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Nonequilibrium mode-coupling theory for uniformly sheared underdamped systems
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Nonequilibrium mode-coupling theory (MCT) for uniformly sheared underdamped systems is developed,
starting from the microscopic thermostated Sllod equation and the corresponding Liouville equation. Special
attention is paid to the translational invariance in the sheared frame, which requires an appropriate definition of the
transient time correlators. The derived MCT equation satisfies the alignment of the wave vectors and is manifestly
translationally invariant. Isothermal condition is implemented by the introduction of current fluctuation in the
dissipative coupling to the thermostat. This current fluctuation grows in the α relaxation regime, which generates
a pronounced relaxation of the yield stress compared to the overdamped case. This result fills the gap between the
molecular dynamics simulation and the overdamped MCT reported previously. The response to a perturbation
of the shear rate demonstrates an inertia effect which is not observed in the overdamped case. Our theory turns
out to be a nontrivial extension of the theory by Fuchs and Cates [J. Rheol. 53, 957 (2009)] to underdamped
systems. Since our starting point is identical to that of Chong and Kim [Phys. Rev. E 79, 021203 (2009)], the
contradictions between Fuchs-Cates and Chong-Kim are resolved.
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I. INTRODUCTION

Liquids under shear are attracting continuous interest,
not only because of the importance of their application to
industry, but also because of their significance to the study of
nonequilibrium statistical physics as ideal but experimentally
accessible systems. Among them, special attention has been
paid to dense supercooled liquids in the vicinity of the
glass transition, i.e., glassy materials, due to the difficulty
of understanding them and their peculiarity compared with
conventional systems which exhibit thermodynamic phase
transitions.

Although not yet perfect, the mode-coupling theory (MCT)
presents remarkable success in its application to glassy
materials such as colloidal suspensions [1–3]. Probably the
most striking feature of the MCT is that it predicts a two-
step relaxation phenomenon (β relaxation followed by α

relaxation) [4,5] of the intermediate scattering function (i.e.,
density time correlator) in the vicinity of a critical packing
fraction ϕc, which is referred to as the “MCT transition
point.” This two-step relaxation is thoroughly investigated,
and it is established that the MCT is able to explain, e.g., the
following properties: (i) the square-root cusp anomaly of the
temperature dependence of the plateau height of the density
time correlator (called the nonergodic parameter; NEP) [6],
(ii) the power-law time dependence with von Schweidler ex-
ponents of the density time correlator around the β relaxation
[7–9], and (iii) the time-temperature superposition principle
realized by the Kohlrausch-Williams-Watts-type behavior of
the density time correlator at the α relaxation [10]. On the
other hand, the MCT is marred with the problem that the NEP
can survive for temperatures below the critical temperature Tc,
while it decays to zero in actual glassy states [4,11]. Moreover,

*suzuki.koshiro@canon.co.jp

ϕc is about 10% smaller than the experimental value. To
overcome these difficulties, successive studies beyond the
conventional MCT have been carried out eagerly as well,
e.g., (i) field-theoretic formulations [12–16], (ii) inclusion of
higher-order correlations [17–19], and (iii) estimation of the
dynamic correlation length [20].

The framework of the MCT itself is generic, and extensions
to other materials such as dense granular materials [21–23]
have also been attempted. In particular, the MCT is able to
incorporate the effect of shear and its resulting demolition of
the “cage effect.”

The introduction of shear into the MCT has been worked
out in the pioneering papers by Fuchs and Cates (FC) [24]
and Miyazaki and Reichman [25], both of which have been
formulated for sheared systems immersed in solvents, such
as colloidal suspensions. The weak point of the approach in
Ref. [25], which was followed by Ref. [21], has been pointed
out by Chong and Kim (CK) [26]. They argued that the
approach of Refs. [21,25], where the steady-state structure
factor (or, equivalently, the radial distribution function) is
plugged in as an input, and then the steady-state shear stress
is calculated as an output, is inconsistent, since they should be
treated on the same footing. Rather, the equilibrium structure
factor should be plugged in as an input, which is the case
for Ref. [24]. (This scheme [27] is referred to as “integration
through transient” (ITT) (Ref. [28].)

