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Analytical condition for synchrony in a neural network with two periodic inputs
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In this study, we apply a mean-field theory to the neural network model with two periodic inputs in order to
clarify the conditions of synchronies. This mean-field theory yields a self-consistent condition for the synchrony
and enables us to study the effects of synaptic connections for the behavior of neural networks. Then, we obtain
a condition of synaptic connections for the synchrony with the cycle time T . The neurons in neural networks
receive sensory inputs and top-down inputs from outside of the network. When the network neurons receive two
or more inputs, their synchronization depends on the conditions of inputs. We also analyze this case using the
mean-field theory. As a result, we clarify the following points: (i) The stronger synaptic connections enhance
the shorter synchrony cycle of neurons. (ii) The cycle of the synchrony becomes longer as the cycle of external
inputs becomes longer. (iii) The relationships among synaptic weights, the properties of input trains, and the
cycle of synchrony are expressed by one equation, and there are two areas for asynchrony. With regard to the third
point, the yielded equation is so simple for calculation that it can easily provide us with feasible and infeasible
conditions for synchrony.
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I. INTRODUCTION

Neurons in neural networks interact by synaptic connec-
tions. These complex networks, even if they consist of the
integrate-and-fire models or the extended models, are very
complicated to deal with directly. Up to now, many studies
of the neural networks have treated the inputs from another
neuron as a stochastic process [1–13]. Because the stochastic
process under random noises (namely Langevin forces) is well
studied [14], the behavior of a neuron’s membrane potential
is well analyzed using the Fokker-Planck equation [15] as an
Ornstein-Uhlenbeck process [16]. Essentially, however, these
stochastic input models approximate the network as a single-
neuron model [1–8]. Thus, it is difficult (but not impossible
[9–12]) to introduce synaptic connections appropriately into
the distribution functions of random inputs.

Recently, Chen and Jasnow [17] introduced the mean-field
theory to study synaptic plasticity. In this theory, we need
to introduce the “effective input” as a mean value of inputs
to a population of several neurons, namely cluster neurons,
from outside of the cluster neurons. In particular, Chen and
Jasnow [17] focused this virtue of the mean-field theory on
the behavior of neural networks driven by Poisson noises
with fixed mean frequency for all neurons. In addition, they
clarified the relation between the mean firing frequency (or
the mean firing rate) and the mean synaptic weight using
the self-consistent condition obtained from the mean-field
theory [17]. Because the mean-field theory can reduce many
synaptic connections to one connection, it enables us to analyze
the effects of many synaptic connections in neural networks
with ease. When there are a lot of neurons with connections
and the input trains are stationary, it is reasonable to apply the
mean-field theory to this system [9]. However, the mean-field
theory is not applicable when the variance of the values is
so large and/or the population size of the variables (synaptic
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connections per neuron, for example) are so small that the
mean value cannot be regarded as representative. In addition,
when we focus on synchronized firings, its stability cannot be
discussed from the viewpoint of this mean-field theory because
we do not take into account the transient to the steady state.
This is one of the limitations of the method.

Biologically, accompanied by visual perception or motor
control, coherent oscillations have been reported in the cortices
[18–25]. The oscillations are thought to play an important
role in the information processing in the cortices [26,27].
For example, precise synchronization among cortical areas
suggests visuomotor integration [28]. On the other hand,
both feedforward and feedback anatomical projections exist
in corticocortical connections [29]. The pyramidal neurons of
the superficial layer project to the middle layer of the higher
functional region, whereas those of the deep layer project
back to the superficial and deep layers [30]. Thus cortical
areas are reciprocally connected by feedforward (bottom-up)
and feedback (top-down) pathways. The bottom-up signals
usually originate from sensory information. Consequently,
some cortical regions receive both bottom-up (sensory) and
top-down signals [31].

