be used to describe a broad range of non-
Fickian transport phenomena, for which h−1 is large compared
to other characteristic time scales associated with transport
mechanisms. Such situations may arise when microorganisms
actively alter the penetration of the solute or expel it from
the cell clusters. We also remark that our model equations
are quite general, in that they are not geometry specific, and
the phases are arbitrary. For example, upon including the bulk
water phase in the definition of the channels and imposing
a relevant separation of length scales, our model may be
adapted to describe non-Fickian transport phenomena induced
by biofilm growth in porous media.
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B. Telegrapher’s equations

On neglecting higher order spatial derivatives, it is possible
to approximate Eqs. (13) and (14) by a variant of the
telegrapher’s equation. This may be written (see Appendix C
for details)[

εκεω

h

∂2

∂t2
+ ∂

∂t
+ Ve · ∇ − ∇ · (D∗ · ∇)

]
〈c〉ωκ

+
[
εκεω

h
(Vκκ + Vωω) · ∂

∂t
∇

]
〈c〉ωκ

−
{

εκεω

h
∇ ·

[
(Dκκ + Dωω) · ∂

∂t
∇

]}
〈c〉ωκ = 0, (18)

where

D∗ =
∑

α=ω,κ

εα (Dαω + Dακ ) − εκεω

h
[VωωVκκ − VωκVκω] ,

(19)

Ve =
∑

α=ω,κ

εα (Vαω + Vακ ) = εκ 〈vκ〉κ , (20)

and

〈c〉ωκ = εω 〈cω〉ω + εκ 〈cκ〉κ . (21)

This form of the telegrapher’s equation, Eq. (18), is not
standard because it contains mixed time-space derivatives. We
can simplify it in the case of an infinite isotropic medium by
considering the moving frame r̄ = r − Vet and then neglecting
mixed time-space derivatives. We can obtain the classical
telegrapher’s equation (see Appendix C for details):

εκεω

h

∂2 〈c〉ωκ

∂t2
+ ∂ 〈c〉ωκ

∂t
= ∇r̄ · (De · ∇r̄ 〈c〉ωκ ) , (22)

with

De =
∑

α=ω,κ

εα (Dαω + Dακ )

− εκεω

h
[(Vωω − Ve) (Vκκ − Ve) − VωκVκω] . (23)

Equation (22) can be interpreted as a wave equation (∂tt

dominated) with a perturbation (∂t ) that disappears at early
times, or as a diffusion equation (∂t dominated) with a
wave perturbation (∂tt ) that disappears in the long-time limit
[55,56]. We remark that the wavelike behavior at early
times is physically unrealistic for our application because the
assumption of quasistationarity of the perturbation problem is
not valid in the short-time limit, when nonlocal effects must
be considered.

In the mathematical derivation presented in Appendix
C, higher order and mixed space-time derivatives represent
a deviation from the classical telegrapher’s model. Higher
order terms must be eliminated for consistency with the
first-order closure on the perturbations, Eq. (12). However,
the influence of the mixed space-time derivatives upon the
solutions is not straightforward, and the complete form is
given by Eq. (18). Such models, containing mixed derivatives,
have been discussed previously in Refs. [57–59] in the case
of two-phase heat conduction which are also known as
dual-phase-lagging heat conduction models, or in Ref. [59]

for solute contaminant transport. In addition, it is unclear
how the standard and nonstandard telegrapher’s equations
are related for complex initial and boundary conditions. A
further drawback of both telegrapher’s models, as compared
to Eqs. (13) and (14), is that an additional initial condition for
the time derivative of the averaged concentration is required.

Beyond these difficulties, the similarities between the
two-equation and telegrapher’s models are striking and it
is tempting to use a telegrapher’s model in a semiheuristic
manner to describe non-Fickian solute transport in dual-region
media. Future work should therefore focus on understanding
the exact mathematical relationship between Eqs. (13), (14),
(18), and (22), for different choices of boundary conditions,
initial conditions, parameters and geometries; numerical sim-
ulations should be compared with experimental results in
order to determine the exact effect of the mixed time-space
derivatives.

