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Dynamical behaviors of the competitive Lotka-Volterra system even for 3 species are not fully understood.
In this paper, we study this problem from the perspective of the Lyapunov function. We construct explicitly the
Lyapunov function using three examples of the competitive Lotka-Volterra system for the whole state space: (1)
the general 2-species case, (2) a 3-species model, and (3) the model of May-Leonard. The basins of attraction for
these examples are demonstrated, including cases with bistability and cyclical behavior. The first two examples
are the generalized gradient system, where the energy dissipation may not follow the gradient of the Lyapunov
function. In addition, under a new type of stochastic interpretation, the Lyapunov function also leads to the
Boltzmann-Gibbs distribution on the final steady state when multiplicative noise is added.
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I. INTRODUCTION

Ever since the Lotka-Volterra system was proposed [1],
it has been applied in a variety of practical problems in
physics [2], chemistry [3], and mathematical ecology [4].
Recently, the lattice Lotka-Volterra model has been studied to
address the spontaneous formation of dynamical patterns [5],
the stability for the competition of two defensive alliances [6],
and the noise-guided evolution [7]. In chemical reactions,
the reversible Lotka-Volterra system with the oscillatory
dynamics has been reported [8,9]. In addition, in the stochastic
Lotka-Volterra system, coexistence or extinction [10–12]
and the stochastic resonance phenomenon [13] have been
analyzed. Although those problems have been well modeled
by the Lotka-Volterra-type system, the dynamical behaviors
of the competitive Lotka-Volterra system have not been fully
understood, even for the 3-species case [14–16].

To demonstrate the dynamical behaviors for the n-species
competitive Lotka-Volterra system, Hirsch has proved that any
trajectory will converge to an invariant surface, homeomorphic
to the (n − 1)-dimensional unit simplex in state space [17].
In the 3-species competitive case, following Hirsch’s general
result, Zeeman identified 33 stable equivalence classes, of
which only the classes 26–31 can have limit cycles [14]. Then,
Hofbauer and So conjectured that the number of limit cycles is
at most two [18]. However, three limit cycles were constructed
numerically in [19,20] and four in [15,16]. The number of
limit cycles has proven to be finite without a heteroclinic
polycycle [21]. Till now, however, the question of how many
limit cycles can appear in Zeeman’s six classes 26–31 remains
open [15,16].

Energy-like functions can demonstrate the number of
limit cycles by showing the basins of attraction, but no
satisfactory treatment on their construction for the competitive
Lotka-Volterra system has been given. Planck applied the
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Hamiltonian theory, however, to a limited parameter region
[22]. The split Lyapunov function has been used [23], but it
is not monotone along with all the trajectories in the state
space. Besides, the conventional Lyapunov function has been
constructed in the parameter region with one global stable
equilibrium [24,25]. Since it is usually difficult to construct
the Lyapunov function [26], this method has not been fully
explored to study the competitive Lotka-Volterra system.

Thus, a major question is whether the Lyapunov function
can be constructed for the competitive Lotka-Volterra system
beyond the global stable equilibrium case. The answer is
positive based on our work in this paper. We construct
the Lyapunov function for three competitive Lotka-Volterra
systems and analyze their dynamics in the state space. The
first example is the general 2-species case [24], the second
one is a 3-species system [24], and the third one is the
model of May-Leonard [27]. The dynamics include cases with
bistability and cyclical behavior.

Then another question is what dynamical insights the
Lyapunov function can provide for physics. First, based on the
Lyapunov function and the corresponding dynamical matrices
constructed, we define the generalized gradient system, where
the energy dissipation may not follow the gradient of the
Lyapunov function. Similar behavior of trajectories has been
observed in the reversible Lotka-Volterra system [8,9], and
such system has also been reported in real physical situations
[28]. Second, in stochastic sense when multiplicative noise is
added, the Lyapunov function leads to the Boltzmann-Gibbs
distribution under a new type of stochastic interpretation,
which is called A-type integration [29]. Thus, the basins of
attraction indicated by the Lyapunov function are the most
probable states for the corresponding stochastic systems.

This paper is organized as follows. In Sec. II, we analyze
dynamics of three competitive Lotka-Volterra systems with
the Lyapunov function. In Sec. III, we define the generalized
gradient system and discuss its physical implications. In
Sec. IV, we have a discussion on the meaning of the Lyapunov
function in stochastic sense. In Sec. V, we summarize our
work. In the appendixes, we briefly review the definition of
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the Lyapunov function. We then show the construction of the
Lyapunov function for the three examples, and give detailed
calculations on other dynamical parts in our framework.

II. DYNAMICAL BEHAVIORS DETERMINED BY THE
LYAPUNOV FUNCTION

The competitive Lotka-Volterra system for n species is
given by the following ordinary differential equations:

Definition 1 (competitive Lotka-Volterra system).

