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Isotropic-polar phase transitions in an amphiphilic fluid: Density functional theory
versus computer simulations
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We investigate the critical line separating isotropic from polar phases in an amphiphilic bulk fluid by means
of density functional theory (DFT) and Monte Carlo (MC) simulations in the isothermal-isobaric ensemble. The
intermolecular interactions are described by a Lennard-Jones potential in which the attractive contribution is
modified by an orientation-dependent function. The latter consists of two terms: The first one has the orientation
dependence of a classical three-dimensional Heisenberg interaction, whereas, the second one has the orientation
dependence of a classical dipole-dipole interaction. However, both contributions are short range. Employing
DFT together with a modified mean-field (MMF) approximation for the orientation-dependent pair correlation
function, we derive an analytical expression for the critical line separating isotropic from polar liquidlike phases.
In parallel MC simulations, we locate the line of critical points through an analysis of Binder’s second-order
cumulant of the polar-order parameter. Comparison with DFT shows that the dipolelike contribution is irrelevant
for the isotropic-polar phase transition. As far as the Heisenberg contribution is concerned, the MC data are
in semiquantitative agreement with the DFT predictions for sufficiently strong coupling between molecular
orientations. For weaker coupling, the variation in the ratio of critical density and temperature ρc/Tc with the
Heisenberg coupling constant εH is underestimated by the MMF treatment. The MC results suggest that this is
because ρc increases with decreasing εH such that the assumption on which the MMF approach rests becomes
less applicable in the weaker-coupling limit.
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I. INTRODUCTION

To study structure and phase behavior of amphiphilic
molecules, Erdmann et al. suggested a simple model, involving
spherical particles with an internal degree of freedom, a
classical “spin” [1]. The particles interact via the well-
known Lennard-Jones potential in which the attractive term is
properly modified to account for the orientation dependence of
the interaction between a pair of amphiphiles. The anisotropic
part of the potential introduced by these authors consists
of two contributions. The first one describes the orientation
dependence of the intermolecular interactions in a classical
three-dimensional (3D) Heisenberg fluid (coupling constant
εH); the other one resembles that of the interactions between
a pair of point dipoles (coupling constant εD). However, for
fixed molecular orientations, both contributions are short range
and decay in proportion to r−6, where r denotes the distance
between the centers of mass of a pair of molecules. For εH > 0
and εD < 0, the model is capable of producing micellar and
lamellar phases characteristic of amphiphilic molecules [2].

For sufficiently large absolute values of εH and εD, the
amphiphilic fluid exhibits a bulk phase characterized by
long-range ordering of the spins [1,3,4]. In a previous paper, we
investigated the isotropic-polar (IP) phase transition by means
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of Monte Carlo (MC) simulations in the isothermal-isobaric
ensemble and within the framework of Landau’s mean-field
theory [3]. The MC simulations are analyzed by applying
finite-size scaling theory based upon Binder’s second-order
cumulant. The two main observations made in this earlier
paper are that the IP phase transition is continuous over the
range of thermodynamic states considered and that a critical
line exists similar to the Curie line in ferroelectrics despite the
short-range character of our model potential [3].

In a later paper [4], we determined the critical exponents
governing the IP phase transition from which we concluded
that our model pertains to the universality class of the classical
3D Heisenberg fluid similar to what has been observed for
hard spheres with true (i.e., long-range) dipolar interactions
[5,6]. This conclusion is based upon a comparison of the
critical exponents β, γ , and ν with data published earlier by
Campostrini et al. [7].

However, in view of the fact that our model potential
consists of superimposed Heisenberg and dipolar terms, it
is not immediately clear what is the respective role of both
contributions in the formation of polar phases. For models
containing either one of the two separately, IP phase transitions
have been investigated in a number of previous papers.

For example, Ayton et al. have studied ferroelectric and
dipolar glass phases in randomly frozen and dynamically
disordered dipolar soft-sphere systems [8,9]. Dipolar fluids
with a hard-core prolate or oblate ellipsoidal shape have
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been studied by Perera and Patey using the hypernetted chain
closure in conjunction with density functional theory (DFT)
[10]. A little later, Wei and Patey investigated a system of
strongly dipolar soft spheres by mean of molecular dynamics
simulations [11–13]. For the first time, these authors could
demonstrate that dipolar forces alone can lead to the formation
of a ferroelectric nematic phase.

A large body of work on fluids with electrostatic point
dipoles has been published by Dietrich and co-workers. Frodl
and Dietrich [14,15] developed a DFT scheme, giving results
that are in reasonable qualitative agreement with MC data.
Later, Groh and Dietrich studied the formation of ferroelectric
phases in Stockmayer fluids by means of DFT [16]. These
authors demonstrated that, in the polar phase, the free-energy
density depends crucially on the shape of the domain under
consideration as well as on the dielectric permittivity of the
surroundings. In a later paper, the same authors extended their
earlier work to account for the formation of ferromagnetic
solids [17], included external fields [18,19], and considered
particles with a nonspherical hard core [20].

Klapp and co-workers investigated the isotropic-
ferroelectric phase transition of dipolar hard spheres via
various integral-equation approaches and a related DFT
[21,22]. In particular, they demonstrated the possibility of a
suppression of the ferroelectric fluid phase by a ferroelectric
solid [23,24]. Later, Range and Klapp [25] applied the
modified mean-field (MMF) DFT approach introduced and
developed earlier [14–16,26] to study the phase behavior
of binary hard-sphere mixtures with embedded electrostatic
point dipoles. An application to confined pure dipolar fluids
has been considered by Klapp and co-workers based upon
integral-equation approaches [27] and DFT [28].

By means of MC simulations Tavares et al. investigated
the structure of a two-dimensional hard-disk fluid with an
embedded point dipole [29]. These authors analyzed the topol-
ogy of clusters forming in the fluid at low and intermediate
densities and observed that the structure of the fluid can be
well described by an ideal mixture of such clusters arising
from a self-assembly mechanism.

Compared with fluids in which the orientation dependence
of the intermolecular interactions is described by that between
point dipoles, less attention has been devoted to the phase
behavior of Heisenberg fluids [7,26,30–40]. Of these earlier
papers, several are of particular importance. Both Tavares
et al. [26] and Weis et al. [38] demonstrate that, in a
ferromagnetic Heisenberg fluid, the Curie line, separating
isotropic from polar phases, may either end in a tricritical
point or terminate at a critical end point depending on the
relative strengths of the radial parts of the isotropic and
the anisotropic contributions to the overall intermolecular
interaction potentials. For a ferromagnetic Heisenberg fluid
with Yukawa shielding, Lomba et al. preclude the existence of
a tricritical point in which the Curie line ends [36]. Based upon
their combined simulation and integral-equation approaches,
these authors suggest a termination of the Curie line in a critical
end point instead. For the sake of conciseness of the present
paper, we defer a more detailed investigation of the existence
of a tricritical point in our particular model to a separate paper.
Lomba et al. also considered the antiferromagnetic Heisenberg
fluid where the formation of ordered states is signaled

by an increase in the nematic rather than the polar-order
parameter.

The remainder of our paper is organized as follows. In
Sec. II, we introduce the model potential for our amphiphilic
fluid. Section III is given to a discussion of the DFT theory
on which our theoretical work is based. Concepts of finite-size
scaling are introduced in Sec. IV. Results from MC and a
comparison with the DFT predictions are presented in Sec. V.
The paper concludes with a summary of our main findings in
Sec. VI.

