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Freezing of a two-dimensional fluid into a crystalline phase: Density functional approach
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A free-energy functional for a crystal proposed by Singh and Singh [Europhys. Lett. 88, 16005 (2009)] which
contains both the symmetry conserved and symmetry broken parts of the direct pair correlation function has
been used to investigate the crystallization of a two-dimensional fluid. The results found for fluids interacting via
the inverse power potential u(r) = ε (σ/r)n for n = 3, 6, and 12 are in good agreement with experimental and
simulation results. The contribution made by the symmetry broken part to the grand thermodynamic potential at
the freezing point is found to increase with the softness of the potential. Our results explain why the Ramakrishnan-
Yussouff [Phys. Rev. B 19, 2775 (1979)] free-energy functional gave good account of freezing transitions of
hard-core potentials but failed for potentials that have soft core and/or attractive tail.
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I. INTRODUCTION

Freezing is a basic phenomenon, the most inevitable of all
phase changes. When a liquid freezes into a crystalline solid its
continuous symmetry of translation and rotation is broken into
one of the Bravais lattices. A crystalline solid has a discrete set
of vectors Ri such that any function of position, such as one
particle density ρ(r), satisfies ρ(r + Ri) = ρ(r) for all Ri [1].
Because of localization of particles on lattice sites, a crystal is a
system of extreme inhomogeneities where values of ρ(r) show
extreme differences between its values on the lattice sites and
in the interstitial regions. The density functional formalism
of classical statistical mechanics has been used to develop
theories for liquid-solid transitions [2,3]. This kind of approach
was initiated in 1979 by Ramakrishnan and Yussouff [4].

The central quantity in this formulation is the excess
reduced Helmholtz free energy arising due to interparticle
interactions of both the crystal Aex[ρ] and the liquid Aex[ρl]
[4,5]. For the crystal Aex[ρ] is a unique functional of ρ(r),
whereas for the liquid Aex(ρl) is simply a function of liquid
density ρl . The density functional formalism is used to write
an expression for Aex[ρ] in terms of one- and two-particle
distribution functions of the solid [2–5]. The direct pair
correlation function (DPCF) that appears in this expression
is a functional of ρ(r) [2]. When this functional dependence
is ignored and the DPCF is replaced by that of the coexisting
uniform liquid [4,5] or by that of an “effective uniform fluid”
[6,7] the free energy functional becomes approximate and fails
to provide an accurate description of freezing transitions for
a large class of intermolecular potentials. Attempts to include
a term involving the three-body direct correlation function of
the coexisting liquid in the free energy functional failed to
improve the situation [8,9].

It has recently been emphasized [10–12] that at the freezing
point a qualitatively new contribution to the correlations in
distribution of particles emerges due to spontaneous symmetry
breaking. This fact has been used to write the DPCF of a frozen
phase as a sum of two qualitatively different contributions;
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one that preserves the continuous symmetry of uniform liquid
and the other that breaks it and vanishes in the liquid. The
double functional integration in density space of a relation that
connects Aex[ρ] to the DPCF led to an exact expression for
Aex[ρ]. The freezing transitions in three dimensions have been
investigated using this new free energy functional. The results
found for the isotropic-nematic transition [10], crystallization
of power-law fluids [11] and the freezing of fluids of hard
spheres into crystalline and glassy phases [12], are very
encouraging.

In this paper we apply the free energy functional to in-
vestigate the liquid-solid transition in two dimensions. It may,
however, be noted that in contrast to a three-dimensional solid,
a two-dimensional solid melts in two steps; the intermediate
phase known as hexatic has a very narrow stability region
in between liquid and crystal [13–15]. Since inclusion of the
hexatic phase in the density functional formalism has not so
far been possible, we neglect its presence and focus on the
freezing of a fluid into the crystalline phase. A similar approach
has been taken by others [16–21]. Here, our motivation is to
examine how well this new free energy functional (described
briefly in the following section) compares with other free
energy functionals in describing the crystallization of two-
dimensional fluids.

The paper is organized as follows: In Sec. II we give a
brief description of the free-energy functional for a symmetry
broken phase that contains both the symmetry conserving
and symmetry broken parts of the DPCF. In Sec. III we
describe methods to calculate these correlation functions for a
two-dimensional system. The theory is applied in Sec. IV to
investigate the freezing of power-law fluids into a crystalline
solid of hexagonal lattice. The paper ends with a brief summary
and perspectives in Sec. V.