ẋi = xi

(
bi −

n∑
j=1

aij xj

)
, i = 1, . . . ,n, (1)

where each xi (i = 1, . . . ,n) represents the population of
one species and bi,aij (i = 1, . . . ,n; j = 1, . . . ,n) are con-
stants depending on the environment. The state space of
system (1) is represented by the nonnegative vectors Rn

+ =
{(x1, . . . ,xn) ∈ Rn|xi � 0,i = 1, . . . ,n}. When bi > 0,aij >

0 (i = 1, . . . ,n), it is the competitive Lotka-Volterra system.

A. The general 2-species case

Example 1. The general 2-species competitive Lotka-
Volterra system is given by

ẋ1 = x1(b1 − x1 − αx2), ẋ2 = x2(b2 − βx1 − x2), (2)

where b1, b2, α, β are nonnegative constants [24]. By setting
ẋ1 = ẋ2 = 0, four nonnegative equilibriums are derived: (1)
a positive one E++ = (b1 − αb2,b2 − βb1)/(1 − αβ) existing
when α < b1/b2, β < b2/b1 or α > b1/b2, β > b2/b1; (2)
E+0 = (b1,0); (3) E0+ = (0,b2); and (4) E00 = (0,0). Here
the subscript + denotes that the population of the species is
positive and the subscript 0 means the species dies out.

Based on the construction in the appendixes, the Lyapunov
function of the system is

φ = β

2
x2

1 + α

2
x2

2 − βb1x1 − αb2x2 + αβx1x2. (3)

We observe from the Hessian matrix of the Lyapunov function
at E++ that the dynamics can be classified into four different
parameter regions. In detail, as ∂2φ

∂x2
1

= β, ∂2φ

∂x2
2

= α, ∂2φ

∂x1∂x2
=

∂2φ

∂x2∂x1
= αβ, we find the determinant of the Hessian matrix:

�
.= ∂2φ

∂x2
1

∂2φ

∂x2
2

−
(

∂2φ

∂x1∂x2

)2

= αβ(1 − αβ). (4)

Thus, when E++ exists, the determinant of the Hessian matrix
can be divided into two cases (� > 0 and � < 0). When E++
does not exist, we have the third case; the remaining one is the
degenerate case. We then give detailed analysis on dynamics
in each case:

(a) Stable coexistence case: α < b1/b2, β < b2/b1.
� > 0 and ∂2φ

∂x2
1

> 0 indicate that E++ is a globally stable
equilibrium with the minimum value of the Lyapunov function.

(b) Bistable case: α > b1/b2, β > b2/b1.
� < 0 indicates that E++ is a saddle point. As the system

is bounded in the first quadrant, it has two stable equilibriums
E+0 and E0+ on the boundary.

(c) One survival case: α < b1/b2, β > b2/b1 or α > b1/b2,
β < b2/b1.

It has one globally stable equilibrium on an axis of
coordinate, E+0 appears when α < b1/b2, β > b2/b1 or E0+
appears when α > b1/b2, β < b2/b1. We just show the case
where the species x1 survives in Fig. 1, i.e., when α < b1/b2,
β > b2/b1. The case where the species x2 survives can be
shown similarly.

(d) Degenerate case: α = b1/b2, β = b2/b1.
The Lyapunov function has the minimum value along with

the line:
√

b1b2 − √
b2/b1x1 − √

b1/b2x2 = 0 as in this case

φ = 1
2 (

√
b1b2 − √

b2/b1x1 − √
b1/b2x2)2 − b1b2. (5)

Each trajectory will converge to one of the points on the line,
depending on the initial value.

Two remarks are made here:
(1) Our result on the dynamics of the system is consistent

with the stability analysis near equilibriums [24]. Visualization
with the landscape of the Lyapunov function (Fig. 1) also
provides a clear observation on dynamics in each case above
separately. Saddle-node bifurcation can be observed from this
landscape. The bifurcation happens from the case (a) to the
case (b) and the degenerate case (d) has the minimum value
on a line.

(2) The Lyapunov function is constructed uniformly for the
whole parameter space in this paper and thus can provide
dynamics for any perturbation on the parameters. Zeeman used
the Lyapunov function to prove that the stable nullcline classes
coincide with the stable topological classes in this system [14].
However, we show here that the dynamics of the system can
directly be determined by the Lyapunov function alone.