C. Time-asymptotic behavior

For t � h
εκεω

, Eqs. (13) and (14) are known, at least in the
case of a semi-infinite homogeneous medium, to reduce to a
single advection-dispersion equation [60,61]:

∂ 〈c〉ωκ

∂t
+ Ve · ∇ 〈c〉ωκ = ∇ · (De · ∇ 〈c〉ωκ ) , (24)

that can also be derived directly from the microscale (see [61]).
Heterogeneities or the effects of boundary conditions may
trigger a departure from the asymptotic situation, as has been
illustrated in Ref. [62]. For the variant of the telegrapher’s
model, a similar analysis, e.g., in terms of spatial moments,
can be used to show that Eq. (18) has an asymptotic behavior
that can be described by Eq. (24). This is straightforward in
the moving frame, i.e., by considering the asymptotic behavior
of Eq. (22), and then switching back to the static frame.

The dispersion tensor, Eq. (19), can be decomposed into
three components by substituting the expressions for Dαβ

(α,β = ω,κ), Eq. (16), into Eq. (23). In this way, we arrive
at the following expression for the dispersion tensor (see
also [63]):

De =
∑

α,β=ω,κ

εα〈Dα(δαβ I + ∇bαβ)〉α

︸ ︷︷ ︸
Averaged diffusion coefficients and tortuosity

− εκ〈ṽκ (bκκ + bκω)〉κ︸ ︷︷ ︸
Hydrodynamic dispersion

− εωεκ

h
[(Vωω − Ve)(Vκκ − Ve) − VωκVκω]︸ ︷︷ ︸

Multiphase dispersion

. (25)

This expression highlights the notion of effective diffusion
that was mentioned in the Introduction of this paper. In
addition to terms related to tortuosity and hydrodynamic
dispersion, the tensor contains a term specific to the multiphase
configuration, which involves Vαβ (α,β = ω,κ) given in
Eqs. (15). This represents a fundamental difference with the
expression for the dispersion given in Ref. [40], where the
assumption of local mass equilibrium results in the absence
of multiphase dispersion. The influence of the hydrodynamic
and multiphase dispersion terms depends on the situation. If
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there is marked variation in the mean velocities—for example,
if the channels have a clear preferred orientation—then the
multiphase dispersion term may significantly contribute to
the net dispersion effects. However, if the averaged velocity
is small—for example, if the channels have no preferred
orientation—then the hydrodynamic dispersion originating
from velocity fluctuations within the channels will become
dominant. We remark further that the effective diffusion is
usually characterized by a second-order tensor and can only
be described by a scalar when the biofilm is isotropic.

VI. ANALYTICAL AND NUMERICAL RESULTS

A. Asymptotic behavior of the telegrapher’s equation

It is important to realize that, although an advection-
dispersion equation such as Eq. (24) may seem more familiar
than Eqs. (13) and (14) or Eq. (18), there are a number of
aspects that make it less pertinent from a theoretical point of
view. One important feature of Eq. (24) is that, unlike Eq. (22),
its solutions can propagate with infinite speed. Further, since
there is no characteristic time associated with mass exchange in
Eq. (24), it is only valid when mass exchange can be neglected
at the macroscale. Therefore, it is important to understand
how the telegrapher’s equations and the asymptotic models are
related. This can be illustrated by recalling that a fundamental
solution to Eq. (24) for a one-dimensional Cartesian geometry
on an infinite domain, with 〈c〉ωκ (x̄,t = 0) = δ(x̄), is given by

〈c〉ωκ
asy = �(t)

√
1

4πDet
e−(x̄2/4Det), (26)

where � is the Heaviside step function. Similarly, a fundamen-
tal solution to Eq. (22) posed on a one-dimensional Cartesian
geometry on an infinite domain, with 〈c〉ωκ (x̄,t = 0) = δ(x̄)
and ∂t 〈c〉ωκ |t=0 = 0, is given (e.g., [64]) by

〈c〉ωκ
tel = e−(t/2T )

2
[δ(x̄ − νt) + δ(x̄ + νt)]

+ e−(t/2T )

2

[
1

2νT

(
I0 (ρ) + t

I1 (ρ)

2Tρ

)
� (νt − |x̄|)

]
,

(27)

where ν =
√

Deh

εωεκ
, T = εωεκ

h
, ρ =

√
ν2t2−x̄2

2νT
, and In(·) are

modified Bessel functions of the first kind.
In Fig. 3(a) we present results showing how these solutions

evolve over time, and in Fig. 3(b) we plot their difference,
〈c〉ωκ

asy − 〈c〉ωκ
tel . These figures demonstrate that at long times

the telegrapher’s equation can be well approximated by the
asymptotic model. Standardized moments (especially skew-
ness and kurtosis) can also be used to study the convergence
from the two-equation or telegrapher’s model towards Eq. (24)
(cf. discussions in Ref. [61]).