II. FREE ENERGY FUNCTIONAL

The reduced free energy functional A[ρ] of an inhomo-
geneous system is a functional of ρ(r) and is written as [2]

A[ρ] = Aid[ρ] + Aex[ρ]. (2.1)
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The ideal gas part Aid is exactly known and is written in terms
of ρ(r) as

Aid[ρ] =
∫

drρ(r){ln[ρ(r)�] − 1}, (2.2)

where � is cube of the thermal wavelength associated with a
molecule. The second functional derivative of the excess part
Aex[ρ] with respect to ρ(r) defines the DPCF c(r1,r2) of the
system [2],

δ2Aex[ρ]

δρ(r1)δρ(r2)
= −c(r1,r2; [ρ]). (2.3)

The function c that appears in this equation is related to
the total correlation function h(r1,r2) through the Ornstein-
Zernike (OZ) equation,

h(r1,r2) = c(r1,r2) +
∫

dr3c(r1,r3)ρ(r3)h(r2,r3). (2.4)

Both functions h and c are functionals of ρ(r).
Since breaking of continuous symmetry of a uniform

liquid at the freezing point gives rise to a qualitatively new
contribution to correlations in the distribution of particles
[10–12], the DPCF of the frozen phase is written as a sum
of two contributions:

c(r1,r2; [ρ]) = c(0)(|r2 − r1|,ρ0) + c(b)(r1,r2; [ρ]), (2.5)

where c(0) is symmetry conserving and c(b) symmetry broken
parts of the DPCF. While c(0) depends on the magnitude of
interparticle separation r and is a function of average density
ρ0 = 〈ρ(r)〉, c(b) is invariant only under a discrete set of
translations and rotations and is a functional of ρ(r).

Using Eq. (2.5) we rewrite Eq. (2.3) as

δ2A(0)
ex[ρ]

δρ(r1)δρ(r2)
= −c(0)(|r2 − r1|,ρ0), (2.6)

δ2A(b)
ex[ρ]

δρ(r1)δρ(r2)
= −c(b)(r1,r2; [ρ]), (2.7)

where A(0)
ex[ρ] + A(b)

ex[ρ] = Aex[ρ]. The expressions for
A(0)

ex[ρ] and A(b)
ex[ρ] are found from functional integrations

of Eqs. (2.6) and (2.7), respectively. In this integration, as
described elsewhere [10–12], the system is taken from some
initial density to the final density along a path in the density
space; the result is independent of the path of integration.
These integrations give

A(0)
ex[ρ] = Aex(ρl) + βμ − ln (ρl�)

− 1

2

∫
dr1

∫
dr2[ρ(r1) − ρl][ρ(r2) − ρl]

× c(0)(|r2 − r1|), (2.8)

and

A(b)
ex[ρ] = −1

2

∫
dr1

∫
dr2[ρ(r1) − ρ0][ρ(r2)

− ρ0]c(b)(r1,r2), (2.9)

where

c(0)(|r2 − r1|) = 2
∫ 1

0
dλλ

∫ 1

0
dλ′c(0)(|r2 − r1|;

ρl + λλ′(ρ0 − ρl)), (2.10)

c(b)(r1,r2) = 4
∫ 1

0
dξξ

∫ 1

0
dξ ′

∫
0

1

dλλ

∫ 1

0
dλ′

× c(b)(r1,r2; λλ′ρ0; ξξ ′ρG). (2.11)

Here Aex(ρl) is excess reduced free energy of the coexisting
uniform liquid of density ρl and chemical potential μ, ρ0 =
ρl(1 + 
ρ∗) is average density of the solid and β = ( 1

kBT
), kB

being the Boltzmann constant, T is the temperature, and ρG is
an order parameter arising due to the breaking of symmetry.

The expression for Aex
(0)[ρ] given by Eq. (2.8) is found

from functional integrations when density ρl of the coexisting
fluid is taken as a reference. The expression for Aex

(b)[ρ]
given by Eq. (2.9) is found by performing double functional
integrations in the density space corresponding to the sym-
metry broken phase. The path of integration in this space is
characterized by two parameters λ and ξ . These parameters
vary from 0 to 1. The parameter λ raises the density from
zero to the final value ρ0 as it varies from 0 to 1, whereas the
parameter ξ raises the order parameters from zero to their final
values ρG. The result is independent of the order of integration.

The free energy functional for the symmetry broken phase
is the sum of Aid[ρ], Aex

(0)[ρ], and Aex
(b)[ρ] Thus,

A[ρ] =
∫

drρ(r){ln[ρ(r)�] − 1} + Aex(ρl)

+β[μ − ln(ρl�)]
∫

dr[ρ(r) − ρl]

− 1

2

∫
dr1

∫
dr2[ρ(r1) − ρl]

× [ρ(r2) − ρl]c
(0)(|r2 − r1|)

− 1

2

∫
dr1

∫
dr2[ρ(r1) − ρ0][ρ(r2) − ρ0]c(b)(r1,r2),

(2.12)

where c(0) and c(b) are given, respectively by (2.10) and (2.11).
In deriving Eq. (2.12) no approximation has been introduced.
In the Ramakrishnan-Yussouff free energy functional c(b) is
neglected and c(0) is replaced by c(0).

