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Instability-based mechanism for body undulations in centipede locomotion
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Centipedes have many body segments and legs and they generate body undulations during terrestrial
locomotion. Centipede locomotion has the characteristic that body undulations are absent at low speeds but
appear at faster speeds; furthermore, their amplitude and wavelength increase with increasing speed. There are
conflicting reports regarding whether the muscles along the body axis resist or support these body undulations
and the underlying mechanisms responsible for the body undulations remain largely unclear. In the present
study, we investigated centipede locomotion dynamics using computer simulation with a body-mechanical
model and experiment with a centipede-like robot and then conducted dynamic analysis with a simple model
to clarify the mechanism. The results reveal that body undulations in these models occur due to an instability
caused by a supercritical Hopf bifurcation. We subsequently compared these results with data obtained using
actual centipedes. The model and actual centipedes exhibit similar dynamic properties, despite centipedes being
complex, nonlinear dynamic systems. Based on our findings, we propose a possible passive mechanism for body
undulations in centipedes, similar to a follower force or jackknife instability. We also discuss the roles of the
muscles along the body axis in generating body undulations in terms of our physical model.
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I. INTRODUCTION

Centipedes are arthropods that consist of many body
segments with one pair of legs per body segment. During
terrestrial locomotion, centipedes flex their body segments and
move their legs, generating posteriorly propagating traveling
waves. Centipede locomotion has the characteristic that
body undulations are absent at low speeds, but appear at
faster speeds; furthermore, their amplitude and wavelength
increase with increasing speed (Fig. 1) [1–3]. By observing
centipede locomotion, Manton [2,3] found that rapid stepping
movements give rise to these body undulations. According to
Manton, such undulations impede centipede motion and are
resisted by the muscles along the body axis. Centipedes can
dampen body undulations through muscular resistance only at
low speeds. This type of motion differs greatly from the axial
movements of vertebrates whose locomotion is enhanced by
increasing the stride length and the locomotion speed through
coordinating the body axis and limb movements [4].

The suggestions of Manton have gained wide acceptance
in both the primary scientific literature and textbooks [4–7].
However, Anderson et al. [1] reported that electromyogram
measurements of centipedes suggest that muscle activities
along the body axis support body undulations rather than resist
them. Thus, Anderson et al. and Manton disagree regarding
the roles of the muscles and the mechanisms responsible
for producing body undulations in centipedes remain largely
unclear.

To date, the abilities of animals to generate motion
have been investigated by examining the configurations and
activities of neural networks. For example, neurophysiological
studies of lampreys and cats have greatly contributed to
elucidating the locomotor mechanisms of animals [8–13].

(a) (b) (c) (d)

FIG. 1. (Color online) Locomotor behavior of centipede
Scolopendra cingulata (modified from Ref. [2]). Locomotion speed
increases from (a) to (d). Body undulations are absent at low speeds
in (a). Body undulations are present in (b)–(d) and their amplitude
and wavelength increase with increasing speed.

Regarding myriapod (e.g., centipedes and millipedes) loco-
motion, Golubitsky et al. [14,15] proposed a nervous system
model to investigate the phase relationship between the leg
movements for the gait pattern to produce body undulations,
suggesting the presence of important structural characteristics
in the central pattern generator network. However, since
locomotion is a well-organized motion generated through
dynamic interactions among the body, the nervous system,
and the environment, it is difficult to fully understand its
mechanisms in terms of only the nervous system. In addition
to understanding the nervous system, it is crucial to elucidate
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dynamic characteristics inherent in the body. Studies of the
nervous and musculoskeletal systems must complement each
other to clarify the mechanisms by which animals generate
locomotion.

Simple physical models have been used to investigate
the roles of body-mechanical systems [16–24]. The stability
mechanism is an important factor in locomotion dynamics
and bifurcation structures obtained using simple models have
provided meaningful biological insights, e.g., a saddle-node
bifurcation in the hysteresis in the walk-trot transition of
quadrupeds [17]. In a previous study, we performed a simula-
tion that revealed that a multilegged robot system with three
or more body segments produces body undulations through
a Hopf bifurcation when the joint stiffness is varied [25].
Inspired by this finding, the present study employs a simple
body-mechanical model and a robot, which are based on
actual centipedes, to investigate the dynamics of centipede
locomotion. In particular, we examine whether rapid stepping
movements induce body undulations and the mechanism that
produces the body undulations. We then compare our results
with measured data for actual centipedes. The results obtained
reveal similar dynamic characteristics between our model and
centipedes, despite centipedes being complex, nonlinear dy-
namic systems. This implies that a common principle underlies
these dynamics and suggests a possible mechanism for the
body undulations in centipedes. In addition, from our physical
model, we discuss the roles of the muscles on body undulations
in terms of the above-mentioned conflicting reports.

II. DO RAPID STEPPING MOVEMENTS INDUCE
BODY UNDULATIONS?

A. Body-mechanical model and robot

Our body mechanical model consists of six homogenous
modules [Fig. 2(a)]. Each module consists of a single rigid
body and one pair of legs. The body and legs are designed
to have the simplest mechanical structure with the smallest
number of degrees of freedom to obtain the target behavior.
Although more modules are preferable for comparison with
actual centipedes, we used six modules due to the limitations
of the robot experiment described below. Each leg consists
of two rigid links that are connected to one another and
to the body by pitch joints. The bodies are connected by
yaw joints installed with torsional springs (spring constant:
1.8 Nmm/deg) to emulate the resistance from the muscular
activities of centipedes. Table I lists the physical parameters
of each module.