B. Illustration of the multiphase dispersion effect

To understand further the physical significance of the
dispersion terms appearing in Eq. (25), it is helpful to consider
the simple axisymmetric configuration of a tube of radius
R1, in which (r,z) represent the radial and axial coordinates
(see Fig. 4). The phase (κ) occupies the region 0 < r < R0

Phase κ

Phase ω

Phase ω

0

R0

R1

r

FIG. 4. Schematic diagram depicting the cylindrical geometry of
the tube problem.

and the phase (ω) occupies R0 < r < R1. We impose a
Poiseuille flow in the phase (κ) described by the velocity
v = v0(1 − r2

R2
0
)ez, and suppose that Dκ = Dω = D is constant

through space. All components of the dispersion tensor,
Eq. (25), corresponding to a concentration surface averaged
over the width of the tube, vanish except for its axial
component Dzz

e which can be written as

Dzz
e = D − εκ〈[ṽκ (bκκ + bκω)]zz〉κ

+ εκεω

h

[
εκεω

(
V z

κκ − V z
ωω

)2 + V z
ωκV

z
κω

]
. (28)

A complete solution to this problem is challenging (see,
for example, a discussion of a similar problem in Ref. [65]).
Here, our goal is to illustrate the different terms that appear
in the dispersion tensor rather than to construct an exact
solution. We will therefore use simple approximations and
dimensional analysis to develop an approximate solution
(a rigorous calculation is performed in the next section for a
two-dimensional unit cell). As a first step, we will assume that
we can approximate hydrodynamic dispersion using Taylor’s
result

− 1

D
〈[ṽκ (bκκ + bκω)]zz〉κ ≈ Pe2

48
, (29)

with

Pe =
〈
v0

(
1 − r2

R2
0

)〉κ
R0

D
. (30)

In the limit εω → 0, this results holds exactly so that we expect
it to be a good approximation for εω sufficiently small. In
addition, we assume that

V z
κκ ≈

〈
v0

(
1 − r2

R2
0

)〉κ

� V z
κω,V z

ωω,V z
ωκ . (31)

Equation (31) means that we are only considering the
physical velocity, and neglect velocity-like terms (such as Vωκ

or Vκω) that appear during upscaling, but do not correspond to
the average pointwise velocity 〈v0(1 − r2

R2
0
)〉κ . Using Eq. (31)

yields

εκεω

h

[
εκεω

(
V z

κκ − V z
ωω

)2 + V z
ωκV

z
κω

] ≈ ε2
κε

2
ωD2Pe2

hR2
0

. (32)

The dispersion coefficient can then be written as

Dzz
e

D
≈ 1 + Pe2

(
εκ

48
+ ε2

κε
2
ωD

hR2
0

)
. (33)
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At this point, we need an expression for the exchange
coefficient h. This can be determined by computing the closure
parameters but is rather tedious. As a simple alternative, we use
a dimensional analysis. We know that the exchange coefficient
has dimensions (time)−1 and corresponds to the inverse of the
time it takes for a molecule of solute to visit the entire domain.
We will therefore write h = AD

d2 , where A is a constant scalar
and d is a distance. It yields

Dzz
e

D
≈ 1 + Pe2

⎛
⎜⎜⎜⎝ εκ

48︸︷︷︸
Taylor dispersion

+ ε2
κε

2
ω

A

d2

R2
0︸ ︷︷ ︸

Two-phase correction

⎞
⎟⎟⎟⎠ . (34)

We remark that (1) we have Dzz
e

D
� 1, for all values of Pe,

because Dκ = Dω = D and h does not depend on v0; (2) the
two-phase correction involves the product εκεω and therefore
disappears in the limit εκ → 0 or εω → 0; and (3) with these
approximations, we still obtain dependence on Pe2.

From Eq. (34), we see that the multiphase term acts as a
correction to the classical hydrodynamic dispersion. Taylor
dispersion arises because of the velocity perturbation within
the κ phase, while the multiphase term is a consequence of
differences between the mean velocities within each phase.
This also suggests that the multiphase dispersion term may
contribute to net dispersion in cases for which the velocity
contrast is relatively large.