B. A 3-species model

Example 2. This 3-species competitive Lotka-Volterra
system is given by [24]

ẋ1 = x1(1 − x1 − αx2),

ẋ2 = x2(1 − βx1 − x2 − βx3), (6)

ẋ3 = x3(1 − αx2 − x3),

where α,β are nonnegative coefficients. By setting ẋ1 = ẋ2 =
ẋ3 = 0, nonnegative equilibriums are derived: (1) a posi-
tive one E+++ = (1 − α,1 − 2β,1 − α)/(1 − 2αβ) existing
when (1 − α)/(1 − 2αβ) > 0 and (1 − 2β)/(1 − 2αβ) > 0;
(2) E+0+ = (1,0,1); (3) E0+0 = (0,1,0); and (4) E000 =
(0,0,0).

Based on the construction in the appendixes, the Lyapunov
function is

φ = β

2

(
x2

1 + x2
3

) + α

2
x2

2 + αβ(x1x2 + x2x3)

−β(x1 + x3) − αx2. (7)

With the Lyapunov function constructed globally on R3
+,

the classified stability analysis near equilibriums by [24] can
now be unified. Besides, when α = 1 and β = 1/2,

φ = 1
4 [(x1 + x2 − 1)2 + (x2 + x3 − 1)2 − 2] (8)

indicates that in the degenerate case the Lyapunov function of
the system has the minimum value on the intersection of the
surfaces x1 + x2 − 1 = 0 and x2 + x3 − 1 = 0.
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FIG. 1. (Color online) The Lyapunov function of example 1 for the various cases: (a) α = β = 1
2 , b1 = b2 = 1: stable coexistence case,

where E++ is a globally stable equilibrium; (b) α = β = 2, b1 = b2 = 2: bistable case, where E++ is a saddle point and E+0, E0+ are two stable
equilibriums; (c) α = 1

2 , β = 2, b1 = b2 = 1: one survival case, where E+0 is a globally stable equilibrium; and (d) α = β = b1 = b2 = 1:
degenerate case, where the Lyapunov function has the minimum value along with a line.

C. The model of May-Leonard

Example 3. May and Leonard studied a 3-species competi-
tive Lotka-Volterra system [27]:

ẋ1 = x1(1 − x1 − αx2 − βx3),

ẋ2 = x2(1 − βx1 − x2 − αx3), (9)

ẋ3 = x3(1 − αx1 − βx2 − x3),

where α,β are nonnegative coefficients. The possible equilib-
riums contain (1) (0,0,0); (2) three single-populations survive
(1,0,0),(0,1,0),(0,0,1); (3) three two-population solutions of
the form (1−α,1−β,0)

1−αβ
; and (4) a three-population survives (1,1,1)

1+α+β
.

For convenience, let us introduce some new variables: γ =
α + β − 2, P = x1x2x3, and O = x1 + x2 + x3. Then

Ṗ = P [3(1 − O) − γO] (10)

and

Ȯ = O(1 − O) − γ (x1x2 + x2x3 + x3x1), (11)

where Ṗ and Ȯ denote the Lie derivatives (Ṗ = ∇P · ẋ) of P

and O, respectively.

Then the Lyapunov function is constructed in two parameter
regions separately:

1. When γ = 0:

φ = 3(x1 + x2 + x3) − ln(x1x2x3). (12)

Thus

φ̇ = − Ṗ

P
+ 3Ȯ = −3(1 − O)2 � 0. (13)

φ̇ = 0 only when O − 1 = 0, i.e., all the trajectories converge
to the plane O = 1.

2. When γ �= 0:

φ = γ
P

O3
, (14)

and its Lie derivative

φ̇ = γ ṖO−3ȮP
O4 � 0. (15)

φ̇ = 0 can happen at a point on the line x1 = x2 = x3 or in the
set (x1,x2,x3)|P = 0.

With the Lyapunov function constructed, we discuss the
dynamics in the classified parameter space of the system here.
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FIG. 2. (Color online) The Lyapunov function of example 3 on the plane O = 1. (a) When γ = 0, the limit set is the intersection of the
hyperboloid that P equals a constant and the plane O = 1, where the system has Hamiltonian structure. (b) When γ = −0.1 < 0, the system
has a global stable equilibrium on the line x1 = x2 = x3. (c) When γ = 0.1 > 0, the limit set is (x1,x2,x3)|P = 0,O = 1.

(a) When γ = 0:
As φ̇ = 0 only on the plane O = 1, all the trajectories will

converge to this plane. Besides, on this plane, the value of
the Lyapunov function φ = 3 + ln P will be a constant, and
thus the value of P will be a constant for each trajectory.
This means that the limit set for any initial point will be the
intersection of the plane O = 1 and the hyperboloid that P

equals to a constant, which is a cycle on the plane. Based
on the calculations in the appendixes, the matrices S and T

indicate that the system has Hamiltonian structure on the plane.
(b) When γ < 0:
As φ = γ P

O3 is nonpositive now, the minimum value of
φ will not be zero if its initial value is not. Thus, in order
to minimize the value of the Lyapunov function, all the
trajectories will converge to one point on the line x1 = x2 = x3.
Therefore, this case has a global stable equilibrium.