In this spirit, CK [26] have constructed the MCT for
a sheared system associated with a thermostat, where the
Sllod equation [27,29] is chosen as a microscopic starting
point. In contrast to the theory of FC [24,28,30], where a
Brownian system governed by the Smoluchowski operator
is the starting point, the Sllod equation is governed by the
Liouville operator (Liouvillian), and the momentum variables
are left unintegrated, i.e., it is an underdamped system.

Besides this issue, apparent discrepancies between the
resulting equations of CK [26] and FC [24,28,30] have been
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noticed. For instance, the “initial decay rate” of the Debye
relaxation, which exhibits the conventional Taylor dispersion,
is time dependent in FC [24,28,30], while it is not in CK [26].
Probably the most notable difference is that there appears
an additional memory kernel in CK [26], in addition to
the conventional one which also appears commonly in other
MCTs. As is well known, and is also argued in CK [26], these
discrepancies cannot be the result of the difference between
underdamped and overdamped systems, since they exhibit
quite similar behavior for long-time dynamics, at least for
the density time correlator [31–33]. These contradictions were
apparent, at least at the formal level, but as far as we know, no
reconciliation has been proposed so far.

In this paper, we reformulate the MCT for uniformly
sheared underdamped systems and resolve the contradictions
mentioned above. We point out that the definition of the
time correlators of CK [26] should be modified to satisfy
the translational invariance in the sheared frame and fulfill
the requirement of physical correlations between the Fourier
modes of the fluctuations. This modification leads to complex-
ities, which are absent in the formulation of CK [26], due to the
noncommutativity and the non-Hermiticity of the Liouvillians.
The path which handles these complexities closely follows
that of FC [30], which we believe to be the most sensible
so far [34].

The crucial difference between our formulation and
CK’s is the introduction of the isothermal condition,
which is implemented at the level of the Mori-type equa-
tions. This is realized by incorporating current fluctuations
into the dissipative coupling to the thermostat, accompanied by
the introduction of a multiplier. The resulting equation for the
time correlators formally corresponds to that of FC [30] in the
overdamped limit, but the effect of the inertia or the fluctuating
coupling to the thermostat renders this correspondence to be
highly nontrivial. In fact, the growth of the fluctuating coupling
in the α-relaxation regime generates a pronounced relaxation
of the yield stress compared to the overdamped case. This
result fills the gap between the molecular dynamics (MD)
simulation and the overdamped MCT reported previously [35].
Hence, our framework appears to be a nontrivial extension
of FC [30] to underdamped systems. The significance of
the underdamped formulation is also demonstrated by its
application to the calculation of the response to a pertur-
bation of the shear rate, where the inertia effect is clearly
observed.

The paper is organized as follows. In Sec. II, we briefly
review the microscopic starting points. In Sec. III, special
attention is paid to the translational invariance in the sheared
frame and the physically sensible definition of the time
correlators. Adjoint Liouvillians are introduced, which turns
out to be natural in the treatment of sheared systems. In
Sec. IV, Mori-type equations are derived by the applica-
tion of the projection operator formalism, first without the
isothermal condition. After that, the isothermal condition is
formulated, and the Mori-type equation where this condition
is implemented is derived. In Sec. V, the mode-coupling
approximation is worked out, and a closed equation for the
time correlators (MCT equation) is derived. In Sec. VI, a
general formula of time correlators for steady-state quantities
is presented, and specific forms of the dissipative coupling and