In locating transition the grand thermodynamic potential
defined as

−W = A − βμ

∫
drρ(r) (2.13)

is generally used as it ensures that the pressure and the chemical
potential (μ) of the two phases remain equal at the transition.
The transition point is determined by the condition 
W =
Wl − W = 0, where Wl is the grand thermodynamic potential
of the coexisting liquid. From the above expressions one gets
the following expression for 
W :


W =
∫

dr
(

ρ(r) ln
ρ(r)

ρl

− [ρ(r) − ρl]

)

− 1

2

∫
dr1

∫
dr2[ρ(r1) − ρl]
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× [ρ(r2) − ρl]c
(0)(|r2 − r1|)

− 1

2

∫
dr1

∫
dr2[ρ(r1) − ρ0][ρ(r2) − ρ0]c(b)(r1,r2).

(2.14)

Minimization of 
W with respect to ρ(r) subject to the perfect
crystal constraint leads to

ln
ρ(r)

ρl

= φ +
∫

dr2[ρ(r2) − ρl]c̃
(0)(|r2 − r1|)

+
∫

dr2[ρ(r2) − ρ0]c̃(b)(r1,r2), (2.15)

where

c̃(0)(|r2 − r1|) =
∫

0

1

dλc(0)(|r2 − r1|,ρl + λ(ρ0 − ρl)),

and

c̃(b)(r1,r2) =
∫

0

1

dξ

∫
0

1

dλc(b)(r1,r2,λρ0,ξρG).

The value of Lagrange multiplier φ in Eq. (2.15) is found from
the condition

1

V

∫
dr

ρ(r)

ρ0
= 1. (2.16)

One needs, in principle, the values of c(0) and c(b) to
calculate self-consistently the value of ρ(r) that minimizes W .
In practice, however, one finds it convenient to do minimization
with an assumed form of ρ(r). The ideal part is calculated
using a form for ρ(r) which is a superposition of normalized
Gaussians centered around the lattice sites,

ρ(r) = α

π

∑
n

exp[−α(r − Rn)2], (2.17)

where α is the localization parameter. For the interaction part
it is convenient to use the Fourier expansion,

ρ(r) = ρ0 +
∑
G �=0

ρGeiG·r (2.18)

where G are reciprocal lattice vectors (RLV’s) of the lattice and
ρG = ρ0μG are order parameters. Taking Fourier transform of
Eq. (2.17) one finds μG = e(−G2/4α).

III. APPLICATION TO CRYSTALLIZATION OF
POWER-LAW FLUIDS

A. Potential model

We consider model fluids interacting via inverse power
pair potentials u(r) = ε(σ/r)n where ε, σ , and n are potential
parameters and r is molecular separation. The parameter n

measures softness of the repulsion; n = ∞ corresponds to
the hard disk and n = 1 to the one component plasma. Such
repulsive potentials can be realized in colloidal suspensions.
One such system in two dimensions has been provided by
paramagnetic colloidal particles in a pendant water droplet,
which are confined to the air-water interface [13]. By applying
an external magnetic field perpendicular to the interface, a
magnetic moment is introduced in the particles resulting in
a tunable mutual dipolar repulsion between them. The pair

interaction thus created is repulsive and proportional to r−3.
The crystallization of this system has been investigated by
van Teeffelen and co-workers [20,21] using several versions
of density functional theory (DFT). Another example where
short range repulsion between molecules is found is microgel
spheres whose diameter could be temperature tuned [15]. Most
computer simulation studies on these systems suffer from
the finite-size effects. In the case of hard disks recently a
large scale Monte Carlo simulation, large enough to access
the thermodynamic regime, has been performed [22]. The
result confirms two-step transitions from liquid to solid with
the intermediate hexatic phase [23,24]. However, the liquid-
hexatic transition, in contrast to the prediction of Kosterlitz-
Thouless-Halperin-Nelson-Young (KTHNY) theory [23,24]
is found to be first order while the hexatic-solid transition
is second order. The density functional theory predicts the
liquid-solid transition to be first order.

In addition to being a pair potential that can be realized in a
real system, it has a well known scaling property according to
which the reduced excess thermodynamic properties depend
on a single variable (or coupling constant) which for a two-
dimensional system is defined as

γ = (ρσ 2)(βε)2/n = ρ∗T ∗(−2/n)
.

Using this scaling the potential is written as

βu(r) = �

rn
,

where � = γ n/2 and r is measured in units of a0 = (1/ρ)1/2.