(c) When γ > 0:
As φ = γ P

O3 is nonnegative now, the minimum value of
φ will be zero. That is, all the trajectories will converge
to the set (x1,x2,x3)|P = 0. In the neighborhood of P = 0,
the terms of order x1x2, etc., in Ȯ asymptotically make a
negligible contribution [27]. Thus Ȯ = O(1 − O) leads to
O → 1 in the end. Finally, the limit set in this case is the set
(x1,x2,x3)|P = 0,O = 1.

Two remarks are made here:
(1) Our result is consistent with that in [27]. Furthermore,

we give a full description on dynamics for the whole state space
with the Lyapunov function. The landscape of the Lyapunov
function on the plane O = 1 (Fig. 2) gives a direct observation
on dynamics: (1) When γ = 0, Fig. 2(a) shows that the system
has Hamiltonian structure; (2) when γ < 0, Fig. 2(b) shows
that the system has a global stable equilibrium; and (3) when
γ > 0, Fig. 2(c) shows that the limit set of the system is
(x1,x2,x3)|P = 0,O = 1.

(2) Our construction is for the whole parameter space
and we provide an explicit method to find this Lyapunov
function compared to that in [30,31]. Besides, Chi studied
the asymmetric May-Leonard system [32]. Our construction
method here may be generalized to their system. Then the limit
cycle problem for the 3-species competitive Lotka-Volterra
system [14] can be solved.

III. GENERALIZED GRADIENT SYSTEM

In this section, we define the generalized gradient system,
as a natural generalization to the typical gradient system. The
major difference is that the descending path of a generalized
gradient system may not follow the gradient of the Lyapunov
function. This property is similar to the trajectories’ behavior
of the system in [8,9]. In other words, the gradient of the
Lyapunov function is anisotropic. Such anisotropic system
has been observed in real physical systems, such as Fourier’s
equation [28]. Given definition, we further show that the
2-species system (2) and the 3-species system (6) discussed
above meet the definition, while the model of May-Leonard
does not. We will also give a linear generalized gradient
system.

First of all, we need to briefly introduce our dynamical
framework. It was recently discovered during the study on
the stability problem of a genetic switch [33,34] and has
been found very useful in physics and biology [35,36]. The
key result of the framework is a transformation from the
n-dimensional smooth dynamical system

ẋ = f(x) (16)

to the vector differential equation

[S(x) + T (x)]ẋ = −∇φ(x). (17)

Here φ is a scalar function, the Lyapunov function. The matrix
S is a semipositive definite and symmetric matrix. T is an
antisymmetric matrix.

Symmetrically, if (S + T ) is nonsingular, Eq. (17) can be
rewritten as a reverse form

ẋ = −[D(x) + Q(x)]∇φ(x) , (18)

where D is a semipositive definite and symmetric matrix and
Q is an antisymmetric matrix.

From a physical point of view, the Lyapunov function φ is
a potential function [37]. The matrix S can be explained as a
frictional force indicating dissipation of the potential function,
and T as a Lorentz force. The symbol D is the diffusion matrix
indicating the random driving force; therefore for deterministic
systems, D is free to be chosen.
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In this decomposition of the dynamical system, S can be
considered as a gradient part and T as a rotational part. When
S = 0, it is a conserved system with first integral. If T is a
scalar matrix at the same time, it is a Hamiltonian system
where the trajectory would be a contour along the landscape
of the Lyapunov function. When T = 0, it is a generalized
gradient system defined below. Thus both S and T can provide
dynamical information for a given system.

Next, we define the generalized gradient system:
Definition 2 (generalized gradient system). A generalized

gradient system on R
n is a dynamical system of the form

ẋ = −D(x)∇φ(x), (19)

where φ : R
n �→ R is a continuous differentiable scalar func-

tion and D(x) is a semipositive definite and symmetric matrix.
By definition, when D is the product of a nonzero constant

and the identity matrix, it degenerates to the classical gradient
system [38].

A. The three competitive Lotka-Volterra systems

For the system (2), it is not a typical gradient system as the
curl of the vector field ∇ × ẋ = αx1 − βx2 �= 0. We calculate
the matrices:

S =
(

β/x1 0

0 α/x2

)
, T = 0,

D =
(

x1/β 0

0 x2/α

)
, Q = 0.

The matrix D being semipositive definite and symmetric and
T = 0 indicate that the system (2) is a generalized gradient
system with zero rotational part. Besides, S is singular only
on the coordinate axis in this system. This means that the
dissipation is infinite and thus the trajectory will stay on the
axis once reaching it and finally approach the equilibrium
E+0 = (b1,0) or E0+ = (0,b2).

