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Recovering thermodynamic consistency of the antitrapping model: A variational phase-field
formulation for alloy solidification
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The phenomenological antitrapping phase-field model has attained much success in describing alloy
solidification. The heuristically introduced antitrapping current enables removing artificial effects due to the
use of large interfacial width. Nevertheless, such a model is not thermodynamically consistent and has not been
fitted into a variational framework. Here we present two approaches to develop a variational phase-field model
to describe patten formation in alloys. Following the principles of linear irreversible thermodynamics we build
in the cross-coupling between the phase transition rate and solute diffusion current. Our formulation not only
naturally incorporates the antitrapping current but also predicts the conjugated mesoscopic solute drag effect. A
more general form of the antitrapping current is obtained by thin-interface analysis. Benchmark simulations on
isothermal dendrite growth are carried out to show the capability of our model to quantitatively characterize the
interface evolution and solute profile even with a large interface width used. Importantly, our theory also provides
general insights on how to obtain the genuine dynamic coupling between nonconserved and conserved order
parameters. This leads to a thermodynamically consistent generalization of the celebrated model C proposed by
Hohenberg and Halperin [Rev. Mod. Phys. 49, 435 (1977)].
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I. INTRODUCTION

The phase-field approach has been increasingly used as
an efficient means to study problems involving evolving
interfaces, with great success achieved in modeling so-
lidification phenomena [1–4]. It is advantageous over the
traditional sharp-interface method by avoiding explicitly
tracking phase boundaries. In this approach the macroscopic
zero-thickness (sharp) interface is resolved mesoscopically
as a region with finite thickness ∼W , which should be
much smaller than the characteristic length scale in bulk
phases. However, in realistic simulations it can be cho-
sen much larger than the physical interface thickness as
long as artificial effects caused by this scale-up can be
controlled.

The “thin-interface” (TI) analysis [5] has been invented
to achieve this control for the solidification problem. It has
proven a great success in quantitatively modeling of dendritic
growth in pure melts at low undercooling. Nevertheless, for the
more realistic situation with asymmetric transport properties
in the liquid and solid, this scheme is insufficient to remove
all the artificial scale-up effects [6]. For a dilute binary alloy
with negligible diffusivity in the solid, Karma [7] introduced
a phenomenological antitrapping (AT) current to the solute
diffusion equation and attained this control within TI limit.
Ohno and Matsuura [8] further devised it to accommodate
finite diffusivity in the solid. Recently it has also been adapted
to multicomponent systems [9].

The phenomenologial AT models cannot be derived from a
Lyapounov functional, and thermodynamic consistency is not
satisfied at the mesoscopic level. In this work, by employing
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Onsager’s variational approach to linear irreversible thermo-
dynamics (LIT), we develop a new phase-field model with full
thermodynamic consistency. In our model the solute transport
equation has a kinetic current, and the phase-field equation
gains a new contribution describing the mesoscopic solute drag
effect. Both “solute (anti-)trapping” and “solute drag” arise
from the dynamic cross-coupling between phase transition and
solute diffusion. Simulations on two-dimensional isothermal
dendrite growth show that our model can quantitatively and
efficiently describe the solidification process, with reasonably
large interface width used.

II. FORMULATION

A. The traditional phase field model and antitrapping current

For clarity and simplicity, we focus on the problem of
isothermal solidification [10] for a dilute binary alloy of A
and B. We first introduce relevant notations and show how
the standard variational phase-field model can be obtained via
Onsager’s approach. The system is described by the two scalar
fields: φ is the scalar phase field introduced to distinguish
between solid (φ = +1) and liquid (φ = −1) phase of the
major component A and c is the concentration of the minor
component B (solute). The free energy functional of the system
is