II. MODEL

In this paper, we consider a bulk fluid composed of N

amphiphilic molecules interacting with each other in a pairwise
additive fashion. Hence, we express the total configurational
potential energy as

�(R,�) = 1

2

N∑
i=1

N∑
j=1
j �=i

ϕ(r ij ,ωi,ωj ). (2.1)

In Eq. (2.1), r ij = r i − rj is the distance vector between
the centers of mass of molecules i and j located at r i and
rj , respectively. We also introduce shorthand notations for
the sets of center-of-mass positions R ≡ {r1,r2, . . . ,rN } and
the set of polar angles � ≡ {ω1,ω2, . . . ,ωN }, specifying the
orientations of the N amphiphiles where ωi ≡ (ϑi,ϕi) for a
system of molecules of uniaxial symmetry and ϑi and ϕi are
the associated Euler angles. In Eq. (2.1), the intermolecular
interaction potential ϕ can be split into an isotropic and an
anisotropic contribution according to

ϕ(r ij ,ωi,ωj ) = ϕiso(rij ) + ϕanis(r ij ,ωi,ωj ), (2.2)

where rij = |r ij |. In Eq. (2.2), ϕiso is given by the standard
Lennard-Jones potential function,

ϕiso(rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6]
≡ ϕrep(rij ) + ϕatt(rij ), (2.3)

where ϕrep and ϕatt denote repulsive and attractive contribu-
tions to ϕiso, respectively. From Eq. (2.3), we see that our
amphiphilic molecules are approximately spherical with σ

being the “diameter” and ε being the depth of the attractive
well. The anisotropic contribution to ϕ is modeled according
to

ϕanis(r ij ,ωi,ωj ) = ϕatt(rij )� (̂r ij ,ωi,ωj ), (2.4)

and, therefore, has the same distance dependence as the
attractive part of the isotropic interaction potential. Hence,
both ϕiso and ϕanis are short range.

The function � in Eq. (2.4) describes the anisotropy of the
intermolecular interactions and is given by

� (̂r ij ,ωi,ωj ) ≡ 3 εHû(ωi) · û(ωj )

+
√

15

2
εD{3[̂u(ωi) · r̂ ij ][̂u(ωj ) · r̂ ij ]

− û(ωi) · û(ωj )}, (2.5)

following an original suggestion by Erdmann et al. [1]. Here
and below, the notation “·̂ · ·” is used for unit vectors where,
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in particular, r̂ ij = r ij /rij . From Eq. (2.5), one realizes that
the orientation dependence of the interaction consists of a
contribution characteristic of a classical 3D Heisenberg fluid
[41] with coupling constant εH and a second contribution that
is analogous to the orientation dependence of the interaction
between electrostatic point dipoles with coupling constant
εD [42]. Specifically, because ϕatt < 0, the choice εD > 0
corresponds to a short-range version of the classical dipole-
dipole potential. Therefore, εD plays a role similar to the
squared dipole moment μ2 that arises in the (electrostatic or
magnetic) dipole-dipole interaction potential.

The subsequent treatment will greatly benefit from rewrit-
ing Eq. (2.5) in terms of rotational invariants (see Appendix A
of Ref. [43]). Rotational invariants are defined as

�li lj l(ωi,ωj ,ω)

≡
∑

mimj m

C(li lj l; mimjm)Ylimi
(ωi)Ylj mj

(ωj )Y ∗
lm(ω), (2.6)

where C is a Clebsch-Gordan coefficient, Y is a spherical
harmonic, and the superscript “∗” denotes the complex
conjugate. The solid angle ω describes the orientation of
r̂ ij in a space-fixed frame of reference and the integer mi ∈
{−li , . . . ,li}. This relation is also satisfied by the pairs (lj ,mj )
and (l,m). The Clebsch-Gordan coefficient vanishes unless
m = mi + mj and |li − lj | � l � li + lj (see Eqs. (A.130) and
(A.131) of Ref. [43]). Using these properties, one finds (see
pp. 496–497 of Ref. [43])

�110 = −(4π )−3/2
√

3û(ωi) · û(ωj ), (2.7a)

�112 = −(4π )−3/2

√
15

2
{3[̂u(ωi) · r̂ ij ][̂u(ωj ) · r̂ ij ]

−û(ωi) · û(ωj )}, (2.7b)

where the arguments ωi, ωj , and ω of the spherical invariants
are dropped for notational convenience. With the expressions
given in Eqs. (2.7), it is now easy to verify that the anisotropy
function in Eq. (2.5) can then be recast compactly as

� (̂r ij ,ωi,ωj ) = −(4π )3/2(
√

3εH�110 + εD�112). (2.8)

Notice that, from Eqs. (2.3), (2.4), (2.7b), and (2.8), it is
evident that the orientation dependence of the second term
in parentheses on the right side of Eq. (2.8) is the same as that
of the potential describing the interaction between a pair of
classical point dipoles as long as εD > 0.

III. DENSITY FUNCTIONAL THEORY

For the model fluid introduced in Sec. II, we now derive
an explicit expression for the line of critical points at which
the amphiphilic fluid undergoes an IP phase transition [3].
This analysis will be based on a MMF treatment of the free
energy of our model fluid. To that end, we will develop an
explicit expression for the excess free energy in the subsequent
Sec. III A, which we will then use in a Landau expansion to
locate the line of critical points in Sec. III B. The resulting
expressions can be evaluated within the framework of a high-
temperature expansion of the orientation-dependent Mayer
f function (see Sec. III C), which arises on account of the

modified mean-field approximation introduced in Sec. III A.
Consequences of the approach to be developed in Secs. III A–
III C are discussed in Sec. III D.

A. Modified mean-field theory

Our point of departure is the expression,

�F ex = 1

2

∫ 1

0
dλ

∫
d r1d r2

∫
dω1dω2ρ(r1,ω1)ρ(r2,ω2)

×g(r12,ω1,ω2; λ)
∂

∂λ
[ϕhs(r12t) + λϕ(r12,ω1,ω2)]

(3.1)

for the change in the interaction (excess) part of the free energy
caused by the perturbation ϕ(r12,ω1,ω2) [see Eq. (2.2)] relative
to the excess free energy of a hard-sphere reference system.
Equation (3.1) is exact for systems with pairwise additive
intermolecular interactions and was originally developed some
time ago by Evans [44]. In Eq. (3.1),

ϕhs(r12) =
{

∞, r12 < σ,

0, r12 � σ
(3.2)

is the interaction potential between hard spheres of diameter
σ, ρ(rk,ωk) is the orientation-dependent local density of
particle k (k = 1,2), and g(r12,ω1,ω2; λ) is the pair correlation
function. The hard-sphere fluid is chosen here for two reasons.
First, it is computationally convenient in that it helps to
simplify the integrations over d r1 and d r2 later on. Second,
the precise physical nature of the reference system is irrelevant
for the primary goal of this paper, namely, to determine the
critical line of IP phase transition. The latter aspect will become
apparent in Sec. III B below. The dimensionless parameter λ is
introduced to take us from the reference system to the system of
interest in which the intermolecular interactions are described
by the potential function ϕ(r12,ω1,ω2) introduced in Eq. (2.2).