the multiplier are discussed. A formula for the steady-state
shear stress in this formulation is derived. In Sec. VII, the
result of the numerical calculation is shown for the density time
correlator and the steady-state shear stress, where the current
fluctuation in the coupling to the thermostat plays an important
role in the α relaxation. The results of the CK theory [26] and
the overdamped limit are also shown and are compared to the
above result. In addition, the response to a perturbation of the
shear rate is shown. Section VIII is provided for discussion.
There, we first compare our work with the major preceding
works. We hope that issues which were previously confusing
are clarified. Then the physical significance of the present
formulation and the possibility of its extension are discussed.
Finally, in Sec. IX, we summarize our results and conclude the
paper. An application to the response theory (Appendix A),
a comparison of Mori-type equations in the underdamped
and overdamped cases (Appendix B), and technical details
(Appendixes C and D) are collected in the Appendixes.

II. MICROSCOPIC STARTING POINTS

Here we briefly summarize our microscopic starting points,
i.e., the Sllod equation, the Liouville equation, and the
steady-state formula. Our treatment closely follows that of
CK [26], so the details in common are to be referred to
Ref. [26]. The crucial difference, however, is that our for-
mulation is intended to satisfy the isothermal condition, which
is presented in Sec. IV D. Attention is paid to this issue.

A. Sllod equation

We deal with an assembly of N equivalent spheres with
diameter d and mass m, interacting with themselves and a
thermostat in a volume V . The interaction between the spheres
is assumed to be a two-body soft-core potential force. Uniform
shear is imposed on this system, where the shear velocity is
given by vsh = κ · r . Here, κ is the shear rate tensor, which
is assumed to be of the form κμν = γ̇ δμxδνy in this paper,
where the shear rate is denoted γ̇ . r is the spatial coordinate,
and Greek indices λ, μ, ν, etc., denote spatial components
{x,y,z} in the remainder. We introduce the distance of the
two shear boundaries, L, for later convenience. Then the
shear velocities at the boundaries are v

(±)
0 ≡ ±γ̇ L/2 for

y = ±L/2, respectively. The Newtonian equation of motion
for the ith sphere (i = 1,2, . . . ,N ) is given by the following
Sllod equation [27,29]:

ṙ i(t) = pi(t)

m
+ κ · r i(t), (1)

ṗi(t) = Fi(t) − κ · pi(t) − α (�) pi(t). (2)

Here, {r i(t), pi(t)} is the position and the momentum of
the ith sphere at time t , and �(t) ≡ {r i(t), pi(t)}Ni=1 is the
phase-space coordinate. In Eq. (1), pi(t) is defined as a relative
momentum in the sheared frame and is referred to as the
peculiar or the thermal momentum. Fi(t) ≡ −∂U/∂ r i(t) =
−∑

j ∂u(rij (t))/∂ r ij (t) is the conservative force acting on the
ith sphere from other spheres, U is the total potential, u(rij (t))
is the two-body potential, r ij (t) ≡ r i(t) − rj (t) is the relative
position, and rij (t) ≡ |r ij (t)| is the relative distance between
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the ith and the j th spheres, respectively. The parameter α (�)
represents the strength of the coupling of spheres to the ther-
mostat, which in general implicitly depends on time through
its dependence on �(t). Note that α(�) has been assumed to
be a constant in Ref. [26]. It is possible to prevent the system
from heating up and to control the kinetic temperature to be
a constant by tuning the coupling α(�), in which case α(�)
should be regarded as a multiplier, rather than an independent
physical parameter. A well-known example can be found in
MD, which is the Gaussian isokinetic thermostat [27]. This
thermostat is distinguished by its generality and its importance,
which has the explicit time dependence

α(t) =
∑

i

[
Fi(t) · pi(t) − γ̇ px

i (t)py

i (t)
]

∑
j pj (t) · pj (t)

, (3)

which can be derived from the condition d
dt

∑
i pi(t)

2 = 0. The
specific form of α(�) in the MCT with the isothermal condition
is discussed in Sec. VI B. Note that Eqs. (1) and (2) reduce
to Newtonian equations if we introduce the viscous force
F(vis)

i (t) ≡ −α(�)m(ṙ i(t) − κ · r i(t)), except for the instant
onset of the shear.

