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Our work draws special attention to the importance of the effects of time-dependent parameters on decision
making in bistable systems. Here, we extend previous studies of the mechanism known as speed-dependent
cellular decision making in genetic circuits by performing an analytical treatment of the canonical supercritical
pitchfork bifurcation problem with an additional time-dependent asymmetry and control parameter. This model
has an analogous behavior to the genetic switch. In the presence of transient asymmetries and fluctuations, slow
passage through the critical region in both systems increases substantially the probability of specific decision
outcomes. We also study the relevance for attractor selection of reaching maximum values for the external
asymmetry before and after the critical region. Overall, maximum asymmetries should be reached at an instant
where the position of the critical point allows for compensation of the detrimental effects of noise in retaining

memory of the transient asymmetries.
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I. INTRODUCTION

The problem of cell fate decision has been recently equated
with gene expression pattern selection [1] as a response to
a combination of external signals. These data sets have been
invaluable in corroborating the hypothesis that cue signals
that induce distinct cell phenotypes, e.g., in differentiation,
can to an extent be associated with mutually exclusive
expression stable programs or high-dimensional attractors in
an epigenetic landscape. The integration of cue signals is
initially performed by the signaling system, whose function
is akin to a multilayer perceptron [2]. The outcome of
this signal processing step is a combination of activation
concentration profiles of the output nodes, normally kinase
proteins, whose amplitude and duration have been correlated
with the induced genetic programs [3,4]. The transcriptional
machinery subsequently integrates a wealth of input signal
combinations, which may induce bifurcations in the system’s
behavior and consequently affect cellular decision making
[5]. Signals not only drive transcriptional landscape changes
but also create the appropriate asymmetries, enhancing the
probability of reaching the attractors that encode the adequate
evolutionary response. The question arises as to what extent
are the combinations associated with only one attractor, and
which signal characteristics are important in attractor selection
in the face of fluctuations.

One particular signal characteristic that has just recently
been explored is the rising time of external signals [6,7].
The time-dependent profile of external signals may induce
significant effects near bifurcation points when fluctuations are
considered. In fact, the theory presented here relates back to the
mechanism for cell fate decision known as speed-dependent
cellular decision making (SdCDM) observed in low order
circuit models [6].

In [6], it was shown that the combination of external
signals is most efficient in selecting a specific attractor, in
the face of fluctuations, when the rising times are larger.
This is a consequence of larger rising times corresponding
to smaller sweeping speeds through the critical region and
consequently to smaller switching delays [8]. To further
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clarify aspects behind speed-dependent mechanisms, we will
resort here to the bistable potential problem arising from the
normal form for a supercritical pitchfork bifurcation affected
by an external field [see Eq. (1) and Figs. 1(a) and 1(b)].
This one-dimensional problem allows for analytical treatment
and is qualitatively equivalent, with respect to rate-dependent
effects in the presence of fluctuations, to the decision genetic
switch explored before [6], when the bifurcation parameter and
external asymmetry, A(¢) and g(), respectively [see Eq. (1)],
are made time dependent. In these circumstances, both systems
are forced through a bifurcation in the presence of a transient
external asymmetry, here imposed by g(#), and, in [6], arising
from the combination of external signals driving the genetic
circuit. We will also analyze the consequences of reaching
the maximum asymmetry before, at, and after A, = 0, which
is the original bifurcation point when g(¢t) = 0 [Fig. 1(a)].
This will further the study performed in genetic networks and
possibly help to understand aspects inherent to the analytical
reduction of the original gene regulatory network model [6] to
standard normal forms [9] such as that studied in this work [see
Eq. (1)]. The pitchfork bifurcation, in its super- or subcritical
form, has been seen as the standard model in genetic circuits
behind, for example, decision making in haematopoietic cell
differentiation regulated by the GATA1l and PU.1 master
regulators [5,10]. Yet, this regulatory system can also show
other valid bifurcation types, e.g., saddle-node bifurcation
[11], depending on the combination of external signals driving
it. Our choice of a pitchfork bifurcation allows us to link our
findings to previous theoretical work on dynamic bifurcations
and serves as a stepping stone to future investigations of
speed-dependent effects in noisy genetic networks, where
several types of transitions may occur due to the coexistence
of several distinct dynamical regimes [12].

The paper is structured as follows. In Sec. II, we explore
in a deterministic scenario the effects on the trajectories of
considering several time-dependent asymmetry functions and
several sweeping rates. In Sec. III, we test the results obtained
in Sec. II against the detrimental effects of fluctuations, both
by extensive numerical simulations and analytical solutions
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for the probability of reaching a specific attractor during the
sweeping process.