Following earlier papers [14–16,25,28,45], we approximate
the pair correlation function in Eq. (3.1) by the expression,

g(r12,ω1,ω2; λ) =
{

0, r12 � σ,

exp[−βB(ϕhs + λϕ)], r12 � σ.
(3.3)

The expression on the second line of Eq. (3.3) is exact in the
limit of vanishing number density regardless of temperature
T . In Eq. (3.3), βB ≡ 1/kBT , where kB denotes Boltzmann’s
constant. Performing, in Eq. (3.1), the differentiation with
respect to λ and using the approximation Eq. (3.3), one may
carry out the integration over dλ in Eq. (3.1) analytically to
obtain

βB�F ex = −1

2

∫
d r1d r2

∫
dω1dω2ρ(r1,ω1)ρ(r2,ω2)

× exp[−βBϕhs(r12)]f (r12,ω1,ω2)

= −1

2

∫
r12�σ

d r1d r2

∫
dω1dω2ρ(r1,ω1)ρ(r2,ω2)

× f (r12,ω1,ω2), (3.4)
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GIURA, MÁRKUS, KLAPP, AND SCHOEN PHYSICAL REVIEW E 87, 012313 (2013)

where

f (r12,ω1,ω2) ≡ exp[−βBϕ(r12,ω1,ω2)] − 1

= exp[−βBϕiso(r12)]

× exp[−βBϕanis(r12,ω1,ω2)] − 1 (3.5)

is the orientation-dependent Mayer f function [43].
In this paper, we are concerned exclusively with bulk phases

characterized by a uniform number density. Hence, we may
factorize the local densities in Eq. (3.4) according to

ρ(r,ω) = ρα(ω), (3.6)

where the orientational distribution function is normalized
such that it satisfies ∫

dω α(ω) = 1. (3.7)

In the isotropic phase where α(ω) is constant, the normaliza-
tion condition implies α(ω) = 1/4π reflecting full rotational
symmetry. In the polar phase, there is still cylindrical symme-
try with respect to the so-called director, that is, the average
orientation of the particles’ spins. We, therefore, follow Range
and Klapp [25] who expanded the orientational distribution
function in terms of Legendre polynomials {PL} via

2πα(ω) ≡ α(cos θ ) = 1

2
+

∞∑
L=1

αLPL(cos θ ), (3.8)

where α0 = 1
2 for the isotropic phase is treated separately such

that Eq. (3.8) is consistent with Eq. (3.7). Members of the set of
expansion coefficients {αL}L�1 are related to order parameters
characterizing the polar state [16,25]. Using the definition of
the spherical harmonics (see Eqs. (A.2) and (A.4) of Ref. [43]),
one has the relation,

PL(cos θ ) =
√

4π

2L + 1
YL0(ω). (3.9)

Now, employing Eqs. (3.6), (3.8), and (3.9), one can rewrite
Eq. (3.4) as

βB�F ex

V

= −1

2

( ρ

2π

)2 ∞∑
L1=0

∞∑
L2=0

√
(4π )2

(2L1 + 1)(2L2 + 1)
αL1αL2

×
∫

r12�σ

d r12

∫
dω1dω2YL10(ω1)YL20(ω2)f (r12,ω1,ω2).

(3.10)

Next we notice that, by analogy with Eq. (3.143) of
Ref. [43], the Mayer f function can be expressed in terms
of rotational invariants according to

f (r12,ω1,ω2) =
∑
l1l2l

fl1l2l(r12)�l1l2l(ω1,ω2,ω), (3.11)

where {fl1l2l(r12)} are expansion coefficients that depend
only on the distance r12 between particles of the molecular
pair. From the definition of the rotational invariants given
in Eq. (2.6), it follows that the set {�l1l2l} satisfies the

orthogonality relation [16],∫
dω1dω2dω ��(ω1,ω2,ω)�∗

�′(ω1,ω2,ω) = 2l + 1

4π
δ��′,

(3.12)

where the sets � = {l1l2l} and
�′ = {l′1l′2l′}. Hence, from Eq. (3.11), one can obtain the

expansion coefficients fl1l2l(r12) via

fl1l2l(r12)

= 4π

2l + 1

∫
dω1dω2dω f (r12,ω1,ω2)�∗

l1l2l
(ω1,ω2,ω).

(3.13)

Inserting Eq. (3.11) into Eq. (3.10) and changing to
spherical coordinates (i.e., d r12 → r2

12dr12dω), one obtains

βB�F ex

V
=−1

2

( ρ

2π

)2 ∞∑
L1=0

∞∑
L2=0

√
(4π )2

(2L1 + 1)(2L2 + 1)
αL1αL2

×
∑
l1l2l

∫
dr12r

2
12fl1l2l(r12)

∫
dω1dω2dω

×YL10(ω1)YL20(ω2)�l1l2l(ω1,ω2,ω). (3.14)

Using the definition of rotational invariants given in Eq. (2.6),
one notices that the integration over dω involves only the
spherical harmonics Ylm of �l1l2l . Therefore, the integral
vanishes except when l = m = 0 as a consequence of
Eq. (A.38) of Ref. [43].

Moreover, the Clebsch-Gordan coefficients vanish unless
the triangle relation |l1 − l2| � l � l1 + l2 is satisfied. Com-
bining this with the condition l = 0 implies that the integration
over orientations in Eq. (3.14) is nonzero only when l1 = l2 =
L such that the triple sum over l1, l2, and l reduces to a single
one, that is,

βB�F ex

V
= −1

2

( ρ

2π

)2 ∞∑
L1=0

∞∑
L2=0

√
(4π )2

(2L1 + 1)(2L2 + 1)

×αL1αL2

∞∑
L=0

∫
dr12r

2
12fLL0(r12)

×
∫

dω1dω2dω YL10(ω1)YL20(ω2)

×�LL0(ω1,ω2,ω). (3.15)

In addition, the integration over dωi (i = 1,2) involves prod-
ucts of spherical harmonics of the form YL10(ω1)YLm1 (ω1)
and YL20(ω2)YLm2 (ω2) such that the corresponding integrals in
Eq. (3.15) vanish because of the orthogonality of the spherical
harmonics (see, for example, Eq. (A39) of Ref. [43]) unless
L1 = L2 = L and m1 = m2 = 0. Consequently, the only
nonvanishing Clebsch-Gordan coefficients in the expansion
Eq. (3.11) are (L → l),

C(ll0; 000) = (−1)l√
2l + 1

. (3.16)
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Putting all this together, one eventually realizes that Eq. (3.10)
is recast compactly as

βB�F ex

V
= ρ2

∞∑
l=0

α2
l ul, (3.17)

where ul is given by

ul = − (−1)l√
π (2l + 1)3/2

∫ ∞

σ

dr12r
2
12fll0(r12). (3.18)

Together, Eqs. (3.17) and (3.18) constitute the MMF treatment
of the excess free energy of our model fluid.

Finally, the total free energy of our system may be cast
as [25]

F = Fhs + F id + �F ex, (3.19)

where the ideal-gas contribution may be expressed as

βBF id

V
= ρ[ln(ρ�5M/I) − 1] + ρ

∫ 1

−1
dx α(x) ln[2α(x)].

(3.20)

In Eq. (3.20), x ≡ cos θ, M stands for the molecular mass,
I stands for the moment of inertia of an amphiphile, � ≡√

βBh2/2πM is the thermal de Broglie wavelength, and
the exponent 5 accounts for the three translational and two
rotational degrees of freedom. However, as we argue in the
subsequent Sec. III B, the first summand on the right side of
Eq. (3.20) is irrelevant in locating the critical line of IP phase
transitions.

The second summand on the right side of Eq. (3.20)
represents the loss of rotational entropy our fluid suffers upon
entering the polar (i.e., ordered) phase. Notice that, in the
argument of the logarithm on the right side of Eq. (3.20),
we have arbitrarily introduced an additional factor of 2 that
causes the integral to vanish in the isotropic phase because
of the definition of α(x) in Eq. (3.8). The deliberate factor
of 2 changes the free energy only by a constant, which is
irrelevant because we are interested only in changes in free
energy henceforth.