B. Liouville equation

The Liouville equation for a phase-space variable A(�(t))
reads

d

dt
A(�(t)) = �̇(�(t)) · ∂A(�)

∂�

∣∣∣∣
�=�(t)

= eiLt iLA(�(0)) = iLA(�(t)), (4)

where the action of the Liouvillian iL is defined as

iLA(�(0)) ≡ �̇(�) · ∂A(�′)
∂�′

∣∣∣∣
�′=�

. (5)

Here, and henceforth, the abbreviated notation � ≡ �(0) is
adopted. The formal solution of Eq. (4) is given by A(�(t)) =
eiLtA (�). Note that, in Eqs. (4) and (5), the Liouvillian
is assumed not to bear explicit time dependence. This is
compatible with a time-independent shear, which we consider
in this paper.

On the other hand, the Liouville equation for the nonequi-
librium distribution function ρ (�,t) reads

∂ρ(�,t)

∂t
= −

[
�̇ · ∂

∂�
+ �(�)

]
ρ(�,t) = −iL†ρ(�,t), (6)

where

iL† ≡ �̇ · ∂

∂�
+ �(�) = iL + �(�) (7)

is the adjoint Liouvillian, and

�(�) ≡ ∂

∂�
· �̇ (8)

is the volume contraction factor of the phase space. The
formal solution of Eq. (6) is ρ (�,t) = e−iL†t ρ (�,0). In
general, �(�) �= 0 for nonequilibrium systems, and hence the

Liouvillian is non-Hermitian. In our case, �(�) is

�(�) =
∑

i

(
∂

∂ r i

· ṙ i + ∂

∂ pi

· ṗi

)

= −3Nα(�) −
∑

i

∂α(�)

∂ pi

· pi

� −3Nα(�), (9)

where the last approximate equality holds in the thermody-
namic limit. This is verified for our specific choice of α(�) in
Sec. VI B.

Let us decompose the Liouvillian as follows for conve-
nience:

iL = iL0 + iLγ̇ + iLα, (10)

iL0 ≡
∑

i

(
pi

m
· ∂

∂ r i

+ Fi · ∂

∂ pi

)
, (11)

iLγ̇ ≡
∑

i

(
r i · κT · ∂

∂ r i

− pi · κT · ∂

∂ pi

)
, (12)

iLα ≡ −α(�)
∑

i

pi · ∂

∂ pi

. (13)

As can be easily seen, iL0, iLγ̇ , and iLα are the time-
evolution generators of the conservative force, shearing, and
the thermostat, respectively. We consider a situation where the
system is initially in equilibrium with temperature T , and at
time t = 0 a uniform shear with shear rate γ̇ and a thermostat
with strength α(�) are turned on.

The Liouvillian obeys the following adjoint relation inside
the integral with respect to the phase-space coordinates,∫

d� [iLA(�)] B(�) = −
∫

d�A(�)[iL†B(�)], (14)

whose repeated use leads to∫
d�[eiLtA(�)]B(�) =

∫
d�A(�)[e−iL†tB(�)]. (15)

Equation (14) can be easily shown by partial integration. The
adjoint relation, Eq. (14), and the definition of the adjoint
Liouvillian, Eq. (7), lead to the following important relation,
which indicates the action of the Liouvillian inside the time
correlators:

〈[iLA(�(t))]B(�)∗〉 = −〈A(�(t))[iLB(�)]∗〉
+ 〈A(�(t))B(�)∗�(�)〉, (16)

where �(�) is the work function,

�(�) ≡ −βγ̇ σxy(�) − 2βα(�)δK(�). (17)