F =
∫

dV

[
1

2
HW 2|∇φ|2 + f0(φ) + fAB(φ,c,T )

]
, (1)

where f0(φ) = H (−φ2/2 + φ4/4) is the double-well poten-
tial with a barrier height H and fAB = g(φ)fs(cs) + [1 −
g(φ)]fl(cl) is a functional that interpolates between the
free-energy density of solid and liquid bulk phases, with
g(φ) = 15(φ − 2φ3/3 + φ5/5)/8 the standard choice. Here
cs and cl are, respectively, the concentration field in the solid
and liquid and are related via the condition of equal chemical
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potential [11]: ∂fs/∂cs = ∂fl/∂cl . The concentration field c

is determined by the mixture rule as c = 1+h(φ)
2 cs + 1−h(φ)

2 cl ,
with h(φ) another interpolating function satisfying h(±1) =
±1. In variational formulation, h(φ) should be identical
to g(φ). The rate of energy dissipation can be expressed
as −Ḟ = − ∫

dV
[(δF/δφ)φ̇ + (δF/δc)ċ], where a dot on a

variable denotes its time-varying rate of change. For our system
characterized by the nonconserved field φ and the conserved
field c, it is natural to choose φ̇ and J as the appropriate fluxes,
with J defined by the mass conservation law ċ + ∇ · J = 0. As
restricted by Curie’s principle, no coupling is allowed between
φ̇ and J. Hence the dissipation potential can be constructed
as �0 = φ̇2/2Kφ + J2/2Mc, with Kφ and Mc the mobility
coefficients describing the relaxation or transport of φ and c,
respectively. Following Onsager, we can derive the constitutive
equations by setting the variation of −Ḟ − �0 with respect to
the variation of fluxes to zero. By this procedure the equations
of motion for the phase field and solute concentration are
obtained as

φ̇ = −Kφ

δF

δφ
(2)

and

ċ = ∇ · (Mc∇μ), (3)

where the second equation is obtained by plugging into
the mass conservation law the constitutive relation J =
−Mc∇μ ≡ Jc, with μ ≡ δF/δc is the chemical potential.
This set of equations is the regular variational phase-field
formulation.

Equations (2)–(3) are thermodynamically consistent but
less useful than the AT model due to the magnified artificial
effects when a computationally trackable W is used. To
counteract the artificial solute trapping in realistic simulations,
Karma [7] proposed the AT current

Jat = −a(φ)W
(
c0
l − c0

s

)
φ̇

∇φ

|∇φ| (4)

to amend the diffusion flux Jc, where c0
l (c0

s ) are the equilibrium
concentrations in the liquid (solid) at a fixed temperature
and a(φ) is an interpolating function to be constrained by
TI analysis. The form of Jat is motivated by the observation
that to lowest order, the solute trapping effect is proportional
to the interface migration speed V and in the TI limit
V ∼ −Wφ̇∇φ/|∇φ|. The analysis of Eq. (4) leads us to
consider if there can be genuine dynamic coupling between
φ and c. If so, we may obtain a thermodynamically consistent
phase-field model with the AT current naturally emerging
from the general principle of LIT other than heuristically
introduced. We mention that the importance of the dynamic
cross-coupling and Onsager symmetry in phase-field models
of solidification was also suggested in a recent paper by Brener
and Temkin [12].

In the following two subsections we present two approaches
to obtain the new variational phase-field model: The first is
derived from a more formal point of view, while the second is
mainly based on nonequilibrium thermodynamic analysis of
the interfacial solute transport.

B. The first approach to our model

In the first approach, we note that while φ̇ is sufficient
to locally describe the rate of liquid-solid transformation, as a
scalar it does not specify the growth direction at the mesoscopic
scale. We may amend a director nφ ≡ ∇φ/|∇φ| to characterize
the local growth direction. Because nφ · nφ ≡ 1, the energy
dissipation can be rewritten as −Ḟ = − ∫