B. Calculation of c(0)(r) and its derivatives with respect to ρ

The pair correlation functions of a classical system can be
found in any spatial dimensions as a simultaneous solution of
the OZ equation [Eq. (2.4)] and a closure relation that relates
functions h, c, and the potential u(r). Several closure relations
including the Percus-Yevick (PY) relation, the hypernetted
chain (HNC) relation, modified hypernetted chain (MHNC)
relation, etc., have been used to describe the structure of a
uniform fluid [25]. We may, however, note that while the
OZ equation is general and connects the total and direct pair
correlation functions of liquids as well as of symmetry broken
phases, the closure relations that exist in the literature have
been derived assuming translational invariance [25]. They are
therefore valid only for normal fluids. We use the integral
equation theory involving suitable closure relations to find
the symmetry conserving part of pair correlation functions
h(0)(r) and c(0)(r) and their derivatives with respect to density,
The symmetry broken part of the DPCF is calculated using a
method described in Ref. [11].

The OZ equation for a uniform system of density ρ

reduces to

h(0)(r) = c(0)(r) + ρ

∫
dr′c(0)(r ′)h(0)(|r′ − r|). (3.1)

The HNC closure relation and a closure relation proposed
by Roger and Young [26] by mixing the PY and the HNC
relations, in such a way that at r = 0 it reduces to the PY
and for r → ∞ it reduces to the HNC relation, can be written
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together as

h(0)(r) = exp[−βu(r)]

[
1 + exp {χ (r)f (r)} − 1

f (r)

]
− 1,

(3.2)

where χ (r) = h(0)(r) − c(0)(r) and f (r) = 1 − exp(−ψr) is a
mixing function with an adjustable parameter 0 � ψ � ∞.
For ψ = ∞ or f (r) = 1, Eq. (3.2) reduces to the HNC
closure relation. In the Roger-Young relation, ψ is chosen
to guarantee thermodynamic consistency between the virial
and compressibility routes to the equation of state.

The differentiation of Eqs. (3.1) and (3.2) with respect
to density ρ yields the following two relations:

∂h(0)(r)

∂ρ
= ∂c(0)(r)

∂ρ
+

∫
dr′c(0)(r ′)h(0)(|r′ − r|)

+ ρ

∫
dr′ ∂c(0)(r ′)

∂ρ
h(0)(|r′ − r|)

+ ρ

∫
dr′c(0)(r ′)

∂h(0)(|r′ − r|)
∂ρ

(3.3)

and

∂h(0)(r)

∂ρ
= exp [−βu(r)] exp[χ (r)f (r)]

∂χ (r)

∂ρ
. (3.4)

The closed set of coupled equations (3.1)–(3.4) have been
solved for four unknowns h(0), c(0), ∂h(0)(r)

∂ρ
, and ∂c(0)(r)

∂ρ
. The

method can be extended to include higher order derivatives. In
Fig. 1 we plot the Fourier transform of c(0)(r) defied as

ĉ(0)(q) = ρ

∫
drc(0)(r)eiq·r, (3.5)

for (n,γ ) = (3,4.30), (6,1.30), and (12,0.90). The values given
in Fig. 1(a) for n = 3 are in good agreement with values found
by van Teeffelen and co-workers [20,21] (see Fig. 1 of their
paper). As has been reported in Ref. [21] the HNC closure
underestimates values of ĉ(0)(q) whereas the Roger-Young
(RY) closure gives relatively better but not very accurate
values. In Fig. 1 we also give values found from an approach
proposed by Kang and Ree (KR) [27].

The exact closure relation which one finds from the
liquid state theory [25] can be written as

1 + h(0)(r) = g(0)(r) = exp[−βu(r) + χ (r) + B(r)], (3.6)

where B(r) is the bridge function. In the HNC closure relation
B(r) is taken equal to zero. In the KR approach the bridge
function calculated for a reference potential and denoted as
B0(r) is used for B(r) in Eq. (3.6). The evaluation of B0(r) is
done prior to and separated from the main integral equation
by solving the Martynov-Sarkisov [28] integral equation. We
briefly summarize here the way this is done for soft repulsive
potentials in two dimensions.

The potential u(r) is first divided into a reference u0(r) and
a perturbation part up(r).

u(r) = u0(r) + up(r), (3.7)

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

c(
ka

 0
)

0 5 10 15 20
ka

 0

-1.5

-1

-0.5

0

0.5

(a)

(b)

(c)

n=3
γ=4.30

HNC

n=6
γ=1.30

n=12

γ=0.90

------  RY
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.......

FIG. 1. The dimensionless Fourier transform ĉ(0)(q) of the direct
pair correlation function of c(0)(r) plotted against ka0(a0 = (1/ρ)1/2)
shown are data found from the integral equation theory using the RY
closure (dashed line), HNC closure (dotted line), and KR closure (full
line) at values of γ shown in (a)–(c) for n = 3, 6, and 12, respectively.

where

u0(r) = u(r) − F (r) if r � a,
(3.8)

= 0 if r > a,

up(r) = F (r) if r � a,
(3.9)

= u(r) if r > a.