C. Longitudinal dispersion in a simple unit cell

In this section, our goal is to illustrate the behavior of
the longitudinal component of the dispersion tensor Dxx

e in a
simple 2D geometry, as described in Fig. 5. To compute Dxx

e ,
we could solve numerically the closure problems presented in
Appendix B, and use Eq. (25). However, the dispersion tensor
may also be written in a more suitable way for computational
purposes (see Davit et al. [66] for details):

De

Dκ

= εκ [(I + 〈∇B′
κ〉κ ) − Pe〈v′

κB′
κ〉κ ]

+ εω[D�(I + 〈∇B′
ω〉ω)], (35)

where L is a characteristic length, B′
α = Bα

L
, Pe =

√〈vκ 〉κ ·〈vκ 〉κL

Dκ
,

v′
κ = vκ√〈vκ 〉κ ·〈vκ 〉κ , and D� = Dω

Dκ
. B′

α solves the following

Periodicity
Pressure=1

Periodicity
Pressure=0

Periodicity

Periodicity

Cell cluster ω

Channelκ

FIG. 5. Illustrations of the unit cell (εκ ≈ 0.2 and εω ≈ 0.8) with
the mesh used for computations in COMSOL.
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FIG. 6. (Color online) Logarithmic plots of Dxx
e

Dκ
as a function of

Pe for different values of D� . Solutions of the closure problem for
the x component of B′

ω were calculated numerically using COMSOL

MULTIPHYSICS 4.2 over the geometry presented in Fig. 5. Scalar B′
ω,x

fields are presented for D� = 0.5, Pe = 10−2 (top left) and D� = 0.5,
Pe = 10+2 (top right). This figure shows the complex nonlinear
dependence of effective diffusion coefficients upon the system of pa-
rameters. For Pe � 1, transport is diffusion dominated. For Pe � 10,
hydrodynamic and multiphase dispersion effects become dominant.

boundary-value problem:

−εκ〈v′
κ〉κ = ∇ ·

(
D�

Pe
∇B′

ω

)
in Vω, (36)

∇ · (v′
κB′

κ ) + ṽ′
κ + εω〈v′

κ〉κ = ∇ ·
(

1

Pe
∇B′

κ

)
in Vκ ,

(37)

with the boundary conditions

nωκ ·
(

1

Pe
∇B′

κ − D�

Pe
∇B′

ω

)
= −nωκ

(
1

Pe
− D�

Pe

)
on Aωκ

(38)

and

0 = B′
κκ − B′

ωκ on Aωκ . (39)

Uniqueness of the solution is obtained by imposing εω〈B′
ω〉ω +

εκ〈B′
κ〉κ = 0.

We used COMSOL MULTIPHYSICS 4.2 (PARDISO solver) to
solve this problem and compute the longitudinal coefficient of
the dispersion tensor. The computational mesh is presented in
Fig. 5, and consisted of triangular meshes (56 570 elements).
Solutions were obtained in the following way. First, the
velocity and pressure fields were determined by solving the
Stokes equations with periodic boundary conditions and a unit
pressure difference along the x axis. The resulting velocity
field was then used to compute the x component of B′

ω (see
Fig. 6). This field was used in Eq. (35) to determine Dxx

e

Dκ
for

different values of D� and Pe (see Fig. 6). Here, Dxx
e is rescaled

with Dκ in order to produce results comparable with those of
the experimental literature. However, from a theoretical point
of view, Dxx

e should be rescaled with (εκ + εωD�)Dκ in order
to eliminate the effect of D� in the limit when Pe → 0.
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Our results highlight the complex, nonlinear dependence
of the dispersion tensor upon the system of parameters. For
Pe � 1, transport is diffusion dominated and only tortuosity
affects the longitudinal dispersion coefficient. However, for
Pe � 10, hydrodynamic and multiphase dispersion effects
become dominant. These results also show that, even for
Pe � 1, i.e., in the advection-dominated regime, we have a
relatively broad range of Péclet numbers for which Dxx

e

Dκ
� 1. In

other words, Dxx
e

Dκ
� 1 does not necessarily imply that transport

at the microscale is diffusion dominated.