According to the modeling study using a population of
neurons that receives bottom-up and top-down periodic inputs
with different periods [32], the synchrony of firing often col-
lapses. In other words, the loss of synchronized firings requires
remarkably different cycles of inputs. When the differences of
the cycle times are small, the loss of synchrony does not occur.
When the neurons receive independently fixed periodic inputs,
what determines critically if the firings synchronize or not? It
is expected that the strength of the synaptic connections has a
big effect on synchrony because numerical studies showed that
synaptic plasticity evokes synchrony [33,34]. Taken together,
generally, synchrony depends on the synaptic connections as
well as the periods of inputs.

Thus the purpose of our study is to understand the
effects of input trains such as amplitude and period, and
synaptic connections on the synchrony of neural networks,
using the mean-field theory. For convenience of applying this
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framework, we regard the state in which two neurons fire
with the same period as synchronous in this paper. Thus,
although this synchrony does not require simultaneous firings,
so-called synchrony never occurs if this synchrony does not
occur. Before we try to achieve this aim, we discuss two more
fundamental cases, that is, connected neurons without input
trains and a single neuron receiving periodic inputs.

In Sec. II, we apply the mean-field theory for the simplest
neural network without external inputs. We assume that this
network can be represented by a cluster consisting of only two
integrate-and-fire model neurons. This analysis clarifies that
the stronger synaptic connections enhance the shorter cycle
synchrony cycle of cluster neurons. In Sec. III, we consider
the cycle of synchrony when one periodic external input is
provided to a neuron. The result shows that the cycle of the
synchrony becomes longer as the cycle of external inputs
becomes longer. In Sec. IV, we describe that the network
receiving two different cycle inputs (which are supposed to
be bottom-up inputs and top-down inputs) shows the loss of
synchronies in certain conditions.

II. MEAN-FIELD THEORY WITH EFFECTIVE INPUTS

In this section, using our formulation, we discuss a
periodic synchronized firing of neurons located in the same
cortical region. At first, to simplify many neurons connected
complicatedly, we assume that two particular neurons i and
j with a synaptic connection from j to i represent “cluster
neurons.” The membrane potentials are denoted as Vi(t) and
Vj (t), respectively. The neuron j receives inputs from other
neurons located outside the cluster. The effective value (mean
value) of the inputs is assumed to be an “effective input” Ieff.
This approximation is illustrated in Fig. 1. After the firings
of neuron j , the neuron i receives the output of the neuron
j through the synaptic weight wij . Thus, we can obtain the
effective equations of the membrane potentials Vi(t) and Vj (t)
as follows:

τ
d

dt
Vj (t) = −Vj (t) + Ieff (1)

and

τ
d

dt
Vi(t) = −Vi(t) +

c∑
j=1

τwij

∑
k

δ
(
t − t kj

)
, (2)

where the parameters τ , c, and t kj denote the time constant,
the number of connections, and the kth firing time of neuron
j , respectively. Here, we assumed that Ieff is constant because
the number of inputs from outside of the cluster is so large that
the time average corresponds to the population average.

From Eq. (1), the membrane potential Vj (t) is obtained as

Vj (t) = Ieff(1 − e−t/τ ). (3)

Then we obtain the firing time tkj = kTj using the effective
input Ieff as

Tj = −τ log
Ieff − θ

Ieff
(4)

with the threshold θ . Here, for convenience of calculations,
we use a simple condition that the resting potential and the
reset potential after firing take the same value of 0. In our

FIG. 1. (Color online) We show the essential figure to clarify the
meaning of effective inputs. In our study, inputs from outside of the
cluster neurons i and j [whose membrane potentials are denoted as
Vi(t) and Vj (t)] are assumed to be the effective inputs Ieff. We focus
on the neurons i and j with Ieff. The self-consistency Eq. (7) requires
the correspondence between output signals of the neuron i (namely
Iout) and input signals to the neuron j (namely Ieff). Consequently,
the self-consistency requires the global transition symmetry of the
neural network. This approximation is part of the mean-field theory.

study, using the integrate-and-fire model, we assume that the
membrane potentials reset their potential Vi(t) and Vj (t) for
the reset potential V0 = 0 after firing immediately.