For the free energy of the hard-sphere reference system, one
could employ the well-known Carnahan-Starling expression
[46]. However, like the first summand on the right side of
Eq. (3.20), the precise form of Fhs is irrelevant for the
determination of the critical line of IP phase transitions.

B. The critical line

To proceed, it is convenient to follow Range and Klapp [25]
by introducing

βB�F
V

≡ βBF
V

− βBFhs

V
− ρ[ln(ρ�5M/I) − 1] − ρ2

4
u0

= ρ

∫ 1

−1
dx α(x) ln[2α(x)] + ρ2

∞∑
l=1

α2
l ul, (3.21)

which is zero in the isotropic phase where α(x) = 1
2 [see

Eq. (3.8)], and the set of order parameters {αl}l�1 vanishes
identically. Consequently, any nonzero value of �F signals
the onset of order in the amphiphilic fluid. To determine the
critical line ρc(Tc), we need to locate thermodynamic state

points at which �F deviates from zero. To that end, we
follow Groh and Dietrich [16] who showed, for a system of
electrostatic point dipoles, that the leading contribution to �F
due to intermolecular interactions is given by the term l = 1
in the sum on the right side of Eq. (3.21). Similar conclusions
have been drawn by Range and Klapp for binary mixtures of
electrostatic point dipoles [25].

The expression in Eq. (3.21) can be simplified further by
realizing that, at the onset of the IP phase transition, the
deviation in the set of expansion coefficients {αl} from zero
will be small. Hence, using, in Eq. (3.21), ξ ≡ ∑

l=1 αlPl(x)
and expanding the integrand on the right side in a Taylor series,
one obtains [25](

1

2
+ ξ

)
ln(1 + 2ξ ) = ξ + ξ 2 + · · · . (3.22)

In addition, using the fact that
∫ 1
−1 dx Pl(x) = 0 for l � 1 and

the orthogonality of Legendre polynomials (see, for example,
Eq. (A9.b) of Ref. [43]), we conclude that∫ 1

−1
dx α(x) ln[2α(x)] =

∞∑
l=1

(
2

2l + 1

)
α2

l + · · · , (3.23)

so that Eq. (3.21) can be rewritten as

βB�F
V

=
∞∑
l=1

(
2

2l + 1
ρ + ulρ

2

)
α2

l . (3.24)

Concentrating on the leading term in Eq. (3.24), we arrive at
the approximate formula,

βB�F
V


 ρ

(
2

3
+ ρu1

)
α2

1 = 0, (3.25)

as the constitutive equation from which the critical density
along the line of IP phase transitions can be obtained. As long
as the expression in Eq. (3.25) vanishes, the isotropic phase
is thermodynamically stable. Clearly, besides the trivial and
physically uninteresting solution ρc = 0, Eq. (3.25) leads to
the simple formula,

ρc = −2

3

1

u1
, (3.26)

which is in complete agreement with Eq. (7.10) of Groh and
Dietrich [16] and Eq. (2.37) of Range and Klapp [25].

C. High-temperature expansion of the Mayer f function

In Eq. (3.26),

u1 = 1

3
√

3π

∫ ∞

σ

dr12r
2
12f110(r12), (3.27)

and

f110(r12) = 4π

∫
dω1dω2dω f (r12,ω1,ω2)�110(ω1,ω2,ω)

(3.28)

are special cases of the general expressions given in Eqs. (3.13)
and (3.18) where we also used the fact that �110 = �∗

110.
To proceed, we approximate the Mayer f function by

assuming that, at the onset of the formation of a polar phase,
βBϕanis � 1 [see Eq. (2.4)]. Hence, we expand exp[−βBϕanis]
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TABLE I. Values of the integral Ipq [see Eq. (3.30)] for various
combinations of the integers p and q. The sum p + q refers to
the order of terms in the expansion of the Mayer f function [see
Eq. (3.29)], which is identified through entries in the last column of
the table.

p q p + q Ipq Order

1 0 1 0 Zeroth
2 0 2 1

4π
First

1 1 2 0
3 0 3 0 Second
2 1 3 0
1 2 3 0
4 0 4 9

5
1

(4π )4 Third
3 1 4 0
2 2 4 27

5
1

(4π )4

1 3 4 −9
√

2
5

1
(4π )4

in a power series which we truncate after the cubic term such
that we obtain, from the last line of Eq. (3.5), the approximate
expression,

f = exp(−βBϕiso)

[
1 − βBϕanis + (βBϕanis)2

2!

− (βBϕanis)3

3!
± · · ·

]
− 1. (3.29)

Our motivation to keep terms up to cubic order (rather than
truncating the expansion after the second-order term), as has
often been performed in other MMF DFT papers [16,45],
becomes apparent in the subsequent Sec. III D. Inserting
Eq. (3.29) into Eq. (3.28) and using Eqs. (2.4) and (2.8), one
realizes that the resulting expression for f110 (r12) involves
integrals of the general form

Ipq ≡
∫

dω1dω2dω �
p

110(ω1,ω2,ω)�q

112(ω1,ω2,ω), (3.30)

where different combinations of p and q arise from the
constant, linear, quadratic, and cubic terms in the expansion
of exp(−βBϕanis) in Eq. (3.29). For the sake of clarity, we
list these various integrals in Table I. Applying the product
rule for rotational invariants (see, for example, Eq. (B8) of
Ref. [16]) to products of powers of �110 and �112 iteratively,
considering that one can express these products in terms
of linear combinations of other rotational invariants, and
employing the general relation,∫

dω1dω2dω �l1l2l =
{√

4π, l1 = l2 = l = 0,

0, otherwise,
(3.31)

entries in Table I are obtained.
After some tedious but otherwise straightforward algebra,

from Eq. (3.29), one obtains, with the aid of entries in Table I,

f110(r12) = (4π )3/2
√

3 exp[−βBϕiso(r12)]

×
{
βBϕatt(r12)εH + 9

10
[βBϕatt(r12)]3

×
(

ε3
H + 3εHε2

D − 1

3

√
10

3
ε3

D

)}
. (3.32)

Inserting Eq. (3.32) into Eq. (3.27), we then finally arrive at

u1 = 8π

3

{
βBI (1)εH + β3

BI (3)

× 9

10

(
ε3

H + 3εHε2
D − 1

3

√
10

3
ε3

D

)}
, (3.33)

where the integrals,

I (n) ≡
∫ ∞

σ

dr12r
2
12[ϕatt(r12)]n exp[−βBϕiso(r12)] (3.34)

have to be solved numerically. With the aid of Eqs. (3.33)
and (3.34), we compute the line of IP phase transitions from
Eq. (3.26).

D. Consequences

In view of our numerical results presented later in Sec. V,
it is instructive to briefly analyze the result given in Eq. (3.33)
from a formal point of view. We start by considering the con-
tribution to u1 from the first-order term in the corresponding
expansion of the Mayer f function [see Eq. (3.29)]. This
contribution depends solely on the coupling constant of the
Heisenberg interaction. Specifically, because I (1) is negative
and εH is positive for a ferromagnetic Heisenberg interaction,
the entire first-order contribution to u1 is negative and, thus,
can generate a positive critical density [see Eq. (3.26)]. We also
see (focusing again on the first-order term) that the larger εH ,
the larger this first-order contribution becomes. This yields a
decrease in ρc at fixed inverse temperature βB . In other words,
an increase in εH supports the IP phase transition as one might
expect.