VII. DISCUSSION

Solute transport in biofilms is often described via a notion
of effective diffusion, characterized by the ratio De

Daq
of

effective, De, and reference, Daq ≈ Dκ , diffusion coefficients.
As discussed in the Introduction, the definition of this effective
diffusion coefficient, as reported in the literature, is ambiguous.
In order to provide a clearer definition and to obtain physical
insight, we have used the technique of volume averaging to
derive three classes of models for solute transport. One of
these models, Eq. (24), is an advection-dispersion equation
involving an effective dispersion tensor that can be used to
interpret the above notion of effective diffusion. In most cases,
this one-equation asymptotic model, Eq. (24), is preferable
to the other two formulations, i.e., the two-equation and
telegrapher’s models. First, it is simple so that it can be
easily used to interpret experimental data. Secondly, it has
a broad domain of validity, requiring that a time inequality
is satisfied, t � εκ εω

h
, where εα is the volume fraction of

the phase (α = ω,κ) and h is the first-order mass exchange
coefficient of the two-equation model (see Sec. V C for more
details). To appreciate what constraint this inequality poses,
consider passive oxygen diffusion in a biofilm of width
l = 100 − 1000 μm at temperature 25 ◦C so that D = 20 ×
10−6 cm2 s−1 and suppose that there is a purely diffusive flux
at the channel-cluster interface. In this configuration, a good
approximation for h−1 is the characteristic time for a molecule
of solute to diffuse across the entire width of the biofilm, i.e.,
l2

D
≈ 50–500 ms, in which case the previous constraint, for the

validity of the one-equation time-asymptotic model, supplies
t � 50–500 ms. Therefore, for a (macroscopic) characteristic
time of a few seconds or minutes, the constraint is satisfied.

This model also has a straightforward physical interpreta-
tion, and each component of the dispersion tensor, Eq. (25),
can be explicitly identified. Two types of dispersion effects
are important. One arises from velocity fluctuations within
the channels. The other is due to differences in the mean
velocities of the two phases. The consequence of these
terms, on a macroscopic level, is the facilitation of solute
transport within the biofilm, potentially leading to situations
for which De/Daq > 1. Therefore, our analysis provides a
solid theoretical basis that can be used to interpret data for
which De/Daq > 1. In addition, Eq. (25) shows that the
effective dispersion tensor depends on the geometry of the
channel network. This suggests that parameters describing
the geometrical properties of these networks, e.g., their
connectivity, may be used in empirical laws for De, in addition
to parameters such as the cell density or the charge of the EPS.

We have also shown that De/Daq < 1 does not necessarily
correspond to a diffusion-dominated regime, contrary to what
was proposed in Ref. [41]. This is also illustrated in Fig. 6,
where we observe, in a simple unit cell, that De/Daq < 1 for
a broad range of values of the Péclet number with Pe > 1
(i.e., in the advection-dominated regime).

Interestingly, and to the best of our knowledge, the effect of
the macroscopic advective term Ve · ∇〈c〉ωκ has not previously
been reported in the literature. One must realize that its effect
is extremely difficult to detect, especially in a thin biofilm (typ-
ically 100-μm thick). Consider a macroscopic Péclet number
defined by PeM = VeL

De
. We remark that, for a characteristic

length L which is sufficiently small, the macroscopic advective
term may be systematically neglected. Cases for which the
advective term may be important correspond to situations in
which the channels are oriented parallel to the boundary. In
any case, even if this term is negligible, this does not mean
that the effects of advection can be neglected when calculating
the net dispersion tensor.

Even though the one-equation advection-dispersion model
is straightforward and widely applicable, there are some
situations for which a two-equation model or a telegrapher’s
model may be more appropriate. Microorganisms within
biofilms are known to actively restrict the penetration of
antimicrobial agents within the cell clusters [67–69]. For
example, positively charged molecules of antibiotics, such
as aminoglycosides, can be bound to negatively charged
EPS and have limited permeation properties [67]. More
recently, Epstein et al. [70] have revealed the extent to which
biofilms can limit the penetration of liquids and gas. They
measured the contact angle of liquid drops on a Bacillus
subtilis biofilm and showed that its surface remains nonwetting
against up to 80% aqueous solutions of ethanol, surpassing the
repellency of Teflon and lotus leaves. Using x-ray computed
tomography, they have shown that this biofilm can also be
impenetrable to gas. In another study, Váchová et al. [71]
showed that wild yeast biofilms can develop drug resistance
“in which specialized cells jointly execute multiple protection
strategies.” In particular, their analysis shows that the cells
selectively create permeable EPS, while coordinated efflux
pumps actively expel toxic substances outside the cell clusters.