II. SWITCHING DYNAMICS IN THE BISTABLE
POTENTIAL PROBLEM WITH TIME-DEPENDENT
PARAMETERS

Let us first analyze Eq. (1) with constant parameters. In the
case of the external asymmetry being zero, g(t) = 0, Eq. (1)
admits for A < 0 the unique asymptotically stable solution
X = 0. For A > 0, three solutions appear: the asymptotically
stable branches given by ++/X and the trivial unstable solution
X = 0 [see Fig. 1(a)],

X =x0)X — X3+ g(0). 1)

In a situation when g(#) = g = const > 0, the bifurcation
point previously observed [see Fig. 1(a)] disappears giving
place to a connected set of solutions with positive values,
X+, a disconnected branch with negative values, X_ [see
Fig. 1(b)], and an unstable branch X,. One should add that
the connected and disconnected branches swap their positions
if the asymmetry is <0. Yet, all of the properties observed
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FIG. 1. (Color online) Comparative bifurcation diagrams for
different parameters of a supercritical pitchfork bifurcation normal
form, symmetric, and asymmetric. (a) g(#) = 0. (b) g(t) = 0.01
and g(r) =0.1 [Eq. (1)]. The presence of a constant external
asymmetry induces a disconnection of the solution branches. dpyn
represents the minimum distance between positive and negative
branches, dmin = (AX)3=3, = (X3 — X_);=3,. (c¢) Distance dX| =
(X )e=0.1 — (X1)e=001, between the upper branch of solutions
of a supercritical pitchfork bifurcation for constant g(t) = 0.1 and
g(t) = 0.01 [see (b)]. The major differences in d X, arise near the
original bifurcation point of Eq. (1) with g(¢) = 0 [see also (a)].
After A = 0, the major differences in the bifurcation diagrams arise
in the position of A; and in the sizes of basins of attraction [see (b)].
The bifurcation diagrams represented in (a) and (b) were generated
in XPPAUT by finding the steady-state solutions of Eq. (1) with the
available continuation methods [13].
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for g(¢) > 0 are maintained when g(¢) < 0. Regarding X, [see
Fig. 1(b)], the point where the three solutions appear, it is dis-
placed from the original bifurcation point A, = 0 by a distance
given by A; — A, = 3(%)% Therefore, the minimum distance
between the two branches is given by dmin = (AX),=;, =
X+ — X )=, = 3(%)% [see also Fig. 1(b)]. The previous
expression can be found by computing the point where the
three solutions appear. This can be estimated by recurring to
the discriminant (A) of the cubic equation, —X 34X+ g,
and finding the roots satisfying A = 4A3 —27g = 0. When
the discriminant is zero, there is a double real root, which is
the situation of interest for the problem in hand. Regarding the
unstable branch of solutions, its position far below or above
A =0 can be estimated to be displaced approximately by
—Af—h when g(t) = g = const.
The effect of the asymmetry as a state selector when the
system is swept through the critical region, for |g(?)] < 1,
is expected to be more pronounced near the bifurcation point
due to the disconnection between branches [see Fig. 1(b)]. The
sensitivity to different asymmetry amplitudes is also expected
to be more pronounced near the critical point due to differences
in the inflexion of the connected branch [observe the profile for
d X, in Fig. 1(c)] and the position of A; [see Fig. 1(b)]. A con-
stant external asymmetry plus noise has been demonstrated to
induce a higher selectivity, equated with the ratio between the
number of trajectories reaching the branch favored by g and the
total simulated trajectories, when the bifurcation parameter A is
varied in time with lower speeds [8,14]. This occurs due to the
fact that in these circumstances, switching delays are less pro-
nounced. This finding has relevance to the problem of cell fate
decision and has been also demonstrated in genetic circuits [6].

In the work presented here, we extend the findings of
speed-dependent effects near bifurcation points [8] to include
a transient external asymmetry g(¢). This particular study has
not been performed before and is important to understand the
system’s memory of external signals.

Determining numerically the deterministic sample paths of
a system ruled by Eq. (1), we can show the effects of varying
in time both the asymmetry g and the critical parameter A.
The system is initially started at X = 0, which for —1 < A <
0 is the only solution of Eq. (1). The critical parameter is
subsequently changed according to a linear law, A(¢) = Ao +
yit, from Ag = —1 to Ap = 1, with sweeping speed y;, after
which itis maintained at A . The asymmetry, on the other hand,
follows a piecewise linear law [see Fig. 2(a) and Eq. (2)]:

Vol if 0<t<T,,
g(t) = 4 8max — ygz(t - Tg|) if Tg. g t < T)u (2)
0 if t>T,.