Consider now the third-order contribution which depends
on both the Heisenberg and the dipolar contribution (which
we assume to be truly dipolarlike in the sense that εD > 0).
The prefactor of the third-order term to u1, determined by
the integral I (3), is again negative on one hand. On the other
hand, the function f (x) ≡ 1 + 3x2 − 1

3

√
10/3x3, determining

the expression in parentheses in Eq. (3.33) with x ≡ εD/εH,
has a nonmonotonic behavior and can even change sign.
Specifically, for x = 0, that is, in the absence of the dipolelike
interaction, we find f (x) = 1 > 0, indicating that the third-
order contribution for a pure Heisenberg system supports the IP
phase transition. The dipolar term even enhances this behavior
as long as it is not too large. Indeed, f (x) increases with x

towards larger positive values up to a value of xmax ≈ 3.4.
For larger coupling ratios x, f (x) decreases again and finally
becomes even negative. We can, thus, conclude that the impact
of εD on the IP phase transition depends strongly on the ratio
of the dipolar and Heisenberg coupling constants. Our results,
presented in Sec. V, focus mostly on the case of x = 0.5.

Another interesting point to note is that, in the absence of
the Heisenberg contribution, there is no IP phase transition at
all. This conclusion is drawn on the basis of the observation
that, for εH = 0, Eq. (3.33) reduces to the expression,

u1 = −4π

5

√
10

3
β3

BI (3)ε3
D. (3.35)

For εD > 0 (which is the choice adopted predominantly in
the present paper), it follows that u1 > 0 because I (3) < 0
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[see Eqs. (2.4) and (3.34)]. Thus, because u1 > 0, the critical
density would turn out to be negative [see Eq. (3.26)], which
is unphysical.

On the contrary, an ordered ferroelectric phase forms in
fluids in which molecules are carrying an electrostatic (point)
dipole [16,25,47]. Whereas, the orientation dependence of the
interaction between a pair of electrostatic dipoles is the same
as in the dipolar contribution to ϕanis of the present model
system, the range of the interactions is different. Therefore, it
seems sensible to ascribe the absence of an IP phase transition
in our model fluid in the case of εH = 0 to the short-range
nature of ϕanis. We note that the role of the long-range nature
of the dipolar interactions for the existence of a ferroelectric
transition has also been pointed out in previous theoretical
papers on the basis of free-energy arguments [9,13,48] and
integral-equation methods [13,21]. In these approaches, the
long-range nature enters via a shape (or boundary-condition)
dependence of the free energy of the homogeneous system
[9,13,48] and a nonvanishing of certain coefficients of the
direct correlation function [13,21]. This leads to a divergence
of the dielectric constant when the dense isotropic liquid is
cooled down. All these approaches would fail to predict a
ferroelectric phase if the dipolar interaction were short ranged.

By a similar token, an IP phase transition cannot take place
if εH < 0 because this would also cause u1 to be positive
such that ρc < 0. Nevertheless, an ordered antiferromagnetic
phase has been reported for a 3D Heisenberg fluid with a
negative coupling constant by Lomba et al. some time ago
[37]. The formation of such an antiferromagnetic phase would
only be signaled by the nematic-order parameter α2, whereas,
α1, on which we concentrate here, vanishes even in such an
ordered phase [37]. However, in the presence of the Heisenberg
contribution, the dipolar contribution to ϕanis may have an
impact on the location of the critical line. This follows from
the term in parentheses in Eq. (3.33).

Finally, it seems instructive to consider the predictions of a
simple mean-field (SMF) approach. The latter is characterized
by setting in Eq. (3.1),

g(r12,ω1,ω2; λ) =
{

0, r12 < σ,

1, r12 � σ.
(3.36)

It is then relatively straightforward to demonstrate that the
calculation of �F gives an expression similar to the one
presented in Eq. (3.25) where, however, u1 has to be replaced
by ũ1, defined by

ũ1 ≡ 8π

3
βBεH

∫ ∞

σ

dr12r
2
12ϕatt(r12) = −32π

9
βBεεHσ 3.

(3.37)

Hence, in Eq. (3.26), replacing u1 by ũ1 leads to the simple
analytic expression,

βc
Bερcσ

3 = 3

16π

1

εH
(3.38)

for the line of IP phase transitions at the SMF level where βc
B is

defined analogously to βB replacing, however, T by the critical
temperature Tc. A comparison between Eq. (3.38) and the
more complex expression, resulting from Eqs. (3.26), (3.33),
and (3.34) at the MMF level shows that, within the SMF

approach, the dipolar contribution to ϕanis is totally irrelevant
for IP phase transitions. In fact, as seen from Eq. (3.33), it is
only the cubic term in the expansion of the Boltzmann factor
[see Eq. (3.29)] which yields a nonvanishing contribution of
the dipolar term to the critical density. This justifies a posteriori
our truncation of the power series in Eq. (3.29) after the term
proportional to β3

B.

IV. ASPECTS OF FINITE-SIZE SCALING

To characterize the IP phase transition quantitatively, we
introduce order parameters,

ml =
∫ 1

−1
dx α(x)Pl(x) = 2

2l + 1
αl (4.1)

based upon Eq. (3.8) where we employed the orthogonality
relation (see Eq. (A9.b) of Ref. [43]) satisfied by the Legendre
polynomials. Because, in the isotropic phase, α(x) = 1

2 and
because ∫ 1

−1
dx Pl(x) = 0, ∀ l � 1, (4.2)

it follows that ml = 0 in the isotropic phase for all l � 1.
On the contrary, ml �= 0 if the system is in the polar phase.
Because we have limited our discussion of the critical line
of IP phase transitions to the leading terms in Eqs. (3.21)
and (3.24) proportional to α1 [see also Eqs. (3.22)–(3.25)], we
restrict the following discussion to m1 as the order parameter,
characterizing the IP phase transition.

One could determine m1 within the scope of our MMF
treatment as shown in detail by Groh and Dietrich [16] for
pure fluids and as shown later by Range and Klapp [25] for
binary mixtures of systems in which molecules are carrying an
electrostatic point dipole. However, here, our goal is to employ
a first-principles method, such as MC simulations to test the
predictions and, therefore, the validity of the MMF theory
developed in Secs. III A and III B. Consequently, we need an
operational definition of m1 suitable for computation in MC.
To that end, we introduce the instantaneous order parameter,

m1 ≡ 1

N

∣∣∣∣∣
N∑

i=1

û (ωi) · n̂

∣∣∣∣∣ , (4.3)

where N denotes the number of molecules and the magni-
tude must be taken for reasons explained by Deutsch [49].
Following standard practice [5,6,11,47,50–52], we compute
the director n̂ as the eigenvector associated with the largest
eigenvalue of the real, symmetric, and traceless alignment
tensor,

Q ≡ 1

2N

N∑
i=1

[3û(ωi) ⊗ û(ωi) − 1], (4.4)

where the operator ⊗ represents the tensor product and 1 is
the unit tensor. Numerically, we obtain n̂ by applying Jacobi’s
method [53] to diagonalize Q.

The ensemble average 〈m1〉 should vanish in the isotropic
phase according to the definition of m1 given in Eq. (4.3).
However, 〈m1〉 = 0 only in the thermodynamic limit. In any
system of finite extent, 〈m1〉 decays towards this limiting
value in proportion to 1/

√
N (see Appendix A of Ref. [3]).
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Therefore, in any system of finite extent, 〈m1〉 > 0 in the
isotropic phase. The reason is that regions exist in which
molecules align themselves in a locally parallel fashion
because ϕanis favors such an alignment [see Eqs. (2.4) and (2.5)]
if the coupling constants εH and εD are chosen sensibly (see
Sec. III D). Because, in the isotropic phase, no correlation
between different locally ordered regions exists—provided
their separation is larger than the range of ϕanis—an average
over all the preferentially ordered but differently oriented
domains in an infinitely large system would then give 〈m1〉 =
0. On the contrary, in a finite system, the different orientations
of molecules in different uncorrelated domains of the system
do not completely average out so that the actual value of 〈m1〉
is the larger the smaller the system is according to its decay in
proportion to 1/

√
N already mentioned above.