These results show that biofilms have the capacity to
drastically retard the penetration of antimicrobial agents, and
even to actively expel toxic substances. In terms of our
modeling approach, this means that the interfacial flux between
the channel and cluster phases is modified, for example, by
reducing Dω. As a result, the macroscopic mass exchange
coefficient h, between the channels and the cell clusters, can
be actively controlled by the microorganisms. If h becomes
sufficiently small, the dispersion model discussed previously
may cease to be valid for the macroscopic time scale of interest,
and the two-equation or telegrapher’s models are needed.
Figure 7 illustrates this temporal behavior. In addition, because
we consider abstract phase geometries, these models can be
used to describe solute transport in porous media colonized by
biofilms. In such systems, biofilms are known substantially to
modify mass transport and can be responsible for anomalous
behaviours (e.g., in Ref. [72]). Our models can be adapted
readily to describe such situations, in the limiting case where
the phase (κ) also represents the bulk water phase within the
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porous matrix and there is separation of the relevant length
scales.

To determine whether a two-equation, a telegrapher’s
model, or a variation of the telegrapher’s model is better suited
to biofilms, additional experimental and numerical data are
required. Both classes of models can be used to describe non-
Fickian transport; both admit a larger range of solutions than
the one-equation advection-dispersion model and will provide
more flexibility in inverse optimization approaches. In this
work, we have shown that telegrapher’s models can be viewed
as approximations to the two-equation exchange model. In
addition, the telegrapher’s equation has had a recent resurgence
in numerous scientific fields and may represent a reasonable
compromise between the simplicity of the one-equation model
and the complexity of the two-equation one. It has been used
to describe short-time phenomena in heat transfer [73,74]
and in other transport problems [55]. Numerical schemes
are available to solve this hyperbolic equation, as well as
several analytical solutions (e.g., discussions in Ref. [55]). We
believe that the telegrapher’s or two-equation models may be
good candidates for modeling the transport of antimicrobial
agents within biofilms and porous media with biofilms,
i.e., to describe situations in which advection cannot be
neglected within the fluid channels and the solute has a limited
permeation within the cell clusters.

VIII. CONCLUSIONS

To summarize, in this paper:
(1) We have proposed three different, but related, classes

of models to describe mass transport within porous biofilms:
a two-equation model [see Eq. (14)], telegrapher’s models
[see Eqs. (18) and (22) and Appendix C], and a one-equation
time-asymptotic model [see Eq. (24)]. We have derived these
models using the method of volume averaging with closure,
have obtained an explicit definition for all the parameters,
and have discussed the domain of validity of each model (see
illustration in Fig. 7). We have also emphasized that future
research should explore, mathematically and experimentally,
the relationship between the two-equation and telegrapher’s
models.

0

?Models:

Transport: Nonlocal Local Fickian

Wave

Two-equation

Telegrapher’s

Asymptotic
with effective

diffusion

Time

τ1 τ2

FIG. 7. Illustration of the domains of validity of the different
models presented in this paper. τ1 is a characteristic time associated
with the relaxation of the effective parameters and τ2 = εκ εω

h
. For

short-time phenomena (t � τ1) transport is nonlocal in time and none
of the models presented in this study are suitable. The telegrapher’s
models exhibit a wave behavior in this regime, but it is a mathematical
artifact that has no physical significance. For times τ1 � t � τ2, the
transport is non-Fickian and two-equation or telegrapher’s models
should be used. For t � τ2, the notion of effective diffusion becomes
relevant and an advection-dispersion model is sufficient.

(2) We have suggested that the two-equation and teleg-
rapher’s models can be used to describe a broad range of
non-Fickian transport phenomena that arise in cases where
the microorganisms actively limit the penetration of biocides
within the cell clusters, and also when biofilms colonize porous
media.

(3) We have studied the concept of effective diffusion
and have shown that it corresponds to a second-order tensor
that appears in the one-equation, time-asymptotic formulation.
In the case of porous biofilms, this tensor contains notions
of tortuosity, hydrodynamic dispersion, and multiphase dis-
persion. This result is the main contribution of this study
and is consistent with recent results in Ref. [5] that show
extremely complex channel networks within porous biofilms.
It also represents a solid theoretical basis for interpreting
experimental data for which De/Daq > 1 and suggests that,
even in situations for which De/Daq < 1, microscale advective
transport may contribute to dispersion.