We simplified the role of the nervous system that controls
the legs by assuming that the leg tips perform a simple periodic
movement relative to the bodies. During locomotion, the legs
support the body segments and generate propulsive forces by
creating periodic movements relative to the body segments. To
generate such leg movements, the length between the root and
the leg tip and the orientation must be controlled. We generate
leg movement using two pitch joints composed of two parts:
half of an elliptical curve that starts from the posterior extreme
position (PEP) and ends at the anterior extreme position (AEP)
and a straight line from the AEP to the PEP [Fig. 2(a)]. In the
straight line section, the leg tips move from the AEP to the PEP

Module 2

Module 6

Pitch joint
Pitch joint

Yaw joint 1

Module 1

PEPAEP

Yaw joint 5

Yaw joint 2

(a)

(b)

FIG. 2. (Color online) (a) Body-mechanical model and (b) robot.
It consists of six homogenous modules that each have one rigid body
and one pair of legs. Legs are driven so the leg tips follow a periodic
trajectory in the pitch plane including the anterior extreme position
(AEP) and the posterior extreme position (PEP) (red line). Bodies are
passively connected by yaw joints with installed torsional springs.

in the opposite walking direction at a constant speed parallel
to the body. The body is propelled in the walking direction at
the constant speed while the leg tips contact the floor. Using τel

to denote the duration of the half elliptical curve, τst to denote
the duration of the straight line, and dAP to denote the distance
between the AEP and the PEP on each body, the locomotion
frequency ω, the stride length s, and the locomotion speed v

are given by

ω = 2π

τel + τst
, s = τel + τst

τst
dAP, v = dAP

τst
. (1)

TABLE I. Physical parameters of each module.

Link Parameter Value

Body Mass (kg) 0.9
Length (m) 0.10
Width (m) 0.16
Height (m) 0.07

Upper leg Mass (kg) 0.3
Length (m) 0.05

Lower leg Mass (kg) 0.03
Length (m) 0.05
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Since centipedes control their locomotion speed by adjusting
the duration of the propulsive stroke [1–3], we use dAP = 3 cm
and τel = 0.3 s and vary the locomotion speed v by changing
the duration τst from 0.37 to 0.30 s to investigate the effect
of changing the stepping rate and the locomotion speed on
the locomotor behavior. The contralateral legs in each module
are manipulated to move in antiphase in a similar manner to
that observed in centipedes. The phase difference between the
movements of ipsilateral legs on adjacent modules is set to
2π/3 rad.

To simulate the locomotor behavior of our body-mechanical
model, we derived the equation of motion using Lagrangian
equations as in Ref. [17]. Contact between the leg tips and the
floor was modeled by vertical viscoelastic elements and hori-
zontal viscous elements. Joint friction was modeled by linear
damping. We numerically solved the equation of motion using
the fourth-order Runge-Kutta method with a step size of 1 ms.

In addition to performing a computer simulation based on
this body-mechanical model, we designed a centipede-like
robot based on this model to demonstrate its real-world
dynamic characteristics [Fig. 2(b)]. We did this since robots
are very effective and powerful tools for testing hypotheses
regarding real-world phenomena [20,26–35]. In the robot ex-
periments, the robot walked on a flat surface (180 × 990 cm2).
Variations in the elevation of this surface are smaller than
3 mm, which have little, if any, effect on the walking behavior
of the robot. The robot has an external power supply and
is controlled by an external host computer (Intel Pentium
4 2.8 GHz, RT-Linux) that calculates the desired motions of
the leg joints and sends command signals in 1-ms intervals.
The cables running from the robot to the external power supply
and to the host computer were raised during experiments to
prevent them from affecting the walking behavior.

B. Appearance of body undulations

We performed simulations and robot experiments for a walk
in a straight line on a flat floor, where we set all the yaw joint
angles to zero as the initial condition. Since torsional springs
are installed on the yaw joints and the leg tips move parallel
to the body segments with an identical stepping rate for all the
legs, both the model and the robot are expected to walk in a
straight line while keeping their body segments parallel to each
other. They actually performed a walk in a straight line and
body undulations were absent at low speeds, similarly to the
locomotor behavior of the centipedes at low speeds [Fig. 1(a)].
However, when the stepping rate and the locomotion speed
were increased and after the initial transient of about 20 s,
lateral undulations among the body segments appeared above
a critical speed despite the absence of periodic control signals
in the yaw joints [Figs. 3(a) and 3(b)].