Here, σxy(�) ≡ ∑
i(p

x
i p

y

i /m + yiF
x
i ) and δK(�) ≡ K(�) −

3NkBT/2 are the zero-wave-vector limit of the shear stress
and the fluctuation of the kinetic energy K(�) ≡ ∑

i p2
i /(2m),

respectively, and β ≡ 1/ (kBT ). The derivation of Eq. (17)
is reported in Appendix C 1. The ensemble average 〈· · ·〉 in
Eq. (16) is defined for a phase-space variable A(�(t)) as

〈A(�(t)) 〉 ≡
∫

d�ρini(�)A(�(t)), (18)
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where ρini(�) is the initial Maxwell-Boltzmann distribution,
and the definition of Eq. (18) corresponds to the “Heisenberg
picture” [27], which we adopt in this work.

Finally, we state here a steady-state formula for a phase-
space variable A(�(t)),

〈A〉SS = 〈A(�)〉 − βγ̇

∫ ∞

0
dt〈A(�(t))σxy(�)〉

− 2β

∫ ∞

0
dt〈A(�(t))α(�)δK(�)〉, (19)

where

〈A〉SS ≡ lim
t→∞〈A(�(t))〉 (20)

is the ensemble average in a nonequilibrium steady state. Refer
to Appendix C 1 for the derivation of Eq. (19).

III. TRANSLATIONAL INVARIANCE IN THE
SHEARED FRAME

So far we have repeated the formulation by CK [26], aside
from the introduction of the dependence on the phase-space
variables � of the dissipative coupling to the thermostat,
α(�). In this section, a detailed discussion is devoted to
the translational invariance in the sheared frame and to the
definition of the time correlators. This discussion clearly
indicates a crucial mistake in the Fourier transform of the
phase-space variables by CK.

A. Fourier transform

A crucial feature of the sheared system is that the trans-
lational invariance is preserved only in the sheared frame.
Hence, in order to examine the implications of the translational
invariance, we must move on to this frame. As derived in
Appendix C 2, Eq. (C22), the wave vector of the Fourier
transform in the sheared frame is Affine deformed from that of
the experimental frame (we refer to it as the “advected wave
vector” in the following):

Aq(−t)(t̃) =
∫

d3 r̃A(r̃,t̃)eiq(−t)·r̃ , (21)

q(t) ≡ q − q · κ t. (22)

Here, t̃ ≡ t and r̃ ≡ r − (κ · r) t are the temporal and spatial
coordinates in the sheared frame, respectively. We adopt the
definition of the advected wave vector of FC [30], which differs
from the conventional one, q(t) ≡ q + q · κ t [21,25,26]. The
reason for this choice is explained later. The values of
the phase-space variables are equivalent, irrespective of the
frames, so the following equality holds:

Aq(−t)(t̃) = Aq(t). (23)

The time evolution of the Fourier transform in the sheared
frame is generated by iL0, iLα , and iLγ̇p

, where iLγ̇p
is the

momentum part of iLγ̇ :

∂

∂t̃
Aq(−t)(t̃) = iL̃Aq(−t)(t̃), (24)

iL̃ ≡ iL0 + iLα + iLγ̇p
, (25)

iLγ̇p
≡ −

∑
i

pi · κT · ∂

∂ pi

. (26)

The derivation is reported in Appendix C 2. Note that the action
of the coordinate part of iLγ̇ , which we denote

iLγ̇r
≡
∑

i

r i · κT · ∂

∂ r i

, (27)

is already incorporated in the advected wave vector. This fact
has been pointed out by Hayakawa and Otsuki (HO) [21]. We
refer to iLγ̇r

as the “advection Liouvillian,” since it generates
an advection of the wave vectors of plane waves, e−iLγ̇r t eiq·r =
eiq(t)·r .