The primary goal of this paper was to address three
questions that were formulated in the Introduction and that
can now be answered:

(1) Are hydrodynamic dispersion effects taking place
within porous biofilms? Yes. In Sec. II, we have shown
that several different experiments suggest that hydrodynamic
dispersion effects do indeed occur within porous biofilm. These
experiments can be separated into two classes: measurements
of the velocity fields within the channels and determination of
the biofilm-scale effective diffusion coefficient. In Sec. II, we
have used the velocity fields measured in Refs. [2] and [44]
to show that the Pe number can be large enough to produce
dispersion effects for several, rather common, chemicals. Fur-
ther, direct measurements of the effective diffusion coefficients
show that the ratio De/Daq may be larger than unity; an
enhanced diffusivity that we hypothesize as being induced by
hydrodynamic dispersion effects.

(2) Can we define an effective diffusion which describes
fluid flow within the channels and spatially varying dif-
fusion coefficients within the cell clusters? What are the
physical processes corresponding to these effective dispersion
coefficients? Yes. The Fickian effective diffusion model can
be used to describe fluid flow within the channels and
slowly varying average diffusion coefficients within the cell
clusters. We have also shown that the effective diffusion
coefficients depend on (1) the topology of the channels’
network; (2) the solute’s diffusion coefficients in the fluid and
the cell clusters; (3) hydrodynamic dispersion effects; and
(4) an additional dispersion term intrinsic to the two-phase
configuration.

(3) Should we always use the effective diffusion model to
describe solute transport within porous biofilms? What are
the alternatives? No. The Fickian model is only an asymptotic
result which has a limited domain of validity. In particular, this
model requires a distinct separation of spatial and temporal
scales (cf. Figs. 2 and 7). To treat problems where the
biofilm is actively restricting the permeation of the solute
through the cell clusters (e.g., efflux pumps, surface tension
properties), higher order theories such as two-equation or
telegrapher’s models are more adapted (see Sec. VII). We also
emphasize that all these models require a notion of separation
of length scales. We have shown that different REVs can be
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used for averaging (see Fig. 2) and that the significance of
this constraint may be modified. For instance, averaging I
corresponds to a separation of length scales between the
REV and the thickness of the biofilm, and averaging II to a
separation of length scales between the REV and the width
of the biofilm. If such constraints are not satisfied, effective
theories cannot be used and the channel and cluster phases
should be clearly delineated.

These results have direct implications in terms of modeling
solute transport within biofilms; for instance, they show that
there are alternatives to the Fickian diffusion model. In addi-
tion, we anticipate that this work will stimulate experimental
investigations of dispersion effects within porous biofilms by
providing a solid theoretical basis for its existence.

Future work will focus on (i) comparing model sim-
ulations with experimental data; (ii) calculating effective
parameters using images obtained by microscopy techniques;
(iii) characterizing the differences between the two-equation
and telegrapher’s models; (iv) developing effective boundary
conditions (averaging II) for relatively thin heterogeneous
biofilms; and (v) studying the impact of the reaction rate on
the dispersion coefficients for a Damköhler number larger than
unity.
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APPENDIX A

As previously stated, we will only consider static bound-
aries. To invert the integral and differential operators, we use
the spatial averaging theorems [49]. Upon averaging Eq. (1),
we obtain

εω

∂ 〈cω〉ω
∂t

= εω∇ · 〈Dω∇cω〉ω + 1

V

∫
Aωκ

nωκ · (Dω∇cω) dA,

(A1)

where we have exploited the spatial averaging theorem, 〈∇ ·
πα〉 = εα∇ · 〈πα〉α + 1

V

∫
Aωκ

nωκ · πα dA. Then, in order to
separate processes occurring over different length scales, we
use the spatial decompositions Dω = 〈Dω〉ω + D̃ω and cω =
〈cω〉ω + c̃ω. For example, the first term on the right-hand side
reads:

∇ · 〈Dω∇cω〉ω

= ∇ ·
[
〈Dω〉ω

(
∇ 〈cω〉ω + 1

Vω

∫
Aωκ

nωκ c̃ω dA

)]
+∇ · 〈D̃ω∇c̃ω〉ω. (A2)

Other terms, and Eq. (4), are treated similarly. For a detailed
description of these procedures, the reader is referred to
Ref. [35].