Here F (r) = u(a) − u′(a)(a − r) and a is the nearest neighbor
distance for hexagonal lattice at given density ρ. The B0(r) for
the reference potential is evaluated using the OZ equation

h0
(0)(r) − c0

(0)(r) = χ0
(0)(r) =ρ

∫
dr′c0

(0)(r ′)h0
(0)(|r′ − r|)

(3.10)

and closure relation

1 + h0
(0)(r) = exp[−βu0(r) + χ0(r) + B0(r)]. (3.11)

For B0(r) the Mortynov-Sarkisov [28] relation

B0(r) = [1 + sχ0(r)]1/s − 1 − χ0(r) (3.12)
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FIG. 2. Bridge function B0(r) for n = 3 at γ = 4.30. The
distance r is in units of a0 = (1/ρ)1/2. Inset magnifies the values of
B0(r) for r � 1.

with s = 2 is used. The values of B0(r) are found by solving
Eqs. (3.10)–(3.12) self-consistently. The value of B0(r) as a
function of r for n = 3 is plotted in Fig. 2. The nature of
B0(r) is the same as was found in the case of three dimensions
[27]. This value of B0(r) found for the reference potentials is
used in relation (3.6) which is used to solve the OZ equation
self-consistently to get values of h(0)(r) and c(0)(r). The values
of ĉ(0)(q) found by this method are shown in Fig. 1 by full
lines. These values are close to the simulation values given
by van Teeffelen and co-workers [20,21] for n = 3. For n = 6
and 12 values found from the RY closure and values found
from the KR method are close, showing that for short-range
repulsive potentials the RY closure yields good values of pair
correlation functions.

C. Calculation of c(b)(r1,r2)

For a crystal c(b)(r1,r2) is invariant only under a discrete
set of translations corresponding to lattice vectors {Rn}. If one
chooses a center of mass variable rc = (r1+r2)

2 and difference
variable r = r2 − r1, the c(b) can be written as [11,12]

c(b)(r1,r2; [ρ]) =
∑
G

exp(iG · rc)c(G)(r; [ρ]), (3.13)

where G are RLV’s. Since c(b) is real and symmetric with
respect to interchange of r1 and r2, c(G)(r) = c(−G)(r) and
c(G)(r) = c(G)(−r). The function c(b)(r1,r2) can be expanded
in terms of higher body direct correlation functions of uniform
liquid [2];

c(b)(r1,r2; [ρ]) =
∫

dr3c3
(0)(r1,r2,r3; ρ0)[ρ(r3) − ρ0]

+ 1

2

∫
dr3dr4c4

(0)(r1,r2,r3,r4; ρ0)

× [ρ(r3) − ρ0][ρ(r4) − ρ0] + · · · , (3.14)

where ρ(rn) − ρ0 = ∑
GρGeiG·rn , and cn

(0) are the n-body
direct correlation functions of a uniform liquid of density
ρ0. These correlation functions are related to derivatives of

c(0)(r,ρ0) with respect to density ρ0 as follows [2]:

∂c(0)(r)

∂ρ0
=

∫
dr3c3

(0)(r1,r2,r3; ρ0),

(3.15)
∂2c(0)(r)

∂ρ0
2

=
∫

dr3

∫
dr4c4

(0)(r1,r2,r3,r4; ρ0),

etc.
The values of derivatives of c(0)(r) appearing on the left

hand side of the above equations can be found using the
integral equation theory described above. The usefulness of
this method to find c(b)(r1,r2) depends on convergence of the
series (3.14), which is a series in ascending powers of order
parameters, and our ability to find values of n-body (n � 3)
direct correlation functions from Eq. (3.15). Barrat et al. [8]
have shown that c3

(0) can be factored as c3
(0)(r12,r13,r13) =

t(r12)t(r13)t(r23) and the function t(r) can be determined from
the relation [see Eq. (3.15)]

∂c(0)(r)

∂ρ0
= t(r)

∫
dr′t(r ′)t(|r′ − r|). (3.16)

This method can be extended for higher cn
(0) [29]. Since

c(b)(r1,r2) is averaged over density ρ and over order parameters
ρG, the contributions made by successive terms of Eq. (3.14)
in Aex

(b)[ρ] is expected to decrease rapidly [11]. In the case
of three dimensions it was found that it is only the first term
of the series (3.14) which needs to be considered to describe
accurately the fluid-solid transition [11,29]. In two dimensions
the convergence is expected to be faster as the number of
nearest neighbors is less compared to the three dimensions and
therefore the higher body correlation functions are expected
to be less important. In view of this, we consider here the first
term of the series (3.14) only and examine its contribution in
stabilizing the hexagonal lattice at the transition point.