The time dependence of Vi(t) is derived from Eq. (2) under
the firing of the j -neuron satisfying Eq. (4) as follows:

Vi(t) = 1

τ
e−t/τ

∫ t

0
es/τ

c∑
j=1

τwij

∑
k

δ
(
s − t kj

)
ds

= W
1 − e−t/τ

1 − e−Tj /τ
, (5)
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where the parameter W = ∑
j wij means the total synaptic

weight. Then, we obtain the cycle-time Ti of the i-neuron’s
firings as

Ti = −τ log

[
1 − θ

W
(1 − e−Tj /τ )

]
. (6)

Now, we consider the self-consistency Ieff = Iout (the mean
output of the neuron i is denoted as Iout in Fig. 1),

Ieff = 1

T0

∫ T0

0
ds

c∑
j=1

τwij

∑
k

δ
(
s − t ki

)

� τ

T0

c∑
j=1

wij

T0/Ti∑
k=1

∫ T0

0
ds δ(s − kTi) = τ

Ti

W. (7)

This consistency assumes that the firings of neurons are
periodic and synchronized. Thus the value of Ieff should
indicate the mean value of the periodic inputs. The formula
of Ieff in Eq. (7) looks plausible because it corresponds to
the assumed mean value of inputs with periodicity in the
mean-field theory of previous studies [10–12]. We assumed
the hypothetical cycle time Ti of the effective inputs. Then,
if the periodic firings can occur, we can find the appropriate
cycle time Ti . But if there does not exist the cycle time Ti ,
the periodic firings cannot occur. This condition for the Ti is
expressed in the self-consistency Eq. (7).

From Eqs.(4), (6), and (7), we obtain the self-consistent
equation as

τ

T
(1 − e−T/τ ) =

(
θ

W

)2

, (8)

where we have redefined T = Ti . The cycle time T of
spontaneous firing of the cluster neurons is given as a solution
of Eq. (8). The function f (T/τ ) is defined as the left-hand side
of Eq. (8), namely f (T/τ ) = (τ/T )(1 − e−T/τ ). The function
f (T/τ ) can be expanded as

f (T/τ ) = τ

T
(1 − e−T/τ )

= τ

T

{
1 −

[
1 −

(
T

τ

)
+ 1

2

(
T

τ

)2

− · · ·
]}

= 1 − 1

2

(
T

τ

)
+ · · · , (9)

with respect to T/τ . Then, the function f (T/τ ) has the
asymptotic value 1 in the case of T → 0 (namely the frequency
ν = 1/T → ∞). Consequently, in the case of θ > W , there
does not exist the spontaneous firing. On the other hand,
in the case of θ < W , there does exist the spontaneous
firing. This result is supported by the following physical
phenomena, that is, the firing frequency of neurons is enhanced
by effective inputs (from neighbor neurons) exceeding the
threshold. Meanwhile the spontaneous firing does not occur
under the weak effective inputs.

III. A SINGLE NEURON FIRING WITH A PERIODIC
INPUT TRAIN

In this section, we consider the case of a single neuron
receiving a periodic input train. This simple example may be

useful to discuss the specific cases of the neural networks
including the connections and input trains. The membrane
potential Vi(t) of neuron i is characterized as follows:

τ
d

dt
Vi(t) = −Vi(t) + I (t), (10)

where the input train I (t) is denoted by

I (t) = τI0

∑
k: all past firings

δ(t − tk), tk = λ + kT in. (11)

Here the parameter T in means the cycle time of periodic input
trains and λ means a firing phase (time lag). λ is the initial
phase in a cycle so that the next firing time shifts linearly
with λ.