APPENDIX B

The differential equations governing the mapping variables
bαβ and sα can be obtained by substituting Eq. (12) into
Eqs. (8)–(11). Using the linearity of the differential and
boundary operators, we can collect separately terms involving
the three different source terms 〈cω〉ω − 〈cκ〉κ , ∇〈cκ〉κ , and
∇〈cω〉ω. In this way, we arrive at the following set of boundary-
value problems:

Boundary-value problem for sα (α = ω,κ), i.e., corre-
sponding to terms involving 〈cω〉ω − 〈cκ〉κ :

0 = ∇ · (Dω∇sω) − ε−1
ω 〈∇ · (Dω∇sω)〉 in Vω, (B1)

0 = nωκ · (Dκ∇sκ − Dω∇sω) on Aωκ, (B2)

1 = sκ − sω on Aωκ, (B3)

∇ · (vκsκ ) − ε−1
κ 〈∇ · (vκsκ )〉

= ∇ · (Dκ∇sκ ) − ε−1
κ 〈∇ · (Dκ∇sκ )〉κ in Vκ . (B4)

Boundary-value problem for bακ (α = ω,κ), i.e., corre-
sponding to terms involving ∇〈cκ〉κ :

∇ · [Dω (∇bωκ − sω)] = ε−1
ω 〈∇ · [Dω (∇bωκ − sω)]〉 in Vω,

(B5)

− nωκDκ = nωκ · [Dκ (∇bκκ − sκ ) − Dω (∇bωκ − sω)]

on Aωκ, (B6)

0 = bκκ − bωκ on Aωκ, (B7)

∇ · (vκbκκ ) − ε−1
κ 〈∇ · (vκbκκ )〉 + ṽκ

= ∇ · [Dκ (∇bκκ − sκ )] − ε−1
κ 〈∇ · [Dκ (∇bκκ − sκ )]〉κ

in Vκ . (B8)
Boundary-value problem for bαω (α = ω,κ), i.e., corre-

sponding to terms involving ∇〈cω〉ω :

∇Dω − 〈∇Dω〉ω = ∇ · [Dω (∇bωω + sω)]

− ε−1
ω 〈∇ · [Dω (∇bωω + sω)]〉 in Vω,

(B9)

nωκDω = nωκ · [Dκ (∇bκω + sκ ) − Dω (∇bωω + sω)]

on Aωκ, (B10)

0 = bκω − bωω on Aωκ, (B11)

∇ · (vκbκω) − ε−1
κ 〈∇ · (vκbκω)〉

= ∇ · [Dκ (∇bκω + sκ )] − ε−1
κ 〈∇ · [Dκ (∇bκω + sκ )]〉κ

in Vκ . (B12)

These problems are usually solved only on a representative
portion of the system using periodic boundary conditions [35].

APPENDIX C

The two-equation model, Eq. (14), can be written using the
operator form:

Lαω 〈cω〉ω + Lακ 〈cκ〉κ = 0 with α = ω,κ, (C1)
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where

Lαβ = δαβεα

∂

∂t
+ εαVαβ · ∇ − εα∇ · (Dαβ · ∇)

+ δαβh − (1 − δαβ)h. (C2)

Given the linearity of these operators, we can write

(LωωLκκ − LωκLκω) 〈c〉ωκ = 0. (C3)

On neglecting higher order spatial derivatives, it yields

εκεω

h

∂2

∂t2
+ ∂

∂t
+ Ve · ∇ − ∇ · (D∗ · ∇)

+ εκεω

h
(Vκκ + Vωω) · ∂

∂t
∇

− εκεω

h
∇ ·

[
(Dκκ + Dωω) · ∂

∂t
∇

]
= 0, (C4)

where

D∗ =
∑

α=ω,κ

εα(Dαω + Dακ ) − εκεω

h
(VωωVκκ − VωκVκω) ,

(C5)

and
Ve =

∑
α=ω,κ

εα (Vαω + Vακ ) . (C6)

Upon considering an infinite isotropic medium, the moving
frame r̄ = r − Vet , and the change of variables (r,t) → (r̄,τ ),
we have

∂

∂t
= ∂

∂τ
− Ve · ∇, (C7)

and

∂2

∂t2
=

(
∂

∂τ
− Ve · ∇

) (
∂

∂τ
− Ve · ∇

)
. (C8)

On neglecting the mixed time-space derivatives, we obtain
the telegrapher’s equation:[

εκεω

h

∂2

∂τ 2
+ ∂

∂τ
− ∇r̄ · (De · ∇r̄)

]
〈c〉ωκ = 0, (C9)

with

De =
∑

α=ω,κ

εα(Dαω + Dακ ) − εκεω

h
[(Vωω − Ve)(Vκκ − Ve)

− VωκVκω]. (C10)

Note that neglecting the mixed terms may be done only in
the moving frame, so that the model still captures the correct
asymptotic behavior.
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