From known values of ∂c
(0)(r)

∂ρ
we solved numerically

Eq. (3.16) to find values of t(r) for different values of γ .
In Fig. 3, we plot values of t(r) for n = 3, 6, and 12 at values
of γ close to the freezing point.

0 1 2 3 4 5
r

-6

-4

-2

0

2

t (
r)

n=3,γ=4.43 (Γ=9.32)

n=6,γ =1.52 (Γ= 3.52)

n=12, γ=1.05 (Γ=1.34)

........

------

FIG. 3. Function t(r) vs r for n = 3, 6, and 12 at the values of γ

above the fluid-solid transition point; r is in units of a0 = (1/ρ)1/2.
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Taking only the first term of Eq. (3.14), the expression for
c(b)(r1,r2) in terms of t(r) can be written as

c(b)(r1,r2) =
∑
G

ρG

∫
dr3t(|r2 − r1|)t(|r3 − r1|)eiG·r3

× t(|r3 − r2|). (3.17)

Using the relation

r3 = 1
2 (r1 + r2) + (r3 − r1) − 1

2 (r2 − r1) = rc + r′ − 1
2 r,

Eq. (3.17) reduces to Eq. (3.13), i.e.,

c(b)(r1,r2) =
∑
G

eiG·rcc(G)(r),

where

c(G)(r) = ρGt(r)e−(1/2)iG·r
∫

dr′t(r ′)eiG·r′
t(|r′ − r|). (3.18)

Using the relation eiG·r = ∑
m(i)mJm(Gr)eim(φG−φr ) where

Jm(Gr) is the Bessel function of the first kind of integral order
m we find following expression for c(G)(r):

c(G)(r) =
∑
M

(i)McM
(G)(r)eiMφGe−iMφr , (3.19)

where

cM
(G)(r) = ρGt(r)

∑
m

Bm(r,G)Jm+M

(
1

2
Gr

)
(3.20)

and

Bm(r,G) =
∫

dkkt(k)Jm(kr)
∫

dr ′r ′Jm(kr ′)Jm(Gr ′)t(r ′).

(3.21)

For hexagonal lattice M = 0, ± 6. The value of cM
(G)(r)

depends on values of order parameters μG and on the values
of RLV’s. In Figs. 4–6, we plot harmonic coefficients
c0

(G)(r)/μG and c6
(G)(r)/μG for n = 3, 6, and 12 for RLV’s

of the first four sets, respectively. For a different set of RLV’s
cM

(G)(r) varies with r in a different way; the values in all cases
become negligible for r [measured in units of a0 = (1/ρ)1/2]
>1.5. For any given value of G, the value of c0

(G)(r) is about
an order of magnitude larger than c6

(G)(r) at their maxima and
minima. As the magnitude of G increases the value of cM

(G)(r)
decreases and after the sixth set of RLV’s values of cM

(G)(r)
become negligible for all values of n.

D. Calculation of c(0)(r) and c(b)(r1,r2)

The values of c(0)(r) for a given liquid density ρl and a solid
density ρ0 are found from the known values of c(0)(r,ρ) where
ρ varies from ρl to ρ0 by performing integrations in Eq. (2.10)
which can be rewritten as

c(0)(r,ρ0) = 2
∫

0

1

dλλ

∫
0

1

dλ′c(0)(r,ρl + λλ′ρl
ρ∗), (3.22)

where 
ρ∗ = (ρ0 − ρl)/ρl . The integrations are performed
numerically using a very fine grid for variables λ and λ′. Since
ρl
ρ∗ 	 ρl one can use Taylor expansion to solve Eq. (3.22).

0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

c  0

(G
)  (

r)
 / 

μ
G

0 0.5 1 1.5 2
r

-0.06

-0.04

-0.02

0

0.02

c  6
(G

)  (
r)

 / 
μ

G
FIG. 4. Harmonic coefficients cM

(G)(r)/μG for RLV’s of first four
sets for n = 3,γ = 4.42 (� = 9.32). Notations are as follows: Full
line represents values of the first set, the dotted line of the second set,
dashed line of the third set, and dashed-dotted line of the fourth set.
The distance r is expressed in units a0, where a0(= 1/ρ)1/2.

Thus

c(0)(r,ρ0) = c(0) (r,ρl) + 1

3
ρl
ρ∗ ∂c(0)(r,ρl)

∂ρl

+ O(ρl
2
ρ∗2).

(3.23)

For 
ρ∗ � 0.1 which is the case at the transition point the
first two terms written explicitly in Eq. (3.23) are enough and
give values which are in very good agreement with the values
found numerically from Eq. (3.22).