For the system (6), the matrices are

S =

⎛⎜⎝β/x1 0 0

0 α/x2 0

0 0 β/x3

⎞⎟⎠ , T = 0,

D =

⎛⎜⎝ x1/β 0 0

0 x2/α 0

0 0 x3/β

⎞⎟⎠ , Q = 0.

As T = 0, the system does not have a trajectory contouring
along the landscape of the Lyapunov function.

For the model of May-Leonard, it is not a generalized
gradient system as the matrix T �= 0. The detailed calculations
are in the appendixes.

B. The linear cases

A linear autonomous dynamical system is given by the
following ordinary differential equations:

ẋ = Fx, (20)

where x = (x1, . . . ,xn) with x1, . . . ,xn the n Cartesian coordi-
nates of the state space, ẋ = dx/dt , and F a constant matrix. To

ensure the independence of all the state variables, we require
the determinant of the F matrix to be finite: det(F ) �= 0.

To illustrate the coherence and generality of the generalized
gradient system in the linear cases, we first mention that a linear
system (20) is a gradient system ẋ = −∇φ if and only if its F

matrix is symmetric:
(i) A gradient system ẋ = −∇φ has ∂φ/∂xi =

−�n
j=1Fijxj ; then ∇ × ∇φ = 0 leads to the F matrix

being symmetric.
(ii) If a linear system (20) has a symmetric F matrix, then

by setting ∂φ/∂xi = −�n
j=1Fijxj , the solution of φ exists, and

we can rewrite (20) as ẋ = −∇φ.
But a linear system (20) can be a generalized gradient

system when the F matrix is asymmetric. Such systems have
nonzero curl; that is, ∇ × ẋ �= 0. We give a 2-dimension linear
generalized gradient system in the following.

Example 4. This example is given by [38]:(
ẋ1

ẋ2

)
=

(
0 3

1 −2

) (
x1

x2

)
. (21)

We set a Lyapunov function to be φ = x2
2 − x1x2 as its Lie

derivative

φ̇ = −3x2
2 − (x1 − 2x2)2 � 0.

Then the system (21) can be rewritten as(
ẋ1

ẋ2

)
= −

(
3 0

0 1

) (
∂φ

∂x1

∂φ

∂x2

)
. (22)

Therefore, the original system (21) is a generalized gradient
system by definition, but not a gradient system as its F matrix
is asymmetric.

IV. DISCUSSION IN STOCHASTIC SENSE

In this section, we discuss in the stochastic sense the
implications obtained from the Lyapunov function for the
three competitive Lotka-Volterra systems. We consider the
deterministic dynamical system added with a multiplicative
noise:

ẋ = f(x) + ζ (x,t). (23)

According to the recent explorations of stochastic differential
equations, a generalized form of Eq. (17) is provided [34]:

[S(x) + T (x)]ẋ = −∇φ(x) + ξ (x,t). (24)

The Lyapunov function φ leads to the Boltzmann-Gibbs
distribution on the final steady state of the stochastic process
under A-type stochastic calculus [29,34]:

ρ(x,t → ∞) ∝ exp

{
− φ(x)

ε

}
, (25)

where ρ is the probability density function and ε measures the
strength of the noise.

Therefore, the stable equilibriums of the deterministic
system, for example, are locally most probable states for
the corresponding stochastic process. This correspondence,
however, cannot be kept when Itô or Stratonovich integration
is applied. A numerical example demonstrates this exact
correspondence between the deterministic dynamics and the
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steady state distribution under the A-type stochastic calculus
[29]. What is more interesting is that a recent experiment on
a one-dimensional Brownian particle near a wall subjected to
gravitational and electrostatic forces suggested that the A-type
integration is consistent with the experimental data [39], where
Itô’s and Stratonovich’s fail.

For the bistable case of the 2-species competitive Lotka-
Volterra system with a multiplicative noise, the Lyapunov
function enables a straightforward calculation of the transition
probability from one stable equilibrium to another (through
the difference of the Lyapunov function between the stable
equilibrium and the saddle point). For Itô or Stratonovich
integrations, however, this is not direct and can even be
impossible, because the original stable equilibriums do not
correspond to the most probable states for the long-time
sampling distribution [29].

When it comes to the model of May-Leonard, the system
can have a cycle as its limit set when the parameter γ > 0.
Thus, when added with a multiplicative noise, the system has
a final distribution with cyclical most probable states indicated
by the Lyapunov function. Besides, the calculations in the
appendixes show that the matrix T does not equal to zero,
which implies that the corresponding stochastic system is not
detail balanced [29].