From Eqs. (10) and (11), the time dependence Vi(t) is
obtained as

Vi(t) = I0e
λ/τ e−t/τ − e−λ/τ

1 − eT in/τ
(t < Ti), (12)

where Ti denotes the firing cycle of the i-neuron. Then the
condition for the firing Vi(t) = θ (θ means the threshold) gives
the firing cycle T = Ti as

T = λ − τ log

[
1 + θ

I0
(1 − eT in/τ )

]
. (13)

The derivative dT /dT in is derived as

dT

dT in
= θeT in/τ

I0 + θ (1 − eT in/τ )
= 1

e(Tc−T in)/τ − 1
� τ

Tc − T in

(14)

for the condition Tc � T in, where Tc is defined as Tc =
τ log(1 + I0/θ ). Here the function T of T in is defined in
the region 0 < T in < Tc in Eq. (13), so that Eq. (14) shows
that the firing cycle T diverges exponentially with increase of
T in. From the above discussion, the firing cycle depends on
the cycle time of input trains as a monotonically increasing
function.

IV. LOSS OF SYNCHRONY WITH TWO
EXTERNAL INPUTS

In the previous discussions in Secs. II and III, the stronger
synaptic connections yield the synchrony with the shorter
cycle, while the longer cycle input train yields the longer cycle
synchrony. Thus, one can predict catastrophes of synchrony if
periodic spikes with a longer (or shorter) period are input to the
neurons with stronger (or weaker) synaptic weights. This is the
reason why the relationship between the synaptic connections
and the cycle of inputs under the condition of synchrony in the
neural networks is not so simple. In this section, we examine
the neural network receiving two external periodic inputs. To
clarify this condition and related phenomena analytically, we
apply the mean-field theory to the cluster neurons i and j in
the network with two external inputs, namely J1(t) and J2(t).
These two external inputs J1(t) and J2(t) have the independent
cycle T in

1 and T in
2 , respectively, and the time dependence of

these inputs is expressed as

Jl(t) = τJ0

∑
k

δ
(
t − (

λ + kT in
l

))
(l = 1,2). (15)
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Here J0 means the strength of inputs. In this study, we assume
that the two external inputs have common strength. These
input trains are constructed by independent Poisson processes,
whose mean interstimulus interval is λ. For the convenience
of analysis, these input trains are averaged over the period
from t = kT in

1 (or kT in
2 ) to t = (k + 1)T in

1 [or (k + 1)T in
2 ].

This averaging procedure does not lose the periodicity of input
trains.

These inputs are received by the cluster neurons i and j as
a total external input,

J (t) = pJ1(t) + (1 − p)J2(t). (16)

The parameter p denotes the rate of the input J1(t), which
implies the balance ratio (relative strength) of the two inputs.
For example, in the case of p = 0.5, both inputs J1(t) and J2(t)
have the same intensity of the input current. When p > 0.5,
J1(t) has a stronger intensity than J2(t).

From the above discussion, we obtain the effective equa-
tions of motion about the cluster neurons as follows:

τ
d

dt
Vj (t) = −Vj (t) + Ieff + J (t) (17)

and

τ
d

dt
Vi(t) = −Vi(t) +

∑
j

τwij

∑
tkj <t

δ
(
t − t kj

) + J (t). (18)

We assumed that Ieff is constant because a large number of
synaptic inputs to each neuron will cancel out the periodicity
of input signals except the external inputs. From Eq. (17), the
membrane potential Vj (t) is obtained as

Vj (t) = Ieff(1 − e−t/τ ) + 1

τ
e−t/τ

∫ t

0
J (s)es/τ ds (19)

with using the effective input Ieff. The integration shown in the
second term of Eq. (19) is performed as follows:

∫ t

0
J (s)es/τ ds = τpJ0

∑
tkj <t

∫ t

0
es/τ δ

(
s − (

λ + kT in
1

))
ds + τ (1 − p)J0

∑
tk

′
j <t

∫ t

0
es/τ δ

(
s − (

λ + k′T in
2

))
ds

= τpJ0

(t−λ)/τ∑
k=0

e(λ+kT in
1 )/τ + τ (1 − p)J0

(t−λ)/τ∑
k=0

e(λ+k′T in
2 )/τ = τpJ0e

λ/τ 1 − e(t−λ)/τ

1 − eT in
1 /τ

+ τ (1 − p)J0e
λ/τ 1 − e(t−λ)/τ

1 − eT in
2 /τ

.