dV
[(δF/δφnφ) ·

(φ̇nφ) − μ∇ · J]. Hence we can formally identify φ̃ ≡ φ̇nφ

rather than φ̇ as the appropriate flux describing the local
phase transition. This procedure of “transforming scalars into
vectors” is also strongly motivated by the interfacial force-
flux analysis of the corresponding free-boundary problem, as
recently discussed by Brener and Temkin [12]. Interestingly,
in the model proposed by Wang et al. [13], the entropy
density has an explicit dependence on ∇φ and the entropy
flux contains a contribution proportional to Wφ̇∇φ. In the
sharp-interface limit this is identified as the entropy flux caused
by interface migration. Therefore, in the phase-field modeling
where surface excess quantities are smeared as mesoscopic
bulk quantities, this entropy flux excess is manifested as a part
of entropy production. This, to a certain degree, also justifies
φ̃ as a more appropriate dynamic flux when the interface
is moving. The corresponding dissipation potential can be
constructed as

�1 = φ̃
2

2Kφ

+ J2

2Mc

+ γ φ̃ · J, (5)

where γ is the cross-coupling coefficient. In general γ can
depend on φ and c and should satisfy γ 2 � 1/(KφMc) to make
�1 positive definite. Following Onsager’s variational approach
and using the continuity equation we obtain the generalized
equations of motion:

(1 − Kφγ̃ 2/Mc)φ̇ = −Kφ

[
δF

δφ
− γ̃ nφ · ∇μ

]
, (6)

ċ = ∇ · [Mc∇μ + γ̃ φ̇nφ], (7)

where γ̃ ≡ Mcγ . Clearly, there are new terms appear-
ing in both equations due to the dynamic coupling be-
tween the phase transition and solute diffusion processes.
This formulation is by construction thermodynamically
consistent.

C. The second approach to our model

The second approach starts by performing a macroscopic
thermodynamic analysis of the steady growth state. This is
nontrivial due to the interplay of solute diffusion and interface
attachment kinetics. We find it insightful to plot a circuit
diagram for the solute transport, following the entropy flow
diagram used in studying the crystallizing process of helium
[14,15]. From Fig. 1(a) it is clear that the total solute current
across the interface JI is the sum of the dissipative current
JD through the Kapitza resistance RK and the kinetic current
β̃V convected by the solidifying liquid. The effective growth
rate in general depends on the way JI partitions [12]. For
alloy solidification at low undercooling, δμ = 0. The crucial
point is that the Kapitza resistance is negligibly small for
the usual crystal-melt interface so that JD can be freely
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FIG. 1. (a) Diagram of the macroscopic solute flow at the liquid-
solid interface with migration speed V = V n, with n the interface
normal pointing from solid into liquid. The solute concentration
of the newly formed solid is supplied by the diffusion flux JS from
the solid plus the flux JI arriving through the interface. Similarly,
the solute concentration of the liquid being frozen is removed by
JL and JI. (b) Solute flow in the mesoscopic interfacial region of
our phase-field model. The dissipative current Jc varies continuously
across the interfacial region. A kinetic current, Jk , is introduced to
rectify the oversinked solute due to the finite interface width. Its form
is suggested the mesoscopic representation of V.

adjusted to yield the desired value of JI and realize the
prescribed solute partition according to equilibrium phase
diagrams. This is not the case when we go to the mesoscopic
level described by phase-field models. At this level, the
dissipative solute fluxes, either in the bulk (JS and JL) or at
the interface (JD), are unified into a single diffusion flux, with
the diffusion coefficient D(φ) varying across the interfacial
region. The interface motion is implicitly characterized by
the propagation of the φ = 0 contour, and the local solute
partition is instantly accomplished according to the prescribed
mixing rule. However, with the interfacial width becoming
finite and the interface motion becoming fast, more solute
than desired is left behind the solid-liquid front due to the
inhomogeneity of φ̇ across the interfacial region. Going back
to the macroscopic level, JD is no longer at our full disposal.
This is because the mesoscopic description specifies the system
more strictly than the macroscopic free-boundary problem. TI
asymptotic analysis demonstrates that artificial kinetic effects
cannot be fully removed by cleverly designing the forms of
g(φ) and D(φ). Therefore we need to put more freedom into
the phase-field model to faithfully reproduce the desired solute
partition during interface migration. This can be achieved by
explicitly introducing a kinetic rectification Jk to the interfacial
solute flux. For this purpose we construct v = −ã(φ)Wφ̇nφ as
the local velocity, with ã a positive regulating factor. Setting
Jk = vc as the kinetic flux, we have the full mass conservation
equation given by