Three cases were explored: the maximum external asymme-
try gmax being reached at the precise instance ¢ = T; o when
the critical parameter A reaches O [the original bifurcation point
for g(t) = 0; see Fig. 1(a)], and just before (t = Ty, = TT <
Ty—o) or after (t = Ty, = 3% > T,—o) [see also Fig. 2(a)]. We
impose, therefore, a dependence of the rates y,, and y,, on
y,. We should emphasize that the functions for both A(¢) and
g(¢) are motivated by the previous study of nonequilibrium

gene regulatory network models performed in [6]. Typically,
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FIG. 2. (Color online) Effects of time-dependent critical pa-
rameter and asymmetry on the deterministic trajectories of X. (a)
Profile for g_(t) with T, = %, go(t) with T,y = %, and g, (1)
with T, = % [see also Eq. (2)]. y,, and —y,, are given by (”'T"g‘%
and R,
g0+(). (b) X vs A for sweeping speed y, = 0.01 and 0.1 and
time-dependent asymmetry go(z) [see (a)] with gn.x = 0.1. Also
shown is the trajectory for constant asymmetry g(¢z) = 0.1. (¢) X
profile for y;, = 0.01, 0.2, and 0.8 and time-dependent asymmetry
g- (1) (with T, = ), go(r) (with T, = T;o = 2), and g. () (with
T, = 3%), for gmax = 0.1 [see (a)]. In (c), the differences in the
positions of the trajectories at A = 1 stem from the delayed switching
when larger sweeping rates y; are considered. After A = 1, the plots
should converge vertically to the steady-state solution. In (b), the
same observation holds with the exception of the differences between
the blue and black curves, which stem from the imposed different
asymmetry functions.

respectively. gm.x stands for maximum asymmetry of

external signals have complex profiles [15] and specificity to
each of the signal characteristics has been proven to occur, to an
extent, in the gene expression patterns induced [3,4]. However,
here we focus on the effects of sweeping the system through
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its bifurcation region in one direction, therefore simplifying
the analytical problem. Consequently, the choice of linear
and piecewise linear functions for A(¢) and g(t), respectively,
represent simply the effects of external signals with only rising
times and saturating at an equal level [6]. Further studies where
a combination of ramplike and oscillatory signals drive the
system through the bifurcation point should reveal the links
between phenomena akin to stochastic resonance [16] and
cell fate decision in genetic networks where coexistence of
complex signals is the norm.

Observing the results presented in Fig. 2(b), we notice that
switching from X = 0 with g(#) = const occurs at later values
of A if the speed of parameter driving is increased. The instant
where the jump occurs can be demonstrated to be proportional
to 1/y, [17,18]. The switching point is further increased if we
apply go(?) [Fig. 2(b); observe the differences in the profiles of
blue and black lines]. Together with higher switching delays,
the potential minima of the cases where the asymmetry is time
dependent are dislocated to lower values of X [observe the
differences at A = 1; Fig. 2(b)]. This stems from the fact that
the asymmetry returns to zero.

Regarding the effects on the sample paths of gi(#) with
respect to go(t), Fig. 2(c) shows us that the position of the
trajectories is regulated by the order of the instants where
the maximum of each of the functions is achieved. Yet, the
differences between paths become smaller at larger times [due
to saturation effects exerted by the cubic term in Eq. (1);
see also Fig. 1(c)]. This will be an important point when
fluctuations are considered further ahead. Additionally, if
the sweeping speed y; is increased, the differences between
the trajectories obtained by applying each of the asymmetry
profiles go +(¢) is reduced [compare in Fig. 2(c) the interrupted
line and full line plots].

III. DECISION MAKING IN THE PRESENCE
OF FLUCTUATIONS

If noise is included, how will the selectivity of each of
the attractor branches be affected by both the speed y, of
parameter driving and the maximum asymmetry gmax? Sample
trajectories for a small asymmetry gm.,x = 0.1 and noise
intensity ¢ = 0.05 are represented in Fig. 4(b). Both the cases
of time-dependent gy (¢) [see Fig. 2(a)] and constant asymmetry
are plotted. We used the Langevin equation associated with
Eq. (1) by adding a Gaussian distributed noise term £x y (¢), 1.e.,
with zero mean and correlation (£x(¢),&y (1)) = 028xy8(t —
t). All of the numerical results presented throughout this paper
were performed by resorting to a Heun method [19].