In an ideal ordered (polar) phase, 〈m1〉 = 1 because
all molecules align themselves perfectly with n̂ such that
û(ωi) · n̂ = 1 for i = 1, . . . ,N . A preferred alignment of the
molecules with n̂ exists even if the ordered phase is nonideal
(〈m1〉 < 1). This causes finite-size effects to vanish sufficiently
deep in the ordered phase (i.e., at sufficiently low T or
sufficiently high pressure P ). In general, the variation in 〈m1〉
with T (or P ) across the IP phase transition is weaker the lower
N is. Consequently, the variation in 〈m1〉 in the vicinity of the
IP phase transition is smeared out the smaller N is.

To gain more detailed insight into such finite-size effects, it
is useful to investigate the order-parameter distribution P(m1)
through its moments [54],

〈
mk

1

〉 ≡
∫ 1

0
dm1m

k
1P(m1). (4.5)

To account quantitatively for the effects of finite system size,
we make an ansatz and introduce a system-size-dependent
analog of P(m1) via [49]

PN (m1) = P[m1(N ),t(N ),N ]

≡ Nβ/3νP̃(Nβ/3νm1,N
1/3ν t), (4.6)

where t ≡ T/Tc − 1 is a measure of distance from the critical
temperature Tc at the IP phase transition.

In Eq. (4.6) and below, tildes are used to refer to system-
size-independent (rescaled) quantities. In the expression on
the second line of Eq. (4.6), β and ν are critical exponents,
governing the growth of 〈m1〉 and that of the correlation length
in the vicinity of a critical point, respectively. The ansatz in
Eq. (4.6) is valid if one assumes hyperscaling to be valid as
well, that is, for a three-dimensional system, the relation,

3ν − 2β − γ = 0 (4.7)

is assumed to hold, which implies that, besides the correlation
length, there is no other length diverging as t = 0 is approached
[55]. In Eq. (4.7), γ is the critical exponent, governing the
divergence of the order-parameter susceptibility. Traditionally,
one would make this ansatz by taking the linear extent L of
the system as the scaling variable rather than N . However,
throughout this paper, we replace L by N1/3 because N

remains fixed in the MC simulations that we carry out in the
isothermal-isobaric ensemble. In this ensemble, L fluctuates
around some average value 〈L〉 as the simulations progress,

which makes the use of this variable in finite-size scaling
approaches somewhat awkward.

Next, we introduce scaling functions m̃(k)(N1/3ν t). This is
accomplished by approximating P in Eq. (4.5) by its system-
size-dependent counterpart PN given in Eq. (4.6). Introducing
m̃1 ≡ Nβ/3νm1 as a new integration variable and t̃ ≡ N1/3ν t ,

m̃(k)(̃t) ≡ Nkβ/3ν

∫
dm̃1m̃

k
1P̃(m̃1,̃t) (4.8)

follows without further ado. Equation (4.8) permits us to
express the moments of the order-parameter distribution in
Eq. (4.5) in terms of their scaling functions via〈

mk
1

〉
N

= N−kβ/3νm̃(k)(̃t). (4.9)

To locate the IP phase transition, we begin by first determin-
ing the critical temperature Tc. This can be accomplished by
considering the second-order Binder cumulant defined as [49]

g2(̃t) ≡
〈
m2

1

〉
N

〈m1〉2
N

= m̃(2)(̃t)

[m̃(1)(̃t)]2
, (4.10)

where the far right side follows with the aid of Eq. (4.9) and
t̃ = N1/3ν(T/Tc − 1). If plotted as a function of T instead of
the rescaled temperature t̃ , g2(T ) for different N ’s intersect
in a unique point, which allows us to determine Tc without
any a priori knowledge of critical exponents. The value of
g2(T ) at T = Tc is model dependent. The uniqueness of
g2(Tc) is a direct consequence of the system-size independence
of the scaling functions at T = Tc. Moreover, if plotted as
a function of t̃ , cumulants for different system sizes are
expected to collapse onto a unique master curve in the
near-critical regime where the scaling ansatz presented in
Eq. (4.6) is valid [see Fig. 1(b)]. As demonstrated elsewhere
[4], our model pertains to the universality class of the
classical three-dimensional Heisenberg fluid characterized by
β = 0.3689(3), γ = 0.7112(5), and ν = 1.3960(9) [7].

V. RESULTS

A. Numerical details

Results presented in this paper have been obtained by
MC simulations in the isothermal-isobaric ensemble as dis-
cussed in greater detail in Ref. [3]. In this ensemble, a
thermodynamic state is uniquely specified by the number
of molecules N , pressure P , and temperature T . Employing
a METROPOLIS algorithm adapted to the isothermal-isobaric
ensemble as described in the book of Allen and Tildesley
[56], we generate a Markov chain of configurations with a
limiting distribution in configuration space proportional to
exp{−βB[�(R,�) + PV ] + N ln V }, where V is the volume
of the computational cell. To achieve this goal, one has to
perform random displacements of the centers of mass of
the molecules and their random rotation. Both substeps are
attempted with equal probability where the specific molecule
is picked sequentially. The N attempts to either displace or
rotate a molecule are followed by one attempt to change V .
This is effected by rescaling the side lengths of the simulation
box homogeneously (see p. 6 of Ref. [3]). Together, the
N translational and rotational and the single volume-change
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FIG. 1. (a) Plots of g2 − 1 as functions of T on a semilogarithmic
scale for system sizes (•): N = 300 and (�): N = 10 000. The dashed
horizontal line represents the limiting value of g2 − 1 = π

2 − 1 in
the isotropic phase (see Ref. [3]). Intermediate curves are obtained
for N = 500, N = 1000, N = 2000, and N = 5000. The inset is
an enlargement of the plots around the transition temperature TIP 

1.047 marked by the solid vertical line. (b) Data plotted in (a) collapse
onto a master curve if plotted as functions of t̃ ; (◦): N = 300; (�):
N = 500; (+): N = 1000; (×): N = 2000; (•): N = 5000; (�): N =
10 000. Data have been obtained for εH = 0.06, εD = 0.03, and P =
1.30.

attempts constitute a MC cycle. Our runs are typically based
upon 2 × 104 equilibration cycles followed by 2–4 × 105

production cycles during which relevant ensemble averages
are computed. In the immediate vicinity of the IP phase
transition, the number of cycles are enlarged to 106 cycles
in a few test cases to make sure that our data are not plagued
by critical slowing down. We consider system sizes ranging
from 300 � N � 10 000.

In this paper, all quantities are expressed in terms of the
customary reduced units. Length is given in units of σ , energy
in units of ε, and temperature in units of ε/kB. Other derived
quantities are expressed in terms of suitable combinations of
these basic quantities. For example, pressure is given in units
of ε/σ 3. Finally, unlike in our previous paper [3], we consider
only a single pressure P = 1.30 but various values of the
coupling constants εH and εD.

B. Cumulant analysis

To demonstrate the reliability of our numerical analysis, we
begin with a discussion of the second-order Binder cumulant
to locate the temperature at which the IP phase transition takes
place. These results are obtained for εH = 0.06 and εD = 0.03.
The choice of εD < 0 in our earlier papers [3,4] was motivated
because it offers molecules the possibility to form micelles and
lamellae, which are often observed in amphiphilic suspensions.
However, as we demonstrate, shortly, below, the actual sign of
εD is inconsequential for the location of the IP phase transition.