ċ = −∇ · [ J c + Jk]. (8)

It is noted that the form of Jk is similar to the the phenomeno-
logical AT current. By incorporating Jk the mesoscopic
continuity of c is restored at the time scale of phase transition,
which becomes smaller than the interfacial diffusion time
when W is large. Substantially, this kinetic current can persist
even for the case with symmetric transport coefficients in both
liquid and solid.

Using Eq. (8) we can recast Ḟ into the following form:

Ḟ =
∫

dV

[
δF

δφ
φ̇ + Jc · ∇μ − ãWc(nφ · ∇μ)φ̇

]
, (9)

where the last term is not included in traditional phase-
field models. The kinetic rectification to solute transport
and energy dissipation arises from the dual role played by
φ̇ for a moving interface: On the one hand φ̇ itself is a
thermodynamic flux, whereas on the other hand φ̇ multiplied
by nφ is a mesoscopic kinetic variable. In Eq. (9) φ̇ and
Jc can be identified as two uncoupled fluxes and �0 is the
appropriate dissipation potential. We obtain by variational cal-
culus, in addition to Jc = −Mc∇μ, the following constitutive
equation:

φ̇ = −Kφ

[
δF

δφ
− ãWc(nφ · ∇μ)

]
, (10)

where the second term in the square bracket is readily
identified as the mesoscopic solute drag, absent in all previous
phase-field models for solidification. Importantly, it should
be distinguished from the macroscopic solute drag in rapid
solidification processes when solute trapping happens. The
direction of this mesoscopic solute drag varies across the
interfacial region and thus leads to modulation of the phase
transition rate.

Remarkably, the equations of motion [Eqs. (8) and (10)]
obtained with this approach can be exactly mapped to Eqs. (6)–
(7) obtained via the first approach by identifying γ̃ = ãWc and
redefining Kφ . This is not surprising because both approaches
have effectively taken into account the dynamic cross-coupling
between the phase transition and solute diffusion process in
the framework of LIT. The first approach is more formal
and in some sense more general (e.g., naturally allowing an
anisotropic mobility for the phase-field relaxation). However,
the second one is physically more transparent, and we adhere
to it in the following discussion.

D. Thin-interface analysis

Our variational model differs from the phenomenological
AT model only by the additional “solute drag” term. This
term is crucial because it avoids “action without anti-action”
and restores the thermodynamic consistency lacking in AT
models. It is important to note that this term does not influence
the equilibrium profiles for φ and c. Thus, similar to the
KKS model [11] and the AT model [16], the salient feature is
maintained that the equilibrium phase-field profile and surface
tension are independent of the solute concentration. In fact, the
surface tension is given by γs = 16

15a1WH with a1 ≡ 5
√

2/8.
To determine a(φ) and see how solute drag may influence the
scale-up effects in realistic calculations, a TI analysis is helpful
along the same line as in Refs. [7] and [8]. For this purpose we
introduce the dimensionless local supersaturation defined by
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u = (cl − c0
l )/(c0

l − c0
s ) and measure length in units of d0 and

time in units of d2
0/D, with d0 the chemical capillary length.

The TI analysis uses ε = W/d0 as the expansion parameter,
and the dimensionless equations are given by

α0ε
2∂tφ = ε2∇2φ + φ − φ3 − λg′(φ)u

+ 16

15
a1ε

2a(φ)
∇φ

|∇φ| · ∇u (11)

and

[1 + k − (1 − k)h(φ)]