It is possible to check that the trajectory with additional
time-dependent asymmetry has, as was seen for the deter-
ministic case [Fig. 2(b)], a path closer to the unstable branch
of solutions of the bifurcation diagram. This may enhance
the probability of jumping across the potential barrier that
coincides with the unstable branch. For higher intensities of
noise, the role of the asymmetry g(¢) as a state selector may
be decreased. The trajectories may be capable of crossing
to the lower branch even when the critical parameter has
reached a considerable value with which a sufficient depth of
the potential is achieved. The transition dynamics time scale
between minima can be estimated using Kramers classical
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theory [20] and its improvements [17]. Overall, the critical
parameter has to be swept with a sufficiently low speed to
induce the maximum probability of the system migrating to
the branch of solutions favored by g(z). Yet, the speed has
to be sufficiently high to increase the potential barrier and as a
result increase the transition time to the lower branch [17]. If
these conditions are met, we reduce the probability of a jump
erasing the effect of the transient external signal.

Let us devise analytical expressions in order to quantify
thoroughly the effects of noise and sweeping speed y; on
attractor selectivity when the external asymmetry is made
time dependent and, thus, predict the number of trajectories
that reach a specific branch. For the analytical treatment, we
will resort to the Fokker-Planck equation associated with the
respective Langevin equation of Eq. (1). Several assumptions
underlie the applicability of the following theoretical approach
[8]. First, the distribution around the branch of solutions
before the critical point is assumed to be Gaussian. As the
control parameter A is passed through the critical region,
the distribution starts to drift towards the branch favored by
g(t). The drift rate is approximately g(¢). In this region, the
relaxation to the equilibrium is slow. At A = 0, the position
of the steady state is approximately [g(t = T;—)]"/3, which
makes the relaxation time [g(t = Ty—¢)]~*/3. For very small
asymmetries, this relaxation process is extremely slow [21].
Concurrently with the drift process, the distribution also suffers
spreading due to the fluctuations represented by the noise term
shown above. Around the critical region, the amplitude of
the fluctuations is amplified [18]. Nevertheless, if a strong
external field g(¢) is applied, the effects of the fluctuations
can be neglected if the critical parameter A is slowly changed.
Sweeping with large enough rates allocates a larger importance
to the presence of fluctuations, which may determine to a
large extent the equilibrium state selected [18]. After the
critical point, the distribution becomes bimodal with each
peak centered on the respective stable branch, X, or X_.
A second assumption lies with the fact that a Gaussian-like
distribution for the process is only valid if the speed with
which the critical parameter is forced to go through the critical
region is sufficiently high. If this condition is not met, then
the distribution relaxes to its non-Gaussian form and the
analytical solutions determined in the following section are not
sufficiently descriptive [8,22]. It is expected that an optimum
selection process occurs if the critical parameter is changed
with a speed that allows for the drift to center the distribution on
a point that shifts most of the area under the curve beyond the
position of the unstable branch at approximately 7;—_o. Unlike
studies devising analytical approaches based on attractor to
attractor transition theory for the probability density mass
transfer across the potential barrier [16,17], we will assume,
for the sake of simplicity, that the attractor selection process
is complete just after the bifurcation point [8].

We also must stress that our approach does not address the
concept of stochastic bifurcations [23]. Our work is based on
the currently accepted assumption that the switching dynamics
explored in Sec. II occurs due to the appearance of the bifur-
cation point even in the presence of fluctuations. Moreover,
we will only focus on small maximum asymmetries gm,x. For
much larger external asymmetries, the switching dynamics
will be less pronounced due to the gap between branches
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and, therefore, the reduced differences between the connected
branch before and after the critical point. In the next sections,
we will draw special attention only to the possibility of even
relatively small asymmetries being discriminated in the face
of fluctuations when the sweeping speed y; is small enough.

A. Attractor selection depends on the maximum of the transient
asymmetry to noise ratio and the critical parameter
sweeping speed

The probability density function P(X,t) can be described
by Eq. (3) derived for the Langevin equation of the bistable
potential represented in Eq. (1) [20],

PN —i{[k(t)X - X+ gOIP(X,1)}
ot 0X
a_2 2P (X,1) 3)
2 9X?