Using the expressions given above [Eqs. (3.13), (3.19),
(3.20)] we rewrite Eq. (2.11) as

c(b)(r1,r2) = 4
∑
G

eiG·rc
∑
M

∑
m

(i)MeiMφGe−iMφr

× JM+m

(
1

2
Gr

)∫
0

1

dξξ

∫
0

1

dξ ′ξξ ′ρG

∫
0

1

dλλ

×
∫

0

1

dλ′Lm(r,G,λλ′ρ), (3.24)

where Lm(r,G; ρ) = t(r,ρ)Bm(r,G,ρ) depends on density ρ

which is scaled from zero to ρ0 by varying λ and λ′ between
0 and 1. The integration over ξ and ξ ′ are done analytically
leading to

c(b)(r1,r2) = 1

3

∑
G

ρGeiG·rc
∑
M

∑
m

(i)MeiMφGe−iMφr

× JM+m

(
1

2
Gr

)
Im(r,G,ρ0), (3.25)
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(G
)  (

r)
 / 

μ
G

0 0.5 1 1.5 2
r

-0.06

-0.04

-0.02

0

0.02

c  6

(G
)  (

r)
/ μ

G

FIG. 5. Harmonic coefficients cM
(G)(r)/μG for RLV’s of first four

sets for n = 6,γ = 1.52 (� = 3.52). Notations are same as in Fig. 4.

where ρG = ρ0μG and

Im(r,G,ρ0) = 2
∫

0

1

dλλ

∫
0

1

dλ′Lm(r,G; λλ′ρ). (3.26)

These integrals are evaluated numerically for a given
density ρ0 from known values of Lm(r,G; ρ) for density
varying from zero to ρ0. Since Lm(r,G; ρ) varies smoothly
with density and its values have been evaluated at closely

0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

c  0

(G
)  (

r)
/ μ

G

0 0.5 1 1.5 2
r

-0.06

-0.04

-0.02

0

0.02

c  6

(G
)  (

r)
 / 

μ
G

FIG. 6. Harmonic coefficients cM
(G)(r)/μG for RLV’s of first four

sets for n = 12,γ = 1.05 (� = 1.34). Notations are same as in Fig 4.

spaced values of density, the result found for c(b)(r1,r2) is
expected to be accurate.

IV. LIQUID-SOLID TRANSITION

Substituting expressions of ρ(r) given by Eqs. (2.17) and
(2.18) and of c(b)(r1,r2) given by Eq. (3.19) in Eq. (2.14) we
find


W

N
= 
Wid

N
+ 
W0

N
+ 
Wb

N
, (4.1)

where


Wid

N
= (1 + 
γ )

[
1 + ln

(
α

π

)
− 2 − ln ρ0

]
+ 1, (4.2)


W0

N
= −1

2

γ ĉ

(0)
(0) − 1

2
(1 + 
γ )2

∑
G �=0

|μG|2ĉ(0)
(G),

(4.3)


Wb

N
= −1

2
(1 + 
γ )3

∑
G

′∑
G1

′
μG1μ−G−G1 ĉ

(
G1 + 1

2
G

)
,

(4.4)

where 
γ = ( γs−γl

γl
); the subscripts s and l refer to solid

and liquid respectively. Here 
Wid, 
W0, and 
Wb are
respectively, the ideal, symmetry conserving, and symmetry
broken contributions to 
W . The prime on a summation in Eq.
(4.4) indicates the condition G �= 0, G1 �= 0, and G + G1 �= 0,
and

ĉ
(0)

(G) =
∫

c(0)(r,γl)e
iG·rdr,

ĉ

(
G1 + 1

2
G

)
=

∫
c(G)(r,γs)e

−i[G1+(1/2)G]·rdr

We used the above expressions to locate the liquid-crystal
(hexagonal lattice) transition by varying values of γ, 
γ , and
α. For a given γl and 
γ , 
W

N
is minimized with respect to the

localization parameter α; next 
γ is varied until the lowest
value of 
W

N
at its minimum is found. If this lowest value of


W
N

is not zero then γl is varied until 
W
N

is zero. The values
of the transition parameters can also be found from simulta-
neous solution of equations, ∂

∂
γ
(
W

N
) = 0, ∂

∂α
(
W

N
) = 0, and


W
N

= 0.
The results given in Table I for n = 3, 6, and 12 correspond

to the RY closure relation. We note that the contribution
arising due to the symmetry broken part of the DPCF is far

TABLE I. Freezing parameters α, γl, 
γ and the pressure P

at coexistence along with the contributions of ideal, symmetry
conserving, and symmetry broken parts of 
W

N
. These results

correspond to the Roger-Young closure [26].

n α γl 
γ

Wid

N


W0
N


Wb

N

βP

ρ

3 100 4.96 0.025 2.50 −1.74 −0.76 75
6 100 1.55 0.040 2.50 −2.10 −0.40 31
12 96 1.00 0.050 2.49 −2.32 −0.17 22
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TABLE II. Freezing parameters �f (= γf
n/2), �s(= γs

n/2), the
width of coexistence region 
� = �s − �f , and the relative dis-
placement parameter ξ (
 2/α) at the coexistence obtained from
various density functional schemes. The MWDA stands for modified
weighted density approximation, EMA stands for extended modified
weighted density approximation, RY and KR refer to, respectively,
the Roger-Young closure [26] and the Kang and Ree [27] closure.