2
∂tu

= ∇ ·
{
q(φ)∇u + a(φ)ε[1 + (1 − k)u]∂tφ

∇φ

|∇φ|
}

+ 1

2
[1 + (1 − k)u]∂th(φ) (12)

with α0 = D/(KφHW 2) a dimensionless constant, λ = a1ε,
and 2a(φ) = [ 1+k

1−k
− h(φ)]ã(φ). It is immediately seen that

the solute drag term is of the order of ε2. Nevertheless, further
analysis shows that it is actually of the order of ε3 because
to leading order u is independent of the normal coordinate
across the interface. Therefore, the solute drag term does not
alter the previous asymptotic results performed to second order
of ε. With the interpolating functions chosen as h(φ) = g(φ)
and q(φ) = (1 − φ)/2, the interface stretching and surface
diffusion can be eliminated in the TI limit. To eliminate the
chemical potential jump, we have F+ = F−, with

F± =
∫ ±∞

0
dη[p(φ0) − p(∓1)] (13)

and

p(φ) = [h(φ) − 1 − 2a(φ)∂ηφ]/q(φ), (14)

where η is a coordinate normal to the interface scaled by
W . To obtain a simple expression for a(φ), Karma and his
collaborators proposed the ansatz p(φ) = h(φ) − 1, which
yields a(φ) = [1 − h(φ)][1 − q(φ)]/

√
2(1 − φ2). However,

we find a more general ansatz: p(φ,α) = α(h(φ) − 1) +
2(α − 1)q(φ), where α is a constant parameter. Note that with
the special choice of 1 − h(φ) = 2q(φ) in the nonvariational
formulation, our ansatz collapses to the old one for arbitrary
α. Nevertheless, when h(φ) and q(φ) are linearly independent,
we can explore the benefit due to the freedom of choice on
α, without violating any constraints obtained in TI analysis.
For h(φ) = g(φ) and q(φ) = (1 − φ)/2, the choice of α = 2
yields

a(φ) = 1

2
√

2

[
1 + 1

4
(3φ2 − 7)φ2

]
, (15)

which is symmetric with respect to φ = 0 and has better
numerical performance than other choices of α. Importantly,
this unique choice renders the kinetic current an odd parity and
restores the liquid-solid exchange symmetry of the original
solute transport equation. The asymptotic matching with
the velocity-dependent Gibbs-Thomson condition gives the
following expression for the kinetic coefficient:

β = a1[τ/(Wλ) − a2(α)W/D], (16)

where τ = 1/(KφH ) is the phase relaxation time, a2(α) =
αa2(1) + (1 − α)a2(0), with a2(1) = 0.3981 and a2(0) =
0.6267. For the symmetric choice of a(φ) given by Eq. (15)
we have a2(2) = 0.4258a2(1).

It is important to remember that Eq. (16) is not an
exact result but an approximation presumably good for small
ratio of W/d. It was pointed by the work of Brener and
Temkin [12] that such a thin-interface limit result should
be taken with care. With certain phase-field parameters, it
can give rise to a negative kinetic coefficient and lead to
unphysical instabilities in the corresponding sharp-interface
formulation.

III. RESULTS AND DISCUSSIONS

The performance of our model was examined by car-
rying out two-dimensional simulations of isothermal den-
dritic growth. Crystalline anisotropy was included by gen-
eralizing Eq. (10) to a standard anisotropic form [5,16].
The kinetic coefficient becomes β(θ ) = a1{τ (θ )/[W (θ )λ] −
a2(α)W (θ )/D}, with W (θ ) = Was(θ ), as(θ ) = 1 + ε4 cos 4θ

the fourfold anisotropy factor, and θ ≡ arctan(∂yφ/∂xφ). To
make β(θ ) vanish we require the anisotropic phase relaxation
time to satisfy τ (θ ) = τ0(α)as(θ )2 and τ0(α) = a2(α)λW 2/D.