Here we do not take into account any fluctuations in the set
of parameters. Their contribution is thought to be negligible for
the calculations to follow [8]. The evolution of the probability
density function P(X,t) can be calculated by finding how
each of the distribution moments changes during the sweeping
process. By multiplying Eq. (3) by X", neglecting the cubic
term (near the bifurcation point, where the selection process
is assumed to occur, X < 1), and integrating by parts, one
obtains an expression which can lead to an equation for each
of the moments of the probability density function. Assuming
that the first two moments are sufficiently descriptive of the
evolution of the probability density function P(X,t) near the
bifurcation point, we chose to restrict our analysis to Eq. (4)
(mean) and Eq. (5) (variance),

d(X)

e MO(X) + g(1), “

d((6X)*)

o = 2[MO(BX)D) + g (X)+ 0% (5)

For a maximum asymmetry gm.x << 1, the contribution of
g(¢) near the bifurcation point may be assumed to disappear
from the equation for the second moment [Eq. (5)]. To an
extent, this approximation is always valid for large enough
noise intensity and small enough gn.x [see Figs. 3(a), 3(c),
and 3(d)]. Yet, in certain situations, this may not be so [see
Fig. 3(b)]. However, throughout this paper, we will focus on
expressions obtained when the simplified version of Eq. (5)
is considered and secure that we are in the region where this
approximation is justified. In any case, if we consider the
g(t)(X) term in Eq. (5), then the derivation of expressions
for branch selectivity, i.e., number of trajectory reaching
X+, becomes very cumbersome. Therefore, eliminating the
contribution of g(¢) from the evolution of the variance is
necessary for the sake of simplicity.

For our particular problem, and as was stated before, we
are interested in the effects of a monotonous linear function
for the bifurcation parameter A(¢) and for the asymmetry
g(t), a piecewise linear function [see Eq. (2)]. Equations (4)
and (5) are linear ordinary differential equations and have,
therefore, an analytical solution. Through an appropriate

change of variables, ' = /y,.(t — %), with AL = A, — Ao,
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FIG. 3. (Color online) Limits for analytical approximations and
profile for the moments describing the sweeping process. Comparison
between terms A(#){((8X)?) and g(¢t)(X) in Eq. (5) for each of the
external asymmetry profiles go +(¢), with (a) gmax = 0.01 and o =
0.05, (b) gmax = 0.1 and o = 0.05, (¢) gmax = 0.01 and o = 0.2,
and (d) gmax = 0.1 and o = 0.2. (e) First moment calculated through
Eq. (10), for gm.x = 0.1, and (f) with the erf(z) function in Eq. (10)
approximated to 1, also for gn.x = 0.1.

and assuming that the initial conditions term for each of the
expressions is negligible in comparison to the final instance
where separation of the initial unimodal distribution is
completed, for small enough y; rates we have Egs. (6) and (9),

(rar=a1)?

(X))~ S (I + D), ©)

N2
I /a2 22[ ( : +M>}dﬂ (7)
1= e Y — T ,
ay & \/ﬁ VA
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The integration limits in Eq. (7)—(9) are given by
a = W, a = —j—%, and a3 = &;_A&. Let us

study the contribution of g(t) to the mean until an instant
t', with ¢y, = (1 + K)AX and K < 1 [8]. This change of
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variables allows us to eliminate some of the complexity in
the expressions devised above. K is simply a measure of how
far we are from the bifurcation point in the original case [see
Fig. 1(a)], after we have crossed it in the sweeping process.
Depending on the proportion of the rates y;, ¥,,, and y,,,
we will have different cases. By neglecting the term g(7)(X)
in Eq. (5), the differences arise only in the first moment.
For the case of applying go(t), where ys = Vo, = &max Vs
we have the solution represented in Eq. (10). For the cases
of g_(t) and g4(t), Vg = 28max¥s and Vg, = 2 gmaxys, and
Ve = %gmaxyk and y,, = 2gmaxYa, respectively. Naturally,
similar expressions to Eq. (10) arise by following the same
reasoning. We will not present them here explicitly.

The first moment of the distribution generated for each
of the external asymmetry functions can be visualized in
Figs. 3(e) and 3(f), calculated with the complete expressions
[such as Eq. (10)] and with an extra approximation (discussed
below), as a function of the distance to A = 0, measured by K
[see Eq. (10)],

(X)) ~ 2 gl Ti + T, (10)
2y,
T, = 2yf (—2+e_i>~ +e%), (1)
T2=ym/§[erf( ! )+erf< K )} (12)
«/2)/)\ Q/Zy)\_
5 | K
00~ 5t e () e () |
((6X)7) (@) 2m0ﬁe ﬁJre N

13)