We next investigated the effects of the stepping rate and
the locomotion speed on the body undulations. Although
we did not find a significant dependence of the undulation
speed (body length/period of body undulations) on the lo-
comotion speed, the amplitude and wavelength of the body
undulations exhibited a clear dependence on the locomotion
speed, similarly to case for actual centipedes in Fig. 1. To
investigate them, we examined the amplitude and the phase
lag of the undulatory movements of the yaw joints at various
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FIG. 3. (Color online) Appearance of body undulations.
(a) Snapshot (see supplementary movie [36]) and (b) yaw angle
profile during robot experiment (stepping period: 0.6 s and period
of body undulations: 16 s). [(c) and (d)] The changes in the amplitude
and phase lag of body undulations in the simulation and robot,
respectively. The data points and error bars in (d) respectively
correspond to the means and standard deviations of the results of
five experiments.

locomotion speeds. Figures 3(c) and 3(d) show the results
of the simulation and robot experiments [36]. The amplitude
shown is that of yaw joint 3. The phase lag is calculated
by taking the Fourier transform and it is represented by the
lag from yaw joint 1. The data points and error bars for
the robot experiments correspond to the means and standard
deviations of five experiments, respectively. The simulation
and robot experiments give similar results. The amplitude of
the body undulations increases and the phase lag decreases
with increasing locomotion speed.

III. WHAT MECHANISM PRODUCES THE BODY
UNDULATIONS?

A. Simple model

To clearly determine the dynamic mechanism of our model
and robot, we created a simple model by constructing a
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FIG. 4. (Color online) Simple model in two-dimensional space.
x and y are the coordinates of the first module, θ0 is the yaw angle
of the first module relative to the floor, and θi (i = 1, . . . ,5) are the
yaw joint angles. Black dots beside the bodies indicate the positions
of the leg tips during the stance phase that move parallel to bodies
at constant speed v relative to the bodies from the anterior extreme
position (AEP) to the posterior extreme position (PEP). This model
is subject to reaction forces from the floor only when the legs are in
the stance phase.

low-dimensional model from the original high-dimensional
mechanical model to extract the fundamentals of locomotion
dynamics. Since our goal is to investigate the dynamic
properties in order to generate undulatory body movements,
we made the following assumptions: (1) the dynamic roles
of the legs primarily involve reaction forces produced from
contact with the floor and the inertial forces of the legs have
only a small influence and (2) since several legs contact the
floor to support the bodies and the leg movements do not
cause the up-and-down, roll, and pitch motions of the bodies,
these motions are sufficiently small relative to the other body
motions (left-and-right, back-and-forth, and yaw motions).

From these assumptions, the dynamics of our model can be
accounted for by employing a simple model defined in a two-
dimensional space (Fig. 4), where x and y are the coordinates
of the first module, θ0 is the yaw angle of the first module
relative to the floor, θi (i = 1, . . . ,5) is the yaw joint angle, and
the black dots besides the bodies indicate the positions of the
leg tips during the stance phase that move parallel to the bodies
at constant speed v. Only when the leg tips are in the stance
phase is the model subject to reaction forces from the floor.

Setting qT = [ x y θ0 · · · θ5 ], the equation of motion can be
derived using the Lagrangian equation

K(q)q̈ + h(q,q̇) = u(q,q̇) + λ(q,q̇,t ; v), (2)

where K(q) is the inertia matrix, h(q,q̇) is the nonlinear term,
u(q,q̇) is the torque term due to the torsional springs, and
λ(q,q̇,t ; v) is the reaction force term. Since the leg tips move
periodically relative to the body and the speed of the leg
tips relative to the body during the stance phase is v, the
reaction force λ becomes a function of time t with parameter
v. A more specific description of this equation is presented in
Appendix A.

Using this simple model, we investigated the mechanisms
for producing body undulations from a stability analysis of
walking in a straight line, in which our model walks at constant
speed v and the bodies remain parallel with each other and do
not undulate laterally. To describe the configuration of this
model, we used zT = [ qT q̇T ]. When the model walks in a
straight line, we can write ẑT = [ vt + x0 y0 0 · · · 0 v 0 0 · · · 0 ]
(0 � t � τ ) for one stepping cycle, where x0 and y0 are,

respectively, the values of x and y at t = 0 and τ is the stepping
period. Linearization of the equation of motion (2) around ẑ

yields

δż = A(t ; v)δz, (3)

where δz = z − ẑ and A(t ; v) = A(t + τ ; v) since the move-
ments of the leg tips are periodic with period τ . Further details
regarding this linearization are given in Appendix A.

The fundamental solution matrix of a linear differential
equation with periodic coefficients, such as Eq. (3), can be
written in the form

X(t) = Z(t)e�t , (4)

where X(t) is the fundamental solution matrix and Z(t) =
Z(t + τ ) [37]. We can use identity matrices for X(0) and Z(0).
Integrating the linear differential equation from t = 0 to t = τ

gives

X(τ ) = Z(τ )e�τ = Z(0)e�τ = e�τ . (5)

The behavior of the solution is determined by the eigenvalues
of the constant matrix e�τ (Floquet multipliers). When all
the Floquet multipliers lie inside the unit circle on the
complex plane or all the real parts of the Floquet exponents
(eigenvalues of constant matrix �) are negative, the solution
is asymptotically stable.