(20)

Then the condition to determine the firing cycle Tj of the
neuron j is obtained as

θ = Ieff(1 − eTj /τ ) − J0
[
pg

(
T in

1

) + (1 − p)g
(
T in

2

)]
× (1 − e−(Tj −λ)/τ ) (21)

with the negative function g(t) = 1/(1 − et/τ ). The time
dependence of Vi(t) is derived from Eq. (18) as follows:

Vi(t) = W
1 − et/τ

1 − e−Tj /τ
+ 1

τ
e−t/τ

∫ t

0
J (s)es/τ ds. (22)

The time dependence of Vi(t) yields the condition to determine
the firing cycle Ti of the i-neuron as

θ = W
1 − e−Ti/τ

1 − e−Tj
− J0

[
pg

(
T in

1

) + (1 − p)g
(
T in

2

)]
× (1 − e−(Ti−λ)/τ ). (23)

From solving Eq. (21) with respect to Tj and inserting
into Eq. (23), when the cycle time T = Ti satisfies the
self-consistent condition (7), namely Ieff = τW/Ti , the cluster
neurons show the synchronized firings. The self-consistency
is transcribed in more detail as

1 = α(1 − e−x)
α/x − j

(
T in

1 ,T in
2

)
eλ/τ

1 + j
(
T in

1 ,T in
2

)
(1 − eλ/τ )

− j
(
T in

1 ,T in
2

)
(1 − eλ/τ−x), (24)

where α = W/θ , j (T in
1 ,T in

2 ) = [pg(T in
1 ) + (1 − p)g(T in

2 )]
J0/θ , and x = T/τ . These parameters are normalized by θ or

τ . The function j (T in
1 ,T in

2 ) takes a negative value for any T in
1

and T in
2 and tends to zero as T in

1 or T in
2 tends to infinity (Fig. 2).

The important parameters of input trains, namely the strength
of inputs J0 and the input balance p as well as T in

1 and T in
2 , are

included in the function j (T in
1 ,T in

2 ). Then the behavior of this
parameter expresses the property of input trains; therefore, we
treat the parameter j (T in

1 ,T in
2 ) as a continuous real number

defined in the region (−∞,0) for characterizing the input
trains. The parameter x in Eq. (24) corresponds to the cycle
time of synchrony of cluster neurons. Unfortunately, one

FIG. 2. (Color online) The parameter j (T in
1 ,T in

2 ) divided by J0/θ

is shown when p = 0.8. j (T in
1 ,T in

2 ) tends to zero as T in
1 or T in

2 tends
to infinity.
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FIG. 3. (Color online) The firing cycle of cluster neurons: The
firing cycle x ≡ T/τ is shown in the [α,j (T in

1 ,T in
2 )] space. The

large j (T in
1 ,T in

2 ) corresponds to the long cycle input(s) as is shown
in Fig. 2. Region 1 shows that the synchrony does not occur
because strong synaptic connections (large α) conflict with the
long cycle inputs [large j (T in

1 ,T in
2 )]. In region 2, the firing cycle

x diverges exponentially with an increase of j (T in
1 ,T in

2 ). Here
λ/τ = 1.3.

cannot solve the condition Eq. (24) rigorously with respect to
x. Therefore, we have solved it numerically as shown in Fig. 3.