V. CONCLUSION

We have demonstrated that the Lyapunov function can be
constructed in general 2-species and two 3-species competitive
Lotka-Volterra systems. For each example, we have shown the
basins of attraction for the whole state space by the Lyapunov
function, including cases with bistability and cyclical behavior.
Besides, we have noticed that the construction method used
in the model of May-Leonard may be generalized to the
asymmetric May-Leonard system. Thus our method can be
helpful to solve the limit cycle problems in the general
3-species competitive Lotka-Volterra system.

We have defined the generalized gradient system and
discussed its coherence and generality with the classical
gradient system. Note that in the generalized gradient system,
the trajectory may not follow the gradient of the Lyapunov
function. Thus, our dynamical construction provides an expla-
nation to the observation that “the descending path of a system
does not follow the gradient of the free energy function” [8,9].

We have also demonstrated that the Lyapunov function
leads to the Boltzmann-Gibbs distribution on the final steady
state under A-type stochastic interpretation. Thus, for the
bistable case of our model added with a multiplicative noise,
the transition probability between two stable equilibriums can
be calculated directly, which is useful in many applications.
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APPENDIX A: THE LYAPUNOV FUNCTION

The conventional Lyapunov function for a given dynamical
system (16) is defined as follows:

Definition 3 (conventional Lyapunov function [38]). Let
L : O → R be a C1 function, where O is an open set in R

n. L
is a conventional Lyapunov function of the system (16) on O
if

(1) for a specified equilibrium x∗ in O, L(x∗) = 0 and
L(x) > 0 when x �= x∗;

(2) L̇(x) = dL
dt

|x � 0 for all x ∈ O.
LaSalle has extended the conventional Lyapunov function

to include stable region by abandoning the positive definite
requirement, but his generalization is too rough to lose stability
information inside the stable region.

Definition 4 (LaSalle’s Lyapunov function [40]). Let L :
O → R be a C1 function, where O is an open set in R

n.
Function L is a LaSalle’s Lyapunov function of the system
(16) on O if L̇(x) = dL

dt
|x � 0 for all x ∈ O.

Following the Lyapunov function used in [34,37], here we
give a more precise definition on the Lyapunov function:

Definition 5 (Lyapunov function). Let φ : R
n �→ R be a C1

function. Function φ is a Lyapunov function of the system (16)
if φ̇(x) = dφ

dt
|x � 0 for all x ∈ R

n and φ̇(x) = 0 only when x
belongs to the union of the ω-limit sets ∪s∈Rnω(s).

APPENDIX B: CONSTRUCTION OF
THE LYAPUNOV FUNCTION

For the general 2-species competitive Lotka-Volterra sys-
tem (2), the idea is as follows: Assume there is a Lyapunov
function φ and its partial derivative is given by(

∂φ

∂x1

∂φ

∂x2

)
.= −

(
A11(x1,x2) A12(x1,x2)

A21(x1,x2) A22(x1,x2)

)(
ẋ1

ẋ2

)
,

where A11(x1,x2), A12(x1,x2), A21(x1,x2), A22(x1,x2) are
undetermined coefficients. Our aim is to choose proper
coefficients so that (1) ∇ × ∇φ = 0 and (2) φ̇ � 0, i.e., the
Lie derivative of φ decreasing along with trajectories.

We discover that A11(x1,x2) = β/x1, A12(x1,x2) = 0,
A21(x1,x2) = 0, A22(x1,x2) = α/x2 is a proper setting. Thus
we get

∂φ

∂x1
= −β(b1 − x1 − αx2),

∂φ

∂x2
= −α(b2 − βx1 − x2).

(B1)

With direct calculation, ∇ × ∇φ = 0 and

φ̇ = ∂φ

∂x1
ẋ1 + ∂φ

∂x2
ẋ2

= −βx1(b1 − x1 − αx2)2 − αx2(b2 − βx1 − x2)2 � 0,

as x1 and x2 are all nonnegative population species and β

and α are all nonnegative constants. φ̇(x) = 0 happens only at
x ∈ ∪s∈R

2+ω(s), where ω(s) denotes the ω-limit set [38]. Thus,
we can get the Lyapunov function by integrating Eq. (B1).

Here we mention that the choice on the coefficients
A11(x1,x2), A12(x1,x2), A21(x1,x2), A22(x1,x2) is not unique.
Our choice is straightforward and meets the requirements.
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For the 3-species model (6), the construction method is
the same as that for the general 2-species competitive Lotka-
Volterra system, because both are the generalized gradient sys-
tem. We choose the corresponding undetermined matrix to be⎛⎝β/x1 0 0

0 α/x2 0
0 0 β/x3

⎞⎠ ;

then
∂φ

∂x1
= −β(1 − x1 − αx2),

∂φ

∂x2
= −α(1 − βx1 − x2 − βx3), (B2)

∂φ

∂x3
= −β(1 − αx2 − x3).