We compare the results of our current model to those
obtained by the phenomenological AT model. Both models
have the desired thin-interface limit, but only our model is
thermodynamically consistent and completely captures the
dynamic coupling of phase transition and solute diffusion at
the mesoscopic level. We use a simple finite-difference method
with �x = 0.36 and �t = 0.008, W = τ0(1) = 1, ε4 = 0.02,
k = 0.15. In all simulations, the initial condition consists
of a circular solid seed of radius r = 3∼5 and u = −0.55
throughout the simulating region. We further note that, while
the second-order TI analysis uniquely determines a phase
relaxation time that simply scales ∼W 3, this is not necessarily
good for large W when high-order correction becomes
important. Therefore we let τ0 = χτ0(1) and treat χ as an
adjustable parameter [17]. To see how the results can depend
on the choice of τ0, we plot in Fig. 2 the dimensionless dendrite
tip velocity V d0/D and tip radius ρ/d0 of the steady growth
state as a function of χ , for W = 3d0 and W = 6d0. Results are
plotted only in a selected section of χ within which no solute
trapping happens, and the tip velocity does not deviate too

FIG. 2. (Color online) The dimensionless (a) tip velocity V d0/D

and (b) tip radius ρ/d0 of the steady growth state as a function of
the dimensionless phase relaxation time χ for two interface width
W = 3d0 and W = 6d0.
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FIG. 3. (Color online) The dimensionless (a) tip velocity V d0/D

and (b) tip radius ρ/d0 of the steady growth state as a function of the
dimensionless interface width, W/d0.

much from the value obtained by the AT model for the smallest
W . It is shown that with the increase of χ the tip velocity
decreases and the tip radius increases, both of which are more
sensitive to χ for larger W. This agrees with our expectation
because higher-order contributions become more significant
for larger W. We plot in Fig. 3 the tip velocity and radius
as a function of W/d0. Because the simulation time scales
∼(d0/W )5, it is of practical importance to achieve reasonably
good results at relatively large W. For W = 2d0 we use the
fixed TI value χ = 0.4258 for reference, while for w = 3∼8d0

we choose an appropriate value of χ to yield the tip velocity in
good agreement with that at W = 2d0. Obviously, at W = 2d0

(with no adjustable parameter) our model predicts a larger tip
velocity and a smaller tip radius than the AT model. This is the
consequence of the mesoscopic solute drag effect included in
our model and neglected in the AT model. The AT model
also shows good convergent behavior for the tip velocity,
but the predicted tip radius blows up more quickly than our
model for large W. With τ0 exactly specified by the TI result
[Eq. (16)], its good performance on predicting the tip velocity
at the intermediate range of W/d0 is probably due to cancel-
lation of errors by simultaneously using an underestimated
phase relaxation time and neglecting the mesoscopic solute
drag effect. We note that if if we increase W to 10d0, it becomes

impossible to find a good χ that both avoids solute trapping
and gives reasonably large tip velocity. This indicates it is too
far away from the TI regime, and the form of kinetic current
(linearly proportional to W ) is no longer adequate.

It is also important to examine the solute profile in the
solid. By definition we have [cs(x)/c0

l − k]/k = (1 − k)u(x),
so by looking at the profile of u it is rather straightforward
to find how well the solute distribution obeys the equilibrium
partition rule. In fact, in all of the cases presented here, we
find the solute concentration in the solid consistently agrees
within a couple percentage points with the Gibbs-Thomson
relation cs(x)/c0

l = k[1 − (1 − k)d0/ρ]. Therefore our model
is efficient to remove the artificial solute trapping and at the
same time yields accurate results on tip velocity and radius,
even for W = 7d0.

IV. CONCLUSIONS

In conclusion, we have developed a thermodynamically
consistent variational phase-field model capable of quantita-
tively simulating microstructural pattern formation in alloys.
The mesoscopic solute drag effect, not captured by the
phenomenological AT model, is naturally recovered within
the framework of LIT. Simulations on 2D isothermal dendrite
growth show the capability of our model to quantitatively
describe alloy solidification. Importantly, our model can be
extended to describe pattern formation in alloys with nonzero
solid diffusivity and nontrivial thermosolutal coupling [18],
multiphase and multicomponent systems, and a wide range of
other interfacial dynamic phenomena.

Note added: We are aware of the very recent work by Brener
and Boussinot [19], in which a similar phase-field model is
proposed.
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