As shown in Fig. 3, there are two typical anomalies of
synchronies where the value of x cannot exist. First, in the
region of larger α (stronger synaptic connections) and larger
j (T in

1 ,T in
2 ) (longer cycle of external inputs), the shorter cycle

synchrony enhanced by strong synaptic connections conflicts
with the longer cycle of external inputs. We call this region
“region 1.” Second, in the region of smaller α (weaker synaptic
connections) and larger j (T in

1 ,T in
2 ), the cycle time of the

synchrony increases exponentially with increasing cycle time
of inputs. We call this region “region 2.”

The limiting cases of Eq. (24) clarify “region 1” and “region
2” in Fig. 3. In the case of x → 0, Eq. (24) yields the relation

j
(
T in

1 ,T in
2

) = 1 − α

eλ/τ − 1
≡ h0(α,λ,τ ). (25)

On the other hand, in the case of x → ∞, Eq. (24) yields the
relation

j
(
T in

1 ,T in
2

) = − 2

2 + (α − 1)eλ/τ +
√

[4α + (α − 1)2eλ/τ ]eλ/τ

≡ h∞(α,λ,τ ). (26)

Then in region 1, the parameters j (T in
1 ,T in

2 ) and α satisfy the
inequality

j
(
T in

1 ,T in
2

)
> h0(α,λ,τ ), (27)

while in region 2 they satisfy the inequality

j
(
T in

1 ,T in
2

)
> h∞(α,λ,τ ). (28)

Using Eqs. (27) and (28), we obtain the phase diagram as
shown in Fig. 4. The phase boundaries are expressed by
Eqs. (25) and (26). As is shown in Fig. 4, the synchrony

FIG. 4. (Color online) Phase diagram of synchrony: The condi-
tion obtained in Eqs. (27) and (28) is illustrated. The horizontal axis
denotes the parameter α while the vertical axis denotes the parameter
j (T in

1 ,T in
2 ). Here λ/τ = 1.3. Regions 1 and 2 correspond to those in

Fig. 3. In region 1 the firing cycle vanishes, while the firing cycle
diverges in region 2.

occurs only in the outside of Region 1 ∪ Region 2. This
simple conditional equation can provide us with the feasibility
of synchrony. From the derivation of Eqs. (25) and (26), it
is clearly understood that there are two types of loss of the
synchrony, that is, the firing cycle vanishes (region 1) and
the firing cycle diverges (region 2). In the intersection region
of regions 1 and 2, either type of synchrony loss can occur,
which will be affected by the initial conditions, the boundary
conditions, noises, or other factors.

V. SUMMARY AND DISCUSSION

We have shown that the synchrony of neurons depends
on the conditions between the cycle times of inputs and the
amount of strength of the synaptic connections, and that the
synchrony collapses when they (the cycle time of inputs and
the amount of synaptic connections) do not satisfy the condi-
tion. To obtain the conditions for synchronized firings, we have
used the mean-field theory. The solution of the self-consistent
conditions corresponds to the cycle time of synchrony. When
the conditions are constructed by indeterminate equations,
such parameter regions show the loss of synchronies. As a
result, there are two critical cases for synchrony:

(i) When the synaptic connections are weaker enough
and the cycle times of external inputs are longer enough,
the frequency of synchronized firings becomes too small to
observe.

(ii) The conflicts between stronger synaptic connections
(which lead to the shorter cycle synchrony) and a longer cycle
of external inputs result in the loss of synchronized firings of
the cluster neurons.

The results mean that the synchronization in a population
of neurons will never occur when the parameters are in the
critical regions. From the viewpoint of information processing
in the brain, this discussion suggests that a cortical region
works when the synaptic structure matches the bottom-up
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and top-down signals. Generally, this mean-field theory is
applicable to many neuron models (for example, the Hodgkin-
Huxley model, as is suggested by Chen and Jasnow [17]).
Because of this universality of the mean-field theory, the same
results may be obtained from other neural network models.