Plots in Fig. 1(a) for the pressure P = 1.30 show that
g2 − 1 approaches the limiting value of π

2 − 1 in the tem-
perature range of thermodynamically stable isotropic phases
and sufficiently far above Tc, which is a consequence of
the Gaussian nature of P(m1) [3]. As T decreases, g2 − 1
decreases too. The onset of the departure from the limiting
value of π

2 − 1 begins at higher T the smaller N is. Eventually,
at T = Tc, all cumulants intersect in a unique point as expected
for a continuous phase transition. With decreasing T , g2 − 1
approaches zero in the polar phase. This is a consequence of the
fact that, with increasingly lower T , P(m1) → δ(m1 − 〈m1〉)
(δ denotes the Dirac δ function) because fluctuations of the
order parameter around its average value are more and more
suppressed [3]. The decrease in g2 − 1 towards zero turns out
to be more pronounced the larger N is. Hence, the order of
curves for various system sizes in Fig. 1(a) is inverted for
T < Tc in the polar phase compared with the isotropic phase
in the range of T > Tc.

From the intersection of the curves in the inset of Fig. 1(a),
we determine the critical temperature Tc 
 1.047 of the IP
phase transition. According to the arguments at the end of
Sec. IV, one expects the data plotted in Fig. 1(a) to collapse
onto a unique master curve if T is replaced by t̃ provided the
value of Tc is sufficiently accurate and one knows the value of
the critical exponent ν. Plots in Fig. 1(b) show that, indeed, our
data can be represented by the expected master curve over the
entire temperature range considered. This clearly illustrates
that our estimate of both Tc and ν is sufficiently accurate.
Moreover, the results presented in Fig. 1(b) also indicate that
our scaling ansatz in Eq. (4.6) is reliable for the range of system
sizes considered in this paper such that, apparently, corrections
to the simple scaling employed here are negligibly small.

C. Monte Carlo simulations and modified mean-field theory

After demonstrating the reliability of the cumulant analysis,
we are now turning to a systematic investigation of the
influence of the coupling parameters εH and εD on the IP
phase transition. As we demonstrated by plots in Figs. 1(a)
and 1(b), the accuracy and resolution of our data permit a
determination of the critical temperature Tc with sufficiently
high precision. To save computer time, the following results
are based upon data for only two system sizes N = 1000 and
N = 2000 used in the cumulant analysis. To test the theoretical
predictions derived in Sec. III B, it will be convenient to
analyze the product βc

Bρc [see, for example, Eq. (3.38)]. We
determine ρc from plots of ρ versus T and linear interpolation
over the temperature interval defined by the two data points
immediately below and above Tc. Plots in Fig. 2 reveal that this
linear interpolation to find ρc can be expected to be reliable
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FIG. 2. Plots of ρ as a function of T for (+): N = 1000 and
(×): N = 2000. The vertical dashed line demarcates the critical
temperature Tc 
 1.047 determined from plots in Fig. 1(a).

because ρ depends sufficiently weakly on T and because there
is no significant system-size effect. From Fig. 2, one also
notices that the slope of the curves differs between regimes
T < Tc and T > Tc. This reflects a change in the thermal
expansion coefficient αP ≡ −ρ−1(∂ρ/∂T )P , which passes
through a maximum at T 
 Tc. Intuitively, this makes sense
because, as a response function, αP is related to energy-density
fluctuations [57], which are expected to become maximum at
the (continuous) IP phase transition.

In Fig. 3, we present plots of βc
Bρc as a function of 1/εH

obtained from a sequence of MC simulations. This plot is
motivated by Eq. (3.38) obtained at the SMF level. As one can
see, βc

Bρc increases with decreasing strength of the Heisenberg
coupling constant in a slightly nonlinear fashion. Also shown
in the figure is the prediction of the SMF theory represented by
Eq. (3.38). The comparison reveals that the latter expression
overestimates βc

Bρc increasingly as 1/εH becomes larger. On
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FIG. 3. Plots of βc
Bρc as a function of 1/εH; (�): MC data; (–):

from Eq. (3.38); (- - -): from Eq. (5.1). The inset is an enlargement
where (–) is computed from Eqs. (3.34) and (5.1) and (- - -) is obtained
from Eqs. (3.26), (3.33), and (3.34). All data sets are obtained for
εD = 0.03.
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FIG. 4. Left ordinate (�): plots of ρc and right ordinate (�): Tc

as functions of 1/εH obtained from MC at εD = 0.03.

the contrary, an improved representation of βc
Bρc is given when

we use Eq. (3.33) but neglect the term proportional to β3
B [see

Eq. (5.1)]. Using that truncation, from Fig. 3, we see that the
MMF theory becomes nearly quantitative over the range of
5.0 � 1/εH � 10.0. However, for weaker-coupling constants
(i.e., at larger values of 1/εH), the MMF treatment also fails
increasingly to represent the simulation data adequately and
underestimates βc

Bρc the more the larger 1/εH becomes.
The MMF results shown in Fig. 3 are obtained by

neglecting, in the expression for u1 in Eq. (3.33), the term
proportional to β3

B. From Eqs. (3.26) and (3.33), it is then easy
to verify that [I (1) < 0, see Eqs. (2.3) and (3.34)]

βc
Bρc 
 − 1

4πI (1)

1

εH
, (5.1)

from which it is apparent that the overestimation of I (1) at
lower values of the Heisenberg coupling constant causes the
leveling off of the MMF prediction for βc

Bρc as 1/εH increases.
As one can see from the inset in Fig. 3, in the expression for
u1, incorporating the term proportional to β3

B [see Eq. (3.33)]
is almost negligible except for the largest values of 1/εH. The
inset also indicates that, in the expression for u1, incorporating
the term proportional to β3

B deteriorates the agreement between
our MMF theory and the MC results, but, only marginally.
Nevertheless, it is pleasing to notice that the SMF theory and
the MMF predictions give upper and lower bounds for the
values of βc

Bρc, respectively.
To unravel the origin of the less satisfactory description

of our MC data by the MMF treatment in the low-coupling
regime, in Fig. 4, we present separate plots of ρc and Tc for
various values of 1/εH. The plots in Fig. 4 clearly indicate
that, with increasing 1/εH, ρc increases markedly, whereas,
Tc decreases steadily. This implies that our ansatz for the
pair correlation function in Eq. (3.3) is less applicable as
the coupling of the Heisenberg term in ϕanis [see Eqs. (2.4)
and (2.5)] becomes weaker (i.e., as 1/εH increases).

Next, it seems interesting to check the relative importance of
the dipolar contribution to ϕanis. The MMF treatment detailed
in Sec. III A suggests that the dipolar contribution to the
critical line ρc(Tc) is subdominant to the Heisenberg one for
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FIG. 5. Plots of g2 − 1 as functions of T . (a) εD = 0.03, (◦):
N = 1000, and (•) N = 2000; εD = −0.03, (×): N = 1000, and (+):
N = 2000. In all cases, εH = 0.07. (b) as (a) but for εH = 0.00 and
εD = 0.03. The dashed line represents the limiting value g2 − 1 =
π

2 − 1 in the isotropic phase [4].

coupling constants less than 1 because εD enters Eq. (3.33)
quadratically in lowest order, whereas, the expression in
Eq. (3.33) depends linearly on εH [see also Eq. (3.26)]. Plots
in Fig. 5(a) show that, for a nonvanishing coupling constant of
the Heisenberg contribution to ϕanis [see Eqs. (2.4) and (2.5)],
an IP phase transition occurs signaled by the intersection
of the second-order cumulants for the two different particle
numbers. However, the sign of the dipolar coupling constant
is apparently irrelevant for this transition indicated by the fact
that the curves for the same N and εD > 0 can be superimposed
to those for εD < 0 within statistical errors of the simulation
data. Because the sign of εD becomes relevant only through
the last term in parentheses in Eq. (3.33) and because this term
is proportional to ε3

D, the impact of whether εD is positive or
negative is expected to have only a negligible influence on
the location of the IP phase transition given the magnitude of
the coupling constants in Fig. 5. Hence, our data plotted in
Fig. 5(a) comport with the theoretical predictions.