Thus ∇ × ∇φ = 0 and the Lie derivative of φ is

φ̇ = −βx1(1 − x1 − αx2)2 − αx2(1 − βx1 − x2 − βx3)2

−βx3(1 − αx2 − x3)2 � 0,

as x1,x2, and x3 are all nonnegative population species and β

and α are all nonnegative constants. φ̇(x) = 0 happens only
at x ∈ ∪s∈R

3+ω(s). We can construct the Lyapunov function by
integrating Eq. (B2).

For the model of May-Leonard, we find that this model is
not the generalized gradient system, and thus the construction
method above cannot be applied here. We give another method
to construct the Lyapunov function in the following.

For convenience, let us again write the variables defined
before: γ = α + β − 2, P = x1x2x3, and O = x1 + x2 + x3.
Then

Ṗ = ẋ1x2x3 + x1ẋ2x3 + x1x2ẋ3 = P [3 − (1 + α + β)O]

= P [3 − (3 + γ )O] = P [3(1 − O) − γO],

and

Ȯ = ẋ1 + ẋ2 + ẋ3

= O − [
x2

1 + x2
2 + x2

3 + (α + β)(x1x2 + x2x3 + x3x1)
]

= O(1 − O) − γ (x1x2 + x2x3 + x3x1).

Next, we construct the Lyapunov function in two different
parameter regions: (i) γ = 0 and (ii) γ �= 0.

(i) When γ = 0:
Noting that Ṗ = 3P (1 − O) and Ȯ = O(1 − O), thus

− Ṗ

P
+ 3Ȯ = −3(1 − O)2 � 0. (B3)

Therefore, if we can construct a function whose Lie derivative
is −Ṗ /P + 3Ȯ, then it is a Lyapunov function. This can
be done by simply integrating −Ṗ /P + 3Ȯ and we get a
Lyapunov function

φ = 3O − ln P = 3(x1 + x2 + x3) − ln(x1x2x3). (B4)

(ii) When γ �= 0:Noting that Ȯ = O(1 − O) − γ (x1x2 +
x2x3 + x3x1) and Ṗ = P [3(1 − O) − γO], thus

γ [ṖO − 3ȮP ]

= γ [3PO(1 − O) − γPO2 − 3PO(1 − O)

+ 3γP (x1x2 + x2x3 + x3x1)]

= −γ 2P [O2 − 3(x1x2 + x2x3 + x3x1)]

= −γ 2P
[
x2

1 + x2
2 + x2

3 − (x1x2 + x2x3 + x3x1)
]

= −γ 2P

2
[(x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2] � 0.

Therefore, we need to find a function whose Lie derivative is
γ [ṖO − 3ȮP ]. We notice that we can not integrate it directly;
however, we find out that the function

φ = γ
P

O3
(B5)

has the Lie derivative

φ̇ = γ
ṖO − 3ȮP

O4
� 0. (B6)

Thus it is a Lyapunov function.

APPENDIX C: MATRICES S AND T FOR THE MODEL OF
MAY-LEONARD

According to [37], if the Lyapunov function has been
constructed for a system, the other dynamical parts can be
obtained as

S = −∇φ · f
f · f

I, T = −∇φ × f
f · f

. (C1)

The corresponding explicit expression of the diffusion matrix
D and the antisymmetric matrix Q can be provided as well:

D = −
[

f · f
∇φ · f

I + (∇φ × f)2

(∇φ · f)(∇φ · ∇φ)

]
, Q = ∇φ × f

∇φ · ∇φ
.

(C2)

Then, we calculate S and T by Eq. (C1) for the model
of the May-Leonard system. For convenience, let us list the
Lyapunov functions again:

(i) When γ = 0:

φ = 3O − ln P = 3(x1 + x2 + x3) − ln(x1x2x3).

(ii) When γ �= 0:

φ = γ
P

O3
= γ

x1x2x3

(x1 + x2 + x3)3
.

Then we do calculations separately for these two cases.
(i) When γ = 0:
As

∂φ

∂x1
= 3x1 − 1

x1
,

∂φ

∂x2
= 3x2 − 1

x2
,

∂φ

∂x3
= 3x3 − 1

x3
, (C3)

S = −∇φ · f
f · f

I = 3[1 − (x1 + x2 + x3)]2

ẋ2
1 + ẋ2

2 + ẋ2
3

I. (C4)

Notice S is zero matrix on the plane O = 1, and thus the
system is conserved.