Effectively, by choosing a particular value of K, we are
assuming that the selection process is completed when the
paths, induced by each of the functions go +(¢), are in a certain
order. The results presented in Fig. 3(e) differ from those
in Fig. 3(f) due to the fact that in the latter, we assumed
that the error function [24] was approximately 1 for small
enough sweeping rates. It can be observed that in Fig. 3(e)
the order of the moments generated by applying each of
the asymmetry profiles is changed with respect to Fig. 3(f).
Informed by the numerical results of Figs. 2(b) and 2(c), we
would expect that the expressions for the mean without the
error function approximated to 1 would generate the correct
order for the probabilities of selection of the upper branch
X .. As will be seen ahead, this is not the case. Consequently,
since the expression for the variance of each of the external
asymmetry profiles is the same [see Eq. (13)], we will resort to
the approximated expressions from now on. Another remark
should be made about the speed-dependent effects present
in the plots for the first moment [see Figs. 3(e) and 3(f)].
As the rate y, is raised, (X) stays closer to the unstable
branch, both in the curves generated with the approximate
and the complete expressions. Additionally, the differences
between the moments become smaller with y; in both figures.
These observations of speed-dependent switching dynamics
are coherent with what was observed in Figs. 2(b) and 3(c).
Another important aspect regarding the plots of Figs. 3(e)
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and 3(f) is the overall independence of the order of the curves
and K. This particular characteristic does not match with
the numerical solutions shown in Fig. 2, but is sufficient,
nevertheless, to correctly generate the probability curves
(discussed ahead). In order to follow with the calculations of
the probability of reaching the upper branch of solutions, X,
we just have to secure that we choose a value of K that justifies
the approximation made when the g(¢)(X) term was neglected
from Eq. (5). In addition, K has to be relatively small given the
fact that the analytical expressions do not approximate well the
steady states for large values. This stems from the elimination
of the cubic term from the original normal form equation [see
Eq. (1)] when Eqgs. (4) and (5) were derived.

Evaluating the selection probability resulting from this
sweeping process is, in fact, a way of measuring the memory
capacity of the system to transient signals g(f) in the face
of fluctuations. For gn.x > 0, the probability of reaching the
favored asymptotic state X is given by integrating the area
under the distribution curve that is above — Af"j‘;c, which is
the estimated position of the asymptotically unstable state,
far above or below the critical point, when the asymmetry is
constant and equal to gnmax. This is effectively an overestimate
of the actual value for each of the time-dependent asymmetries
80.+(1), given that all of them return to zero. Yet, in order
to compare the results with those obtained with constant
asymmetries [8], we will resort to the mentioned value for the
position of the unstable branch. Since the original assumption
was that the distribution could be approximated by a Gaussian,
in order to calculate the probability P, of reaching the upper
branch we use the expressions for the mean and variance
calculated before [Eqs. (10) and (13)], with the additional
approximation of erf(z) = 1 for small enough y,. After an
appropriate change of variables, P, is given by

X2

P, ~Tdx. (14)

1 N
= — e
V2 /;oo
In Eq. (14), N stands for the number of standard deviations
that the peak of the distribution is displaced from the
unstable branch of solutions for a particular value of A:

[(X)(t)+52mae] 2
N = .Since AL = 1and % < 1, the second

AF—he
(6X)*)(1)
_(kan?

term, e %_“j\r, in the numerator of the full expression for
N can be neglected for small enough sweeping rates. The
expression for the probability P, of attractor selection can
thus be computed [see Eq. (15)]. For sweeping rates y; bigger
than 1, we can also simplify the P, calculation by performing
asymptotic expansion of the error functions and retaining only
the first term. This will not be done here.

1 max % %
Py = 5(1 +erf{agT[Fg°‘*m<%) +ﬁ<%> ]D
<1{1+erf[@<1)4]}, (15)
2 o )28

In Eq. (15), for the case of go(t) [see Fig. 2(a)], Fy ) =
2
-2+ e_i + e_2’(7x, o= %, and B :1\/5. For 1the casizof
g—(t),factor Fisgivenby F, ) = (3¢ 2 —de ¥ e ),
1
o= @, and B = +/2. For the case g.(1), Foon=(e 7 —
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FIG. 4. (Color online) Branch selection probability dependence
on asymmetry and sweeping speed. (a) Profile for probability P, of
selection of X, under gy(z), determined by Eq. (15), for y, = 0.01
and y, = 0.1. Also shown are the curves obtained for P, with
g(t) = const [calculated by the last expression in Eq. (15)]. For all
curves, o = 0.05. (b) Time series for g(z) = const and go(¢), with
noise intensity o = 0.05 and y; = 0.01. (c) Effect of y; and gn.x on
the fraction of trajectories ending up on X, determined numerically.
The figure shows the result of fitting a surface to a 100 x 100
grid of points (y;,8max), for noise intensity o = 0.05. (d) Fraction
of trajectories reaching X, for o = 0.2.