In this study, we assume that a cluster of a number of
neurons can be stochastically represented as two neurons, as
shown in Fig. 1. If we assume three or more representative
neurons as the cluster, are the results in this study still avail-
able? There are two factors to affect the availability. First, they
may depend on the structure of synaptic connections between
the neurons. When the neurons are fully connected with each
other, the results will be similar because of homogeneity.
However, other cases with some neurons with heterogeneous
connections are too complicated to be analyzed by our method.
Secondly, when the ratio of the number of neurons to the
number of connections is larger, it becomes difficult for the
synchrony to occur under the same condition. This is because
the fluctuations of internal states of neurons become larger.
Consequently, our approximation is applicable when the ratio
of the number of neurons to the number of connections is not
so large and the connections are homogeneous.

Finally, we would like to discuss the correspondence
between the mean-field theory and the Bethe approximation

[35]. From the viewpoint of statistical mechanics, the Bethe
approximation has been introduced to analyze magnetic mate-
rials. It is very difficult to analyze the magnetization because
many spins interact with each other in the magnetic materials.
Bethe has introduced the effective theory to approximate in
order to simplify the systems. In the Bethe approximation, we
choose some spins from huge spins and call them a “cluster.”
Then we ignore the spins on the outside of the cluster in
spite of introducing the effective field interacting with the
boundary spins of the cluster. The intracluster interactions can
be analyzed rigorously since the cluster system is of finite size.
Here the effective fields are determined by self-consistency,
that is, the bulk system corresponds to the surface system.
While Bethe approximations are introduced in the equilibrium
systems, Chen and Jasnow or we used the mean-field theory
in the neural networks as a nonequilibrium system. However,
this mean-field theory will lead to appropriate results even in
the time-dependent systems as far as the effective input Ieff

is appropriate. As is also discussed in Sec. I, this mean-field
theory can treat the synaptic connections rigorously between
the cluster neurons. This is why it is useful to discuss the
effects of synaptic connections. Using this mean-field theory,
one may be able to clarify the other phenomena and the effects
of synaptic connections in the neural networks.

[1] G. L. Gerstein and B. Mandelbrot, Biophys. J. 4, 41 (1964).
[2] R. B. Stein, Biophys. J. 5, 173 (1965).
[3] R. B. Stein, Biophys. J. 7, 37 (1967).
[4] W. H. Calvin and C. F. Stevens, J. Neurophysiol. 31, 574 (1968).
[5] H. L. Bryant and J. P. Segundo, J. Physiol. 260, 279 (1976).
[6] Z. F. Mainen and T. J. Sejnowski, Science 268, 1503 (1995).
[7] D. H. Perkel, G. L. Gerstein, and G. P. Moore, Biophys. J. 7,

391 (1967).
[8] D. H. Johnson, J. Comput. Neurosci. 3, 275 (1996).
[9] A. N. Burkitt, Biol. Cybern. 95, 1 (2006).

[10] D. J. Amit and M. V. Tsodyks, Network 2, 259 (1991).
[11] D. J. Amit and N. Brunel, Cereb. Cortex 7, 237 (1997).
[12] N. Brunel, J. Comput. Neurosci. 8, 183 (2000).
[13] H. C. Tuckwell, Introduction to Theoretical Neurobiology

(Cambridge University Press, Cambridge, 1988).
[14] A. Einstein, Ann. Phys. (NY) 17, 549 (1905).
[15] H. Risken, The Fokker-Plank Equation, 2nd ed. (Springer,

New York, 1989).
[16] G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).
[17] C. C. Chen and D. Jasnow, Phys. Rev. E 81, 011907 (2010).
[18] M. Petrides, B. Alivisatos, A. C. Evans, and E. Meyer, Proc.

Natl. Acad. Sci. USA 90, 873 (1993).
[19] C. S. Carter, M. M. Botvinick, and J. D. Cohen, Rev. Neurosci.