B. Floquet analysis with simple model

We calculated the Floquet exponents of the linearized
equation (3) for each v to investigate the stability of a straight
walk with respect to the locomotion speed. Figure 5(a) shows
the result. Since the state δz in (3) is of dimension 16, there
are 16 lines representing the different Floquet exponents.
The region enclosed by the dashed lines is enlarged to show
the region near the origin, where the arrows indicate the
direction of the changes in the exponents with increasing
locomotion speed v. Except for zero exponents, all the
exponents lie in the left half plane at low speeds. However,
with increasing locomotion speed v, one pair of exponents
crosses the imaginary axis and enters the right half plane.
This indicates that a Hopf bifurcation occurs above a critical
speed and that the dynamic system becomes unstable. The
circles indicate all the exponents when the Hopf bifurcation
occurs. The red circles imply the Floquet exponents become
unstable on crossing the imaginary axis. We subsequently
calculated the phase lags of the yaw joint elements in the
destabilizing eigenvector relative to the element of yaw joint
1 for the locomotion speed [Fig. 5(b)] to find the dynamic
characteristics after the system is destabilized. The phase lags
decrease with increasing speed, which is similar to the results
of the simulation and robot experiments [Figs. 3(c) and 3(d)].

This result suggests that when the locomotion speed
exceeds the critical speed, the model can no longer continue
to walk in a straight line with parallel bodies and the
walking behavior changes completely. This also suggests
that this destabilization causes the state variables to increase
exponentially with time in accordance with the destabilizing
eigenvector and that this generates undulatory motion. Com-
parison of the phase lags of the yaw joint elements between
the destabilizing eigenvector and the undulatory behaviors
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FIG. 5. (Color online) Floquet analysis based on the simple
model. (a) Floquet exponents for increasing speed v. The region
enclosed by dashed lines is enlarged to show the region near the
origin. The circles indicate the exponents when Hopf bifurcation
occurs. (b) Phase lags of yaw joint elements of the destabilizing
eigenvector relative to yaw joint 1.

of the simulation and robot experiments reveal similarities
[Figs. 3(c) and 3(d) and 5(b)], suggesting that the nonlinearity
in the dynamics limits the exponential growth and helps
complete body undulations. These results indicate that this
destabilization gives rise to the body undulations in our model
and robot. As the simulation results in Fig. 3(c) show, the
amplitude increases proportionally with the square root of
the speed, which is a characteristic of the supercritical Hopf
bifurcation [38]. These results imply that body undulations do
not necessarily require intentional coordinative inputs to the
yaw joints; rather they can be induced in passive structures
when the dynamics contain such an instability.

C. Further investigation using nondimensional parameters

We further analyze the linearized equation (3) using nondi-
mensional parameters to clarify the mechanism to produce
body undulations. We introduced a reference time ξ (to be
specified later) and the linearized equation (3) can be written
as

δz∗′ = A(φ∗; w∗,j ∗,k∗,d∗,σ ∗,α∗,v∗)δz∗, (6)

where δz∗T = [ δq∗′T δq∗T ], δq∗ = [ δx/l δy/l δθ0 · · · δθ5 ]T,
φ∗ is the nondimensional time divided by ξ (φ∗ = t/ξ ),
and ()′ indicates the derivative with respect to φ∗. This

TABLE II. Stability analysis parameters.

Symbol Parameter Value

m Mass (kg) 1.6
j Inertia (kg m2) 0.009
l Length (m) 0.25
w Width (m) 0.16
k Spring coefficient (Nm) 0.1
d Damping coefficient (Nm s) 3.0
σ Friction coefficient (Ns/m) 100

equation is governed by seven nondimensional parameters:
w∗ = w/l, j ∗ = j/(ml2), k∗ = kξ 2/(ml2), d∗ = dξ/(ml2),
σ ∗ = σξ/m, α∗ = ξ/τ , and v∗ = vξ/l, where m, j , l, and w

are, respectively, the mass, inertia, length, and width of each
module, k and d are, respectively, the spring and damping
coefficients in the yaw joints, and σ is the friction coefficient
of the floor. Table II shows the parameters used for the
stability analysis. Further details regarding this analysis using
nondimensional parameters are provided in Appendix B.

We investigated the effect of nondimensional parameters on
a Hopf bifurcation based on (6). In particular, we examined the
effects of parameters w∗, j ∗, k∗, d∗, α∗, and σ ∗ on the critical
speed of v∗ for producing a Hopf bifurcation. Figure 6(a)
shows the result when one nondimensional parameter was
varied while the other nondimensional parameters were kept
constant. We used the period of the destabilized Floquet
exponents at the bifurcation point as the reference time ξ

since it corresponds to the period of the body undulations. This
figure shows that the spring stiffness k∗ and the floor friction σ ∗
greatly increase and decrease the critical speed, respectively.
Figure 6(b) shows the effects of the spring stiffness k∗ and
the floor friction σ ∗ on the Floquet exponents. It shows that
the spring stiffness shifts the exponents to the left half plane,
whereas the floor friction shifts the exponents to the right
half plane. These results suggest that the torsional spring is a
stabilizing factor in the internal structure for a walk in a straight
line, while the floor friction is a destabilizing factor due to
external forces driven by the movement of the leg tips parallel
to the bodies. The Hopf bifurcation is mainly determined by
the relationship between these two factors. Such an instability
resembles instabilities in other dynamic systems, such as the
flutter instability in a flexible beam subjected to a follower
force at the end (e.g., a rocket) [39–42] and the jackknife
instability in a car-trailer system in which the car pulls one
or more trailers and experiences external forces through the
wheels [43–45].