1 K2

de ¥ 43¢ ), a= g, and B = +/2. The profile for
Eq. (15), for go(¢), can be visualized in Fig. 4(a). It is
possible to verify that as the maximum external asymmetry
gmax 1S increased, the probability of the system reaching
X, is also increased. This was to be expected from the
deterministic simulations showed before in Fig. 2. We can also
observe speed-dependent attractor selection as was previously
predicted: higher rates y;, of passage through the critical region
reduce the probability of reaching the branch of solutions
(X+) favored by the external asymmetry. Additionally, the
differences between the probabilities calculated with constant
and time-dependent asymmetry grow with y; [see both
Fig. 4(a) and the last expression in Eq. (15)], a result coherent
with the deterministic solutions shown in Fig. 2.

One interesting aspect of the expressions derived for P,
is the dependence on the £m ratio. Similar profiles are
obtained if, for a raise in noise intensity o, the maximum
asymmetry allowed is also raised by the same amount. This
ratio dependence is also a feature for the case of a constant
asymmetry [8], and to an extent for the genetic circuit studied
in [6]. A crucial aspect of Eq. (15) is the presence of a
second term, Fy_ (), g(1).¢,((12)"/*. This contribution differs
considerably from the original expression obtained with g(¢) =
const [see expression after the < signin Eq. (15)] [8]. This term
is always smaller than g (%)%. It reflects the fact that although
the probability density P(X,t) drifts towards the upper branch
more efficiently when y; is smaller, the noise intensity and,
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FIG. 5. (Color online) Numerical vs analytical branch selection
probabilities. Each plot corresponds to a section of Fig. 4 for varying
gmax and (a) y, = 0.01, (b) 5, = 0.1, (¢c) y», = 0.2, and (d) y,, = 0.4.
For all figures, o = 0.05. For the analytical curves, see also Eq. (15).

therefore, the spreading of the distribution is increased when
sweeping speeds are low [see also Eqgs. (9) and (13)].

To further understand the effect of different maximum
asymmetries and sweeping speeds on the decision bias, exten-
sive numerical experiments were performed for the cases when
go(t), g—(1), and g (¢) are applied to the system [see Figs. 4(c)
and 4(d) for the case of go(t)]. Observing the color map of
Fig. 4(c), one verifies that for In(y,) < 2, the great majority of
the gmax’s induce selectivities above 60%. Selectivity or P, is
equated with the probability of reaching the upper branch, i.e.,
the number of trajectories reaching X from a batch of 5000.
Raising the speed at which the system crosses the critical
region increases symmetry between the distributions of the
final attractors, as can be seen by the predominance of the blue
region for larger values of In(y, ). If we further raise the noise
intensity, speed-dependent effects are still observed, but the
region where a high probability of selecting X is observed
contracts towards lower values of y; and higher values of gax
[see Fig. 4(d)]. In fact, there is a minimum gn.x for which
the lowest sweeping rates still generate selectivities above
50%. For higher intensity of fluctuations, branch to branch
transitions are more common and therefore the assumptions
behind the sweeping process and the derivation of Eq. (15)
are no longer valid. Further treatment based on Kramers
theory [17] is necessary and will complement the approach
presented here for the bistable potential and, in [6], for the
genetic switch. We should add that the features of the color map
observed in Fig. 4(d) are also characteristic of those obtained
with functions g (¢) (figure not shown).

Regarding the fit between the analytical expressions devised
above and the numerical results obtained through extensive
simulation, we observe that (see Fig. 5) for the case of the
asymmetry profile go(¢), there is an interval of sweeping
rates which includes y; = 0.2 that generates the best fit
[Fig. 5(c)]. Outside this region, the analytical expressions
either underestimate [for small y,s; Figs. 5(a) and 5(b)] or
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FIG. 6. (Color online) Probability dependence on reaching maxi-
mum asymmetries before, at, and after the critical region. The curves
were obtained by plotting numerical results for go(¢), g_(¢), and
g+ (1) and their respective analytical solutions [see Eq. (15)] with
() y»=0.01, (b) y» =0.1, (c) . =0.2, and (d) y, =0.4. (e)
Term differentiating the computed probabilities with go(z), g+(?),
and g_(¢) for several rates y, [see Eq. (15)]. Although the relative
magnitude of the curves resulting from gy(z) and g (¢) seems to not
be compatible with the relative probabilities observed in (a)—(d), one
should remember that in Eq. (15) the term that ultimately determines
the magnitude of the probability is ,3(;’7)%, which is larger for the
case of go(?). (f) Pairwise difference between terms plotted in (e). For
all cases, noise intensity o = 0.05.

overestimate [for large y,s; Fig. 5(d)] the probabilities P,
determined numerically.