Moreover, the plot in Fig. 5(b) illustrates that, in the case
of a vanishing Heisenberg coupling constant, the IP phase
transition vanishes, too. This is reflected by the fact that, for
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FIG. 6. (a) Plots of P(m1) for N = 1000. (a) εH = 0.00, εD =
0.03; (�): T = 1.20; and (�): T = 0.80. (b) as (a) but for εH =
0.07, εD = 0.03; (�): T = 1.30; (�): T = 1.12; (◦): T = 1.02; and
(•): T = 0.90 [see also Fig. 5(a)]. The solid lines in parts (a) and (b)
of the figure are fits of a Gaussian to the discrete MC data sets.

εH = 0.00, g2 − 1 turns out to be temperature independent
and fluctuates around its limiting value of π

2 − 1 over a range
of T where the corresponding plots in Fig. 5(a) exhibit clear
evidence for an IP phase transition. The limiting value can be
rationalized by assuming that the order-parameter distribution
is Gaussian in the isotropic phase centered on m1 = 0. It is then

easy to verify that 〈|m1|〉 =
√

2σ 2
P/π , whereas, 〈m2

1〉 = σ 2
P

such that g2 = π
2 follows from Eq. (4.10) without further ado.

For T < 0.8, the system characterized by εH = 0.00 and εD =
0.03 seems to enter a solidlike or glassy state as we inferred
from an inspection of snapshots of individual configurations
generated in the MC simulations. This suggests solidification
rather than formation of a polar liquidlike phase in the absence
of the Heisenberg contribution to ϕanis in Eq. (2.4).

That the order-parameter distribution in the isotropic phase
is, indeed, Gaussian as surmised above is illustrated by plots
in Fig. 6(a). Notice that, in both plots presented in Fig. 6(a),
〈|m1|〉 = 0. Hence, the Gaussian order-parameter distribution
is solely governed by σP such that the slight deviation in
peak height and width between the two distributions plotted
in Fig. 6(a) reflects the scatter of the corresponding data
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points plotted in Fig. 5(b). For a nonvanishing Heisenberg
coupling constant, plots in Figs. 5(a) reflect the existence
of an IP phase transition. Consequently, the order-parameter
distribution shifts to larger values of 〈|m1|〉 with decreasing T

as one can see from the plots in Fig. 6(b). However, with lower
T , P(m1) becomes both taller and narrower such that, in the
limit of vanishing T ,

lim
T →0

P(m1) = δ(m1 − 〈|m1|〉). (5.2)

Thus, it follows from Eq. (4.5) that, in the limit of van-
ishing temperature, 〈m2

1〉 = 〈|m1|〉2, which reflects the van-
ishing of order-parameter fluctuations in that limit (i.e., a
vanishing order-parameter susceptibility). This also implies
limT →0(g2 − 1) = 0 in agreement with MC data plotted in
Figs. 1 and 5(a).

VI. SUMMARY AND CONCLUSIONS

In this paper, we investigate the IP phase transition in an
anisometric Lennard-Jones fluid by means of mean-field DFT
and MC simulations in the isothermal-isobaric ensemble. In
these simulations, we locate the critical temperature at the
IP phase transition by analyzing the second-order Binder
cumulant of the dipolar-order parameter for various system
sizes. Once Tc has been determined, ρc can be calculated
from the temperature dependence of the mean density also
accessible in the MC simulations.

Our numerical results show that both Tc and ρc depend
on the coupling strength εH of the Heisenberg contribution to
the anisotropic part of our intermolecular interaction potential.
On the contrary, the dipolelike (yet short-ranged) contribution
turns out to be largely irrelevant for the IP phase transition
in the range of coupling constants for which the system in
parallel MC simulations is still fluidlike. We interpret this
feature as a consequence of the short-range character of the
interaction. Indeed, for true long-range dipolar interactions, the
formation of ordered phases is determined by the magnitude
of the dipole moment, which is the analog of

√
εD in our

model.
The insensitivity of the IP phase transition in our MC

simulations is reflected by two features. First, for fixed εH,
the sign of εD does not matter. Second, for εH = 0.00, the
IP phase transition is suppressed over the same temperature
range over which it takes place for nonvanishing εH. Instead,
we observe indications for solidification.

In the parallel theoretical treatment, our results are based
upon two approximations made to the orientation-dependent
pair correlation function. In the simplest version of the
theory (SMF), correlations between a pair of molecules are
neglected altogether for separations exceeding the hard-core
diameter of the molecules. In this SMF treatment, the IP phase
transition is solely driven by the Heisenberg contribution to
the intermolecular interaction potential. The ratio of critical
density ρc to critical temperature Tc at the IP phase transition

is predicted to be inversely proportional to the Heisenberg
coupling constant εH, which turns out to provide a sufficiently
accurate description of the MC data in the strong-coupling
limit, that is, as 1/εH vanishes.

In the more elaborate MMF treatment, we approximate the
pair correlation function by its form in the limit of vanishing
density. Together with a high-temperature expansion, we show
that, in lowest order, βc

Bρc is also proportional to 1/εH but
exhibits a weak temperature dependence unlike at the SMF
level. Including higher-order terms in the high-temperature
expansion of the pair correlation function, on which the MMF
treatment is based, causes βc

Bρc to also depend on the dipolar
contribution to the anisotropic part of the intermolecular
interaction potential. Unfortunately, including higher-order
terms deteriorates the agreement between DFT and MC
results, but, only marginally. In the complete absence of the
Heisenberg term (i.e., for εH = 0.00), the critical density
predicted by the MMF theory turns out to be unphysical
in cases where εD is positive. Hence, polar phases cannot
form if ϕanis depends solely on the (short-range) dipolelike
contribution to � consistent with earlier theoretical arguments.

Thus, both versions of the mean-field theory agree qualita-
tively with the numerical results in that an IP phase transition
cannot occur in the absence of the Heisenberg contribution to
the anisotropic part of the interaction potential. If the coupling
constant of the Heisenberg contribution is sufficiently large, the
MMF theory agrees semiquantitatively with the MC results.
The range of coupling constants for which this is the case
significantly exceeds the range over which the agreement with
the SMF theory is satisfactory so that the MMF approach
gives an improvement over the simple version of the mean-field
theory. However, in developing the MMF theory for the present
model, it turns out to suffice to consider only the linear term in
βB in the high-temperature expansion of the Mayer f function.
Instead, the agreement between DFT and MC data is expected
to become better if a more suitable approximation of the pair
correlation function would be employed.

In the case of “antidipoles” (i.e., for εD < 0), the possibility
for an IP phase transition exists in principle because one would
obtain physically sensible values for the critical density ρc

from Eqs. (3.26) and (3.35). However, polar phases for an-
tidipolar interactions cannot form because the anisotropic part
of the interaction potential favors an antiparallel rather than
a parallel orientation of a pair of nearest-neighbor molecules,
which consequently destroys the possibility of forming polar
phases even at low temperatures or high pressures.
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