In addition, we investigated the effect of the number of
modules on the critical speed. Figure 6(c) shows the result.
Although the number of modules used is less than the number
of segments in centipedes, this result shows that the number
of modules has a small effect on the critical speed.

IV. RELATIONSHIP WITH CENTIPEDES

A. Comparison of body undulations with centipedes

In the simulation and robot experiments, body undulations
were absent at low speeds but appeared above a critical speed
(Fig. 3), similarly to centipedes [2,3]. To further investigate
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FIG. 6. (Color online) Effect of nondimensional parameters on a Hopf bifurcation. (a) Effects on the critical speed. (b) Effects of spring
stiffness k∗ (left) and floor friction σ ∗ (right) on the Floquet exponents. The circles indicate all Floquet exponents for a spring stiffness of 60%
(left) and zero floor friction (right). (c) Effect of number of modules on critical speed.

the biological relevance, we compared the simulation and
robot experiments results with data obtained from actual
centipedes. Figures 7(a) and 7(b) show the amplitude and
the phase lag of body undulations for the simulation and
robot experiments, respectively, recalculated from Figs. 3(c)
and 3(d) using the nondimensional locomotion speed.
Figure 7(c) shows the mean values of the amplitude and the
phase lag for three different speeds measured by Anderson
et al. [1]. The amplitude shown is that of the lateral flexion
between adjacent body segments. The phase lag is calculated
from the wavelength of body undulations; it represents the lag
between the foremost and rearmost body segments divided by
the number of body segments. The data for the three systems
are approximately the same and show a similar trend in that the
amplitude increases and the phase lag decreases (wavelength
increases) with increasing locomotion speed.

B. Effects of spring constants of torsional springs at yaw joints

Anderson et al. [1] reported that the muscles along the
body axis support the body undulations during centipede
locomotion, whereas Manton [2,3] suggested that the muscles
resist the undulations. In the present study, we used torsional
springs installed at the yaw joints to emulate the resistance
from the muscular activities of centipedes suggested by

Manton. To investigate the effects of the torsional springs on
the locomotion dynamics, we changed the spring constants in
the simulation experiments. We reduced the spring constants at
a low speed during locomotion without varying the parameters
for the locomotion speed and we examined how this change
influences the body undulations. In this experiment, before the
spring constants reach zero, the model performs locomotion
with body undulations for a certain duration, but the undula-
tions are not maintained and the locomotion collapses when
the amplitude of body undulations becomes too large to walk
forward [36].

To more clearly elucidate these effects, we used various
values for the spring constants and examined if the body
undulations are maintained long enough for each value. The
results are shown in Fig. 8, which plots the amplitude of
yaw joint 3 when the body undulations are maintained. Body
undulations are absent for large spring constants but appear in a
certain range of the spring constant. Comparison with Fig. 7(b)
reveals that the contribution of the increase (decrease) in the
spring constant to the production of body undulations is similar
to that of the decrease (increase) in the locomotion speed.
Locomotion collapses below a certain value of the spring
constant. Our results indicate that our model requires dynamic
factors to resist body undulations to generate locomotion,
which is similar to the suggestion by Manton.
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FIG. 7. (Color online) Comparison of the amplitude and phase lag of body undulations among (a) simulation, (b) robot, and (c) actual
centipedes using nondimensional locomotion speed. Panels (a) and (b) are recalculated from Figs. 3(c) and 3(d). (c) The mean values measured
by Anderson et al. [1].

C. Effects of active inputs in the yaw joints

Anderson et al. [1] demonstrated that the muscles along
the body axis promote body undulations during centipede
locomotion, where the muscle activity alternates between
the left and right sides for each body segment. We also
investigated the effect of this active muscle activity on body
undulations by applying periodic torques to the yaw joints
in the simulation experiments. Specifically, we used a spring
constant of 2.5 Nmm/deg for the torsional springs of the yaw
joints, which did not induce body undulations in Fig. 8, and we
input periodic torques to the yaw joints. Thus, we used both
passive and active contributions to the yaw joints. We used a
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FIG. 8. (Color online) Amplitude of undulatory movements in
yaw joint 3 for the spring constants obtained in simulation exper-
iments. The amplitude increases with decreasing spring constant.
When the spring constant is sufficiently large, body undulations are
absent. Locomotion collapses when the spring constant is below a
certain value. Body undulations appear over a certain range of the
spring constant.

sine function for the periodic inputs. We determined the period
of the periodic inputs and the relative amplitude and relative
phase of the periodic inputs between the yaw joints based on
the undulatory movements of the yaw joints in the above result
using a spring constant of 1.8 Nmm/deg. We used various
values for the amplitude of this active input and investigated
if body undulations appear. Figure 9 shows the result of the
amplitude of the undulatory movements in yaw joint 3. As
shown in this figure, body undulations appeared in response to
the active input, similar to the suggestion by Anderson et al.

D. Conflicting views regarding the role of the muscles

In this study, we used two models to investigate the role
of the muscles along the body axis of centipedes. One model
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FIG. 9. Amplitude of undulatory movements in yaw joint 3 for
the amplitude of the active input obtained in simulation experiments.
The amplitude of the undulatory movements increases with increasing
amplitude of the active input.
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uses torsional springs in the yaw joints to model the resistance
from the muscular activities of centipedes, as suggested by
Manton [2,3]. In this case, we found that body undulations
occur due to an instability caused by a supercritical Hopf
bifurcation. The other model employs periodic torque inputs to
the yaw joints to model the active contribution of the muscles,
as suggested by Anderson et al. [1]. In this case, we also
used torsional springs since dynamic analysis revealed that
our model requires dynamic factors to resist body undulations
to continue locomotion. Therefore, this case assumes that
the passive elements in the muscular and body-mechanical
systems contribute to the resistance to the movements of the
yaw joints. Our results showed that this active input also
produced similar body undulations to those generated through
the Hopf bifurcation. This means that our physical model
can explain the dynamic contributions of the muscles to the
generation of undulatory body movements, as suggested by
Manton and Anderson et al. using these different models.
However, these models generate body undulations by different
mechanisms.

V. LIMITATIONS OF OUR APPROACH
AND FUTURE WORK

We developed a simple body-mechanical model inspired
by centipedes. However, there are differences between the
model and real centipedes. Regarding morphology, our model
has only six bodies and 12 legs. The legs extend down-
ward and the physical properties are nearly identical among
the bodies and the legs. In contrast, centipedes have 15 or
more body segments [46], their legs project laterally, and
the physical properties, such as mass and size, differ among
the body segments and legs. For the locomotor behavior, the
lateral undulations of the body segments and the stepping
movements during centipede locomotion are synchronized in
a way that the propulsive legs are located on the concave side
of each bent region [1–3]. In contrast, the period of the body
undulations during robot locomotion is longer than that of the
stepping movements [Fig. 3(b)]. Furthermore, while we used
a constant phase difference between successive legs regardless
of the locomotion speed, the phase difference during centipede
locomotion varies with speed due to the synchronization of the
body undulations and the stepping movements. Our models
do not explain the mechanisms for this synchronization. In
addition, the period of body undulations in centipedes has been
measured in to be 0.2–0.6 s [1], which differs greatly from that
of our robot (about 16 s). These differences are due the limita-
tions of the robot employed in this study. However, the results
for the simulation, the robot, and actual centipedes approxi-
mately agree with each other in terms of the nondimensional
locomotion speed (Fig. 7) and the nondimensional analysis
reveals that the difference in the period of body undulations and
stepping movements α∗ and the number of body segments have
little effect [Figs. 6(a) and 6(c)]. From the nondimensional
spring stiffness k∗, the spring constant of actual centipedes is
estimated to be 3.1 mNmm/deg, which produces a torque of
24 mNmm from the amplitude of the highest speed in Fig. 7(c).
This torque can be produced by a muscle tension of 12 mN
when the corresponding muscles are attached at a point 2 mm
from the yaw axis, which is not an unrealistic value [47,48].

The limitations in terms of the synchronization of body
undulations and leg movements of our model partially reflect
the fact that our model does not incorporate an elaborate
nervous system model. The nervous system model by Gol-
ubitsky et al. [14,15] explains the phase relationship between
the leg movements and body undulations, although it does
not explain the mechanical mechanisms that produce the body
undulations. A nervous system model alone or a mechanical
system model alone cannot fully explain the mechanisms
since neuromechanical interactions are crucial in animal
locomotion. We intend to improve our model by integrating
body mechanical and nervous system models in future studies.

In our stability analysis, the linearized equation (A6) is
a second-order system whose proportional and derivative
coefficients depend on the summation of the spring and
damping coefficients in the yaw joints and periodic coefficients
induced by the reaction force from the floor. The stability of
a flexible beam subjected to a periodic follower force has
been described by coupled Mathieu equations and parametric
resonance [40]. The stability mechanism of our models may
be related to that of the follower force problem and it
would be better to use a characteristic elastic time than
the period of body undulations for the reference time ξ .
However, one aim of this study is to compare the physical
characteristics of our models with those of actual centipedes.
The spring coefficient of centipedes is currently unknown,
which prevents us from determining the characteristic elastic
time of centipedes and from comparing our results with
those obtained from centipedes. We instead consistently used
the period of body undulations as the reference time ξ to
conduct our analysis and compare our results with those for
centipedes. This allowed the spring coefficient in centipedes to
be estimated by nondimensional analysis, as explained above.
We intend to use the characteristic elastic time to investigate
the relationship between our results and parametric resonance
in the follower force problem in a future study.