As for T :

T = −∇φ × f
f · f

= −
( 3xi−1

xi
ẋj − 3xj −1

xj
ẋi

)
3×3

ẋ2
1 + ẋ2

2 + ẋ2
3

. (C5)

Since T is antisymmetric, we just need to calculate the
elements T12, T13, and T23 of the above 3 × 3 matrix. As we
have proven all the trajectories will converge to the plane
O = 1, we calculate the elements on the plane below. We first
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calculate T12:

T12 = 3x1 − 1

x1
ẋ2 − 3x2 − 1

x2
ẋ1

= 3x1 − 1

x1
(1 − βx1 − x2 − αx3)x2

− 3x2 − 1

x2
(1 − x1 − αx2 − βx3)x1. (C6)

We notice that 1 − α = −(1 − β) = β−α

2 in the case of γ = 0.
Thus we have

T12 = β − α

2

{
x2

x1
[(x1 − x2) + (x1 − x3)](x3 − x1)

+ x1

x2
[(x2 − x1) + (x2 − x3)](x3 − x2)

}
. (C7)

We calculate T13 and T23 similarly:

T13 = 3x1 − 1

x1
ẋ3 − 3x3 − 1

x3
ẋ1

= 3x1 − 1

x1
(1 − αx1 − βx2 − x3)x3

− 3x3 − 1

x3
(1 − x1 − αx2 − βx3)x1

= β − α

2

{
x3

x1
[(x1 − x2) + (x1 − x3)](x1 − x2)

+ x1

x3
[(x3 − x1) + (x3 − x2)](x2 − x3)

}
. (C8)

T23 = 3x2 − 1

x2
ẋ3 − 3x3 − 1

x3
ẋ2

= 3x2 − 1

x2
(1 − αx1 − βx2 − x3)x3

− 3x3 − 1

x3
(1 − βx1 − x2 − αx3)x2

= β − α

2

{
x3

x2
[(x2 − x1) + (x2 − x3)](x1 − x2)

+ x2

x3
[(x3 − x1) + (x3 − x2)](x3 − x1)

}
. (C9)

Thus we obtain each element of matrix T on the plane O = 1.
(ii) When γ �= 0:
As

∂φ

∂x1
= γ

P

O4
[x2x3(x1 + x2 + x3) − 3x1x2x3],

∂φ

∂x2
= γ

P

O4
[x1x3(x1 + x2 + x3) − 3x1x2x3], (C10)

∂φ

∂x3
= γ

P

O4
[x1x2(x1 + x2 + x3) − 3x1x2x3],

S = −∇φ · f
f · f

I

=
γ 2P

2O4 [(x1 − x2)2 + (x2 − x3)2 + (x3 − x2)2]

ẋ2
1 + ẋ2

2 + ẋ2
3

I. (C11)

Since on the plane O = 1, S is not zero matrix except on
the limit set (x1,x2,x3)|P = 0,O = 1. Thus the system is
dissipative except on the limit set.

As for T :

T = −∇φ × f
f · f

= −
γ P 2

O4

(
O−3xi

xi
ẋj − O−3xj

xj
ẋi

)
3×3

ẋ2
1 + ẋ2

2 + ẋ2
3

. (C12)

Again, as all the trajectories will converge to the plane O = 1,
we just calculate the elements of the above 3 × 3 matrix on
the plane:

T̃ij = 1 − 3xi

xi

ẋj − 1 − 3xj

xj

ẋi . (C13)

Here we use T̃ij to denote the matrix elements so that they can
be distinguished with the matrix elements Tij in the case of γ =
0. Since 1 − α = β−α−γ

2 and 1 − β = − β−α+γ

2 in the case of
γ �= 0, we get T̃12, T̃13, and T̃23 with similar calculations:

T̃12 = x1

x2
[(x2 − x1) + (x2 − x3)][(1 − α)x2 + (1 − β)x3]

− x2

x1
[(x1 − x2) + (x1 − x3)][(1 − α)x3 + (1 − β)x1].

(C14)

T̃13 = x1

x3
[(x3 − x1) + (x3 − x2)][(1 − α)x2 + (1 − β)x3]

− x3

x1
[(x1 − x2) + (x1 − x3)][(1 − α)x1 + (1 − β)x2].

(C15)

T̃23 = x2

x3
[(x3 − x1) + (x3 − x2)][(1 − α)x3 + (1 − β)x1]

− x3

x2
[(x2 − x1) + (x2 − x3)][(1 − α)x1 + (1 − β)x2].

(C16)

Therefore, we obtain each element of the matrix T on the plane
O = 1. On the limit set, T and S converge to zero in the same
order.

In both cases, the matrix T does not equal zero. Therefore,
the model of May-Leonard is not a generalized gradient
system. Besides, this implies that the corresponding stochastic
system added with a multiplicative noise is not detail
balanced [34].
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