�l �s 
� ξ

Present result with RY 11.04 11.46 0.42 0.020
Present result with KR 9.20 9.61 0.41 0.022
MWDA with RY [21] 41.07 41.13 0.06 0.017
EMA with RY [21] 23.00 23.08 0.09 0.020
EMA with Verlet [21] 9.33 9.49 0.16 0.020
Simulation [31] 12.0 12.25 0.025
Experiment [13] 10.0 10.75 0.75 0.038

from negligible and its importance increases with the softness
of the potential. While it is about 7.3% to the symmetry
conserving term for n = 12, it increases about 44% for n = 3.
This explains why the Ramakrishnan-Yussouff theory gives
good results for hard core potentials but fails for potentials
that have soft core and/or attractive tail. As the contribution
of 
Wb

N
is negative, it stabilizes the solid phase. Without it the

theory strongly overestimates the stability of the fluid phase
especially for softer potentials [20,21]. The contribution made
by the symmetry broken part of the DPCF is, as expected,
small compared to that in three dimensions (3D) at the freezing
point for the same potential. For example, the contribution in
3D [11] for n = 12 is 22.2% compared to 7.3% in 2D whereas
for n = 6 the contribution is 37% in 3D and 18% in 2D.

In Table II we compare results of the present calculation
using both the RY closure and the KR procedure to calculate
pair correlation functions for n = 3 with the results found
from other free-energy functionals as reported in Ref. [21].
The experimental results obtained from real-space microscopy
measurements of magnetic colloids confined to an air-water
interface [13] and values found from numerical simulations
[30,31] are also given in the table. While the RY closure
gives slightly higher values of �f and �s compared to the
experimental values, the KR closure gives slightly lower
values. But these values along with the values of other
parameters, particularly the value of 
� = �s − �f , are
in better agreement with the experimental values compared
to any other versions of the DFT. Although the extended
modified weighted-density approximation (EMA) [32] with
Verlet closure [33] gives values of �f which is close to the
one found by us using the KR closure, but the values of 
�

are significantly lower: 
�EMA = 0.16 compared to the values
found by us, 
� = 0.41, and the experimental value, 0.75.

The real-space experimental data are not available for other
systems. The computer simulation results [34,35] show the
liquid-solid transition at γl = 1.51 and 0.986 respectively for
n = 6 and 12. These values are close to the one given in Table I.

V. SUMMARY AND PERSPECTIVES

We used a free energy functional that contains both
the symmetry conserving part of the DPCF c(0)(r) and the
symmetry broken part c(b)(r1,r2) to investigate the freezing
of a two-dimensional fluid into a two-dimensional crystal of
hexagonal lattice. The values of c(0)(r) and its derivatives with
respect to density ρ as a function of interparticle separation
r have been determined using an integral equation theory
comprising the OZ equation and the closure relations of Roger
and Young [26] and of Kang and Ree [27]. For soft potential
(n = 3) the two results are found to differ; the KR closure
seems to give a better result. For more repulsive potentials the
two results are close as shown in Fig. 1. For c(b)(r1,r2), which is
a functional of ρ(r) and is invariant only under a discrete set of
translations and rotations, we used an expansion in ascending
powers of order parameters. This expansion involves higher
body direct correlation functions of isotropic phase, which in
turn were found from the density derivatives of c(0)(r) using a
method proposed by Barrat et al. [8].

The contribution of the symmetry broken part of DPCF
to the free energy is found to depend on the nature of
pair potentials; the contribution increases with softness of
potentials. This result is in agreement with that found in three
dimensions and explains why the Ramakrishnan-Yussouff
free-energy functional was found to give a reasonably good
description of the freezing transition of hard core potentials but
failed for potentials that have soft core and/or attractive tail.
The results found here and the results reported for 3D indicate
that the theory described here can be used to investigate the
freezing transitions of all kinds of fluids.

Since our free energy functional takes into account the
spontaneous symmetry breaking it can be used to study various
phenomena of ordered phases. The results indicate that the
density functional approach provides an effective framework
for theoretical study of a large variety of problems involv-
ing inhomogeneities. However, the question not adequately
addressed yet is the size of fluctuations effect which plays
an important role in two-dimensional systems. The other
important question is the inclusion of the hexatic phase in
the theory [36].
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