B. Adjoint Liouvillians inside the time correlators

We have seen above that the Fourier transform separates
the Liouvillian iL into iL̃ and the advection Liouvillian iLγ̇r

.
Hence it is convenient to decompose the adjoint relation,
Eq. (16), into those for iL̃ and iLγ̇r

and define the corre-
sponding adjoint Liouvillians, iL̃† and iL†

γ̇r
. As for iL̃, it is

〈[iL̃A(�(t))]B(�)∗〉 = −〈A(�(t))[iL̃†B(�)]∗〉, (28)

iL̃† ≡ iL̃ − �̃, (29)

where

�̃(�) ≡ −βγ̇ σ (kin)
xy (�) − 2βα(�)δK(�) (30)

is the modified work function, which includes only the kinetic
part of the shear stress,

σ (kin)
xy ≡

∑
i

px
i p

y

i

m
. (31)

As for iLγ̇r
, it is

〈[iLγ̇r
A(�(t))]B(�)∗〉 = −〈A(�(t))

[
iL†

γ̇r
B(�)

]∗〉
, (32)

iL†
γ̇r

≡ iLγ̇r
+ βγ̇ σ (pot)

xy , (33)

where the repeated use of Eq. (32) results in

〈[eiLγ̇r tA(�(t))]B(�)∗〉 = 〈A(�(t))[e−iL†
γ̇r

tB(�)]∗〉. (34)

Here, σ
(pot)
xy is the potential part of the shear stress,

σ (pot)
xy ≡

∑
i

yiF
x
i . (35)

Note that the adjoint Liouvillians iL̃† and iL†
γ̇r

are well defined
only inside the time correlators and are not to be confused with
the adjoint Liouvillian iL†, which is defined in Eq. (7) as an
independent operator.

C. General time correlators

In nonequilibrium statistical mechanics, time correlators
play an essential role. Hence, we figure out the implications
of the translational invariance on the time correlators. An
immediate consequence of the translational invariance in the
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sheared frame is

A(r̃,t̃) = A(r̃ + a(t),t̃), (36)

Ak(t̃) = eik·a(t)Ak(t̃), (37)

where a(t) ≡ (γ̇ tL,L,0). Here, L is the distance between
the two shear boundaries, which is introduced in Sec. II A.
Equation (37) leads to the following “selection rule” of the
wave vectors of the one-point and two-point functions in the
sheared frame:

〈Ak(t̃)〉 = 〈Ak=0(t̃)〉δk,0, (38)

〈Ak(t̃)B∗
q (0)〉 = 〈Aq(t̃)B∗

q (0)〉δk,q . (39)

Application of the equivalence of the Fourier transforms
in the experimental and the sheared frames, i.e., Eq. (23),
to Eq. (39) results in the following selection rule in the
experimental frame:

〈Ak(t)(t)B
∗
q (0)〉 = 〈Aq(t)(t)B

∗
q (0)〉δk,q . (40)

Here, the Fourier transform with the advected wave vector
Aq(t)(t) is explicitly written in terms of the Liouvillians as

Aq(t)(t) =
∑

i

eiLtAi(�(0))eiq(t)·r i

=
∑

i

eiLtAi(�(0))e−iLγ̇r t eiq·r i , (41)

where Ai(�(t)) is the Fourier coefficient, which is defined in
Eq. (C9).

One might think that the two-point function, Eq. (40),
involves an ambiguity; it might seem that another choice,
e.g., 〈Aq(t)B∗

q(−t)(0)〉, is equally valid. Actually, this was
the choice made by CK [26] and FC [24,28]. However,
the two expressions 〈Aq(t)(t)B∗

q (0)〉 and 〈Aq(t)B∗
q(−t)(0)〉 are

in fact inequivalent, due to the noncommutativity and the
non-Hermiticity of the Liouvillians. We prove this statement
below. First, with the use of Eq. (41), 〈Aq(t)(t)B∗

q (0)〉 can be
written in the following form:

〈Aq(t)(t)B
∗
q (0)〉

=
〈[∑

i

eiLtAi(�(0))e−iLγ̇r t eiq·r i

]∑
j

Bj (�(0))∗e−iq·rj

〉
.

(42)

Similarly, 〈