10, 49 (1999).
[20] W. J. Gehring and R. T. Knight, Nat. Neurosci. 3, 516 (2000).
[21] R. Rodriguez, U. Kallenbach, W. Singer, and M. H. Munk,

J. Neurosci. 24, 10369 (2004).

[22] G. Buzsaki, Rhythms of the Brain (Oxford University Press,
Oxford, 2011).

[23] S. Ohara, T. Mima, K. Baba, A. Ikeda, T. Kunieda,
R. Matsumoto, J. Yamamoto, M. Matsuhashi, T. Nagamine,
K. Hirasawa, T. Hori, T. Mihara, N. Hashimoto, S. Salenius,
and H. Shibasaki, J. Neurosci. 21, 9377 (2001).

[24] C. M. Gray, P. König, A. K. Engel, and W. Singer, Nature
(London) 338, 334 (1989).

[25] D. Lee, J. Neurosci. 23, 6798 (2003).
[26] A. K. Engel, P. Fries, and W. Singer, Nat. Rev. Neurosci. 2, 704

(2001).
[27] P. Fries, Annu. Rev. Neurosci. 32, 209 (2009).
[28] P. R. Roelfsema, A. K. Engel, P. König, and W. Singer, Nature

(London) 385, 157 (1997).
[29] G. M. Shepherd, The Synaptic Organization of the Brain, 5th

ed. (Oxford University Press, Oxford, 2004).
[30] D. J. Felleman and D. C. van Essen, Cereb. Cortex 1, 1 (1991).
[31] J. M. Fuster, Physiology of Executive Functions: The Perception-

Action Cycle (Principles of Frontal Lobe Function), edited by
D. T. Stuss and R. T. Knight (Oxford University Press, Oxford,
2002).

[32] O. Araki, Lect. Notes Comput. Sci. 6443, 231 (2010).
[33] K. Kitano and T. Fukai, Learn. Mem. 11, 267 (2004).
[34] R. Hosaka, O. Araki, and T. Ikeguchi, Neural Comput. 20, 415

(2008).
[35] M. Suzuki, Coherent-Anomaly Method: Mean Field, Fluctua-

tions and Systematics (World Scientific, Singapore, 1995).

012713-6

http://dx.doi.org/10.1016/S0006-3495(64)86768-0
http://dx.doi.org/10.1016/S0006-3495(65)86709-1
http://dx.doi.org/10.1016/S0006-3495(67)86574-3
http://dx.doi.org/10.1126/science.7770778
http://dx.doi.org/10.1016/S0006-3495(67)86596-2
http://dx.doi.org/10.1016/S0006-3495(67)86596-2
http://dx.doi.org/10.1007/BF00161089
http://dx.doi.org/10.1007/s00422-006-0068-6
http://dx.doi.org/10.1088/0954-898X/2/3/003
http://dx.doi.org/10.1093/cercor/7.3.237
http://dx.doi.org/10.1023/A:1008925309027
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1103/PhysRev.36.823
http://dx.doi.org/10.1103/PhysRevE.81.011907
http://dx.doi.org/10.1073/pnas.90.3.873
http://dx.doi.org/10.1073/pnas.90.3.873
http://dx.doi.org/10.1038/74899
http://dx.doi.org/10.1523/JNEUROSCI.1839-04.2004
http://dx.doi.org/10.1038/338334a0
http://dx.doi.org/10.1038/338334a0
http://dx.doi.org/10.1038/35094565
http://dx.doi.org/10.1038/35094565
http://dx.doi.org/10.1146/annurev.neuro.051508.135603
http://dx.doi.org/10.1038/385157a0
http://dx.doi.org/10.1038/385157a0
http://dx.doi.org/10.1093/cercor/1.1.1-a
http://dx.doi.org/10.1007/978-3-642-17537-4_29
http://dx.doi.org/10.1101/lm.64904
http://dx.doi.org/10.1162/neco.2007.11-05-043
http://dx.doi.org/10.1162/neco.2007.11-05-043