In conclusion, although the above-mentioned differences
and limitations exist, dynamic analysis revealed many simi-
larities between our model and actual centipedes, including
the appearance of body undulations during rapid stepping
movements and similar trends in the variation in the body
undulation amplitude and wavelength as a function of speed
(Fig. 7). Despite centipedes being complex, nonlinear dynamic
systems, these similarities suggest that our findings provide a
possible mechanism for the production of body undulations
in centipedes. In addition, simulations performed using two
different models for the physical contribution of the muscles
along the body axis will provide new insights into the under-
lying mechanism. More thorough investigations are required
to clarify the underlying mechanism in centipede locomotion.
However, the possible mechanism and additional insight into
the conflicting views regarding dynamics will provide new
insights into biological science.
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APPENDIX A: PREPARATIONS FOR FLOQUET ANALYSIS
WITH A SIMPLE MODEL

Here, we present the analytical preparations to performing
Floquet analysis with a simple model (Fig. 4) by modifying the
analysis in our previous study [25] to investigate the influence
of the locomotion speed on the locomotion dynamics of our
body-mechanical model and robot. The details of the equation
of motion of the simple model (2) are as follows. The inertia
matrix K(q) is given by

K(q) = H T{L(q)TML(q) + J }H, (A1)

where

H =

⎡
⎢⎢⎢⎢⎣

I2

1

...
. . .

1 · · · 1

⎤
⎥⎥⎥⎥⎦

L(q) = L1(q) + L2

L1(q) =

⎡
⎢⎢⎢⎢⎣

R1,0(q) o2

R2,0(q) R2,1(q)r̃1 o2

...
...

. . .
. . .

R6,0(q) R6,1(q)r̃1 · · · R6,5(q)r̃5 o2

⎤
⎥⎥⎥⎥⎦

L2 =

⎡
⎢⎣

ρ̃1

O12×2
. . .

ρ̃6

⎤
⎥⎦

M = diag[ m1 m1 m2 m2 · · · m6 m6 ]

J = diag[ 0 0 j1 j2 · · · j6 ]

mi and ji (i = 1, . . . ,6) are the mass and inertia of module
i, o2 is a zero vector, In is a n × n identity matrix, On×m is
a n × m zero matrix, ri (i = 1, . . . ,5) is the distance vector
from yaw joint i − 1 to yaw joint i (we assume the position
of module 1 indicated by [ x y ] in Fig. 4 as yaw joint 0), ρi

(i = 1, . . . ,6) is the distance vector from yaw joint i − 1 to
the center of mass of module i, and Ri,j (q) (i,j = 0, . . . ,6,
i > j ) is the rotation matrix given by

Ri,j (q) =
[

cos θi,j (q) sin θi,j (q)

− sin θi,j (q) cos θi,j (q)

]
,

i,j = 0, . . . ,6, i > j (A2)

where

θi,j (q) =
i−1∑
k=j

θk

and for vector b = [ b1 b2 ]T, b̃ is expressed as b̃ = [ −b2 b1 ]T.
The nonlinear term h(q,q̇) is expressed by

h(q,q̇) = K̇(q,q̇)q̇ + V (q,q̇)p(q,q̇), (A3)

where

V (q,q̇) =

⎡
⎢⎢⎢⎣

O2×12

ṽT
1 (q,q̇)

. . .
ṽT

6 (q,q̇)

⎤
⎥⎥⎥⎦

[
vT

1 (q,q̇) . . . vT
6 (q,q̇)

]T = L1(q)Hq̇

p(q,q̇) = B(q)TML(q)Hq̇

B(q) =

⎡
⎢⎢⎢⎢⎣

I2

R2,1(q) I2

...
. . .

. . .

R6,1(q) · · · R6,5(q) I2

⎤
⎥⎥⎥⎥⎦ .

The torque term due to the torsional springs u(q,q̇) becomes
equivalent to

u(q,q̇) = −Pq − Dq̇, (A4)

where

P = diag[ 0 0 0 k · · · k ]

D = diag[ 0 0 0 d · · · d ]

and k and d are the spring and damping coefficients in the
yaw joints. Since the horizontal reaction force between the leg
tips and the floor is modeled by viscous elements, the reaction
force term λ(q,q̇,t ; v) becomes

λ(q,q̇,t ; v)

= −H TLtip(q,t ; v)T�tip(t){Ltip(q,t ; v)Hq̇ + vtip(t ; v)},
(A5)

where

Ltip(q,t ; v) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1,0(q) l̃1
1(t ; v)

R1,0(q) l̃2
1(t ; v)

R2,0(q) R2,1(q)r̃1 l̃1
2(t ; v)

R2,0(q) R2,1(q)r̃1 l̃2
2(t ; v)

...
...

. . .
. . .

R6,0(q) R6,1(q)r̃1 · · · R6,5(q)r̃5 l̃1
6(t ; v)

R6,0(q) R6,1(q)r̃1 · · · R6,5(q)r̃5 l̃2
6(t ; v)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vtip(t ; v) = [
l̇1
1(t ; v)T l̇2

1(t ; v)T · · · l̇1
6(t ; v)T l̇2

6(t ; v)T
]T

�tip(t) = σdiag
[
ε1

1(t) ε1
1(t) ε2

1(t) ε2
1(t)

· · · ε1
6(t) ε1

6(t) ε2
6(t) ε2

6(t)
]

ε
j

i (t) =
⎧⎨
⎩

1 if leg j of module i is in
the stance phase

0 otherwise

i = 1, . . . ,6, j = 1,2
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the left and right legs are numbered legs 1 and 2, respectively,
l
j

i (i = 1, . . . ,6, j = 1,2) is the distance vector from yaw
joint i − 1 to the tip of leg j of module i, and σ is the damping
coefficient of the reaction force.

We can write q̂T = [ vt + x0 y0 0 · · · 0 ] and ˙̂q
T =

[ v 0 0 · · · 0 ] (0 � t � τ ) for a straight walk in which the body
segments are aligned without producing body undulations for
one stepping period, where x0 and y0 are, respectively, the
values of x and y at t = 0 and τ is the stepping period. We lin-
earize the equation of motion (2) around the state of the straight
walk by substituting q = q̂ + δq into (2) and obtaining the
first-order Taylor series expansion with respect to δq to obtain

K(q̂)δq̈

= −{D + H TLtip(q̂,t ; v)T�tip(t)Ltip(q̂,t ; v)H }δq̇
−{P + H TLtip(q̂,t ; v)T�tip(t)L̇tip(q̂, ˙̂q,t ; v)H }δq. (A6)

For δzT = [ δq̇T δqT ], the linearized equation is given by

δż = A(t ; v)δz, (A7)

where

A(t ; v)

=
[

A11(t ; v) A12(t ; v)

I8 O8×8

]
A11(t ; v)

= −K(q̂)−1{D + H TLtip(q̂,t ; v)T�tip(t)Ltip(q̂,t ; v)H }
A12(t ; v)

= −K(q̂)−1{P + H TLtip(q̂,t ; v)T�tip(t)L̇tip(q̂, ˙̂q,t ; v)H }.
Since l

j

i (t ; v) is periodic with the step cycle period τ and
l̇
j

i (t ; v) is constant, we obtain A(t + τ ; v) = A(t ; v).

APPENDIX B: FURTHER ANALYSIS USING
NONDIMENSIONAL PARAMETERS

To further investigate the dynamical characteristics that
produce a Hopf bifurcation, we analyze the equation using
nondimensional parameters. Since each module has identical
physical parameters, we put m, j , l, and w for the mass,
inertia, length, and width, respectively, for the modules in the
simple model. We introduce a reference time ξ and put t = ξφ∗
(0 � φ∗ � τ/ξ ). We divide the translational and rotational
equations of the linearization equation (A6) by ml and ml2,
respectively, and then obtain

K∗δq∗′′

= −{D∗ + H TL∗
tip(φ∗; v∗)T�∗

tip(φ∗)L∗
tip(φ∗; v∗)H }δq∗′

−{P ∗ + H TL∗
tip(φ∗; v∗)T�∗

tip(φ∗)L′
tip
∗(φ∗; v∗)H }δq∗,

(B1)

where ()′ indicates the derivative with respect to the nondi-
mensional time φ∗,

δq∗ = [ δx/l δy/l δθ0 · · · δθ5 ]T

K∗ = H T(L∗TL∗ + J ∗)H

L∗ =

⎡
⎢⎢⎢⎢⎣

I2 ρ̃∗

I2 r̃∗ ρ̃∗

...
...

. . .
. . .

I2 r̃∗ · · · r̃∗ ρ̃∗

⎤
⎥⎥⎥⎥⎦

J ∗ = diag[ 0 0 j/(ml2) j/(ml2) · · · j/(ml2) ]

P ∗ = diag[ 0 0 0 kξ 2/(ml2) · · · kξ 2/(ml2) ]

D∗ = diag[ 0 0 0 dξ/(ml2) · · · dξ/(ml2) ]

L∗
tip(φ∗; v∗) =⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2 l̃1∗
1 (φ∗; v∗)

I2 l̃2∗
1 (φ∗; v∗)

I2 r̃∗ l̃1∗
2 (φ∗; v∗)

I2 r̃∗ l̃2∗
2 (φ∗; v∗)

...
...

. . .
. . .

I2 r̃∗ · · · r̃∗ l̃1∗
6 (φ∗; v∗)

I2 r̃∗ · · · r̃∗ l̃2∗
6 (φ∗; v∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L′
tip
∗(φ∗; v∗) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O2×2 l̃1
1
′∗(φ∗; v∗)

O2×2 l̃2
1
′∗(φ∗; v∗)

O2×2 o2 l̃1
2
′∗(φ∗; v∗)

O2×2 o2 l̃2
2
′∗(φ∗; v∗)

...
...

. . .
. . .

O2×2 o2 · · · o2 l̃1
6
′∗(φ∗; v∗)

O2×2 o2 · · · o2 l̃2
6
′∗(φ∗; v∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�∗
tip(t) = σξ/m diag

[
ε1

1(φ∗) ε1
1(φ∗) ε2

1(φ∗) ε2
1(φ∗)

· · · ε1
6(φ∗) ε1

6(φ∗) ε2
6(φ∗) ε2

6(φ∗)
]

r∗ = [ 0 − 1 ]T, ρ∗ = [ 0 − 1/2 ]T, l
j∗
i (φ∗; v∗) =

[ p
j

i (φ∗; v∗)/l − (−1)jw/l ]T, l
j

i
′∗(φ∗; v∗) = [ −v∗ 0 ]T

(i = 1, . . . ,6,j = 1,2), v∗ = vξ/l, and p
j

i (φ∗; v∗) indicates
the position of the tip of leg j of module i between the AEP and
the PEP. This equation is governed by seven nondimensional
parameters: w/l, j/(ml2), kξ 2/(ml2), dξ/(ml2), ξ/τ , σξ/m,
and vξ/l.
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