B. Effects of reaching the maximum asymmetry at, below, or
beyond the critical point

Let us now observe the results presented in Fig. 6. The
numerical curves indicate that go(¢) always generates higher
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selectivities than the other cases [Figs. 6(a)-6(d)]. This is also
predicted by the respective analytical results computed through
Eq. (15). Although one could expect, by simply observing the
numerically computed trajectories shown in Fig. 2, that g_(¢)
would generate higher P,’s due to the fact that it induces a
higher drift towards the upper branch (X ) before . = 0, go(¢)
is, nevertheless, more efficient in dealing with the effects of
noise. This stems from the fact that with respect to g_(z), go()
forces A; [Fig. 1(b)] to have higher values exactly when the
fluctuations have a larger amplitude. Remember that in the
vicinity of the critical region, fluctuations are amplified [18].
Regarding the effects of g, (¢), although it generates paths
closer to the unstable branch and therefore larger switching
delays, it is still capable of giving rise to larger selectivities
than those observed for g_(#). Once again, this probably comes
from the interplay between the moment when the amplitude of
the asymmetry is higher and the moment when the fluctuations
are stronger. Further investigations are necessary to determine
exactly the region where the maximum asymmetry should
be reached with respect to the noise amplitude (along the
lines of [18]). Regarding the speed-dependent effects observed
in the numerical results presented in Figs. 6(a)-6(d), it
is possible to verify that as the rate y; is increased, the
differences induced by each asymmetry function decrease.
This is also valid for the differences between the theoretical
probability results generated by go(r) and g, (¢#) [observe
Fig. 6(f), where the difference between the terms F, g()i(,)(%)%
distinguishing the probabilities induced with each asymmetry
function is shown]. Regarding the analytical probability
curves obtained with g_(¢), these tend to be increasingly
different from the other cases as the sweeping rate is raised
[Fig. 6(f)].

Let us also compare the profiles obtained with Eq. (15)
and those determined numerically. As was registered in Fig. 5,
there is, for go(¢) and additionally for g, (¢), a region of rates
that generates the best fit. Regarding g_(¢), the curves never

really fit the numerical data. With increasing y;, the F, gf(,)(%)%
term pushes the argument on which the error function operates
further to smaller values and, given the fact that erf(z) has a
sigmoidal profile around 0, the differences with respect to the
other cases are subsequently amplified.

Further analysis based on the long term behavior (see [16,
17]) of the solutions obtained when applying g_(¢), go(?),
and g (¢) is necessary for the cases of large fluctuations where
branch to branch transitions are present. Preliminary numerical
simulations have shown that even with noise amplitudes of
o = 0.5, there is a significant region from —3 < In(y,) < —1
and 0.05 < gmax < 0.1 where selectivity of the upper branch is
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larger than 0.65, therefore giving rise to the idea of an optimal
y,. even for large fluctuations (figure not shown).

IV. OUTLOOK

In contrast to other aspects of nonequilibrium physics
[25-27], dynamic bifurcations, as explored here and in [6],
have not been systematically studied in systems biology
despite involving fundamental aspects of cell fate decision,
nor have they been adapted from canonical models to address
biocircuits. It is of special interest in this context of cell
fate decision because all genetic switches are asymmetric
and stochastic and, hence, can be expected to demonstrate
speed-dependent effects in attractor and phenotype selection.
Devising a direct analytical link [9] between gene regulatory
models [6] and the normal form characteristic of the bistable
potential problem [8] will help us understand, in a consistent
analytical framework, aspects of the speed-dependent cellular
decision making mechanism [6], namely, the importance of
both the sweeping speed through the critical region but also the
relevance of reaching maximum external asymmetries before,
at, and after the bifurcation points. It should reveal direct
connections to the principal findings reported here for the
bistable potential perturbed by go 1(¢): overall, the transient
asymmetries are efficient selectors of a particular attractor if
they reach their maximum values at an instant which pushes
A; further away. This allows for the system to cope with
the detrimental effects of large intensities of noise and retain
memory of transient external perturbations.

Further studies in systems with more complicated dynamics
such as the high-dimensional switch [7], or other paradigmatic
circuits such as the repressilator with quorum sensing, where
coexistence of point and dynamical attractors [12] is observed,
should reveal further aspects of speed-dependent effects on
cellular decision making. We also expect that investigations
of the pattern selection process inherent to developmental
biology [28] should find a crucial role for the theory explored in
our work. Another avenue that seems promising for analytical
understanding of speed-dependent effects is the recently
developed theory of optimal paths for cell fate decision, based
on the calculation of path integrals, in systems undergoing a
bifurcation [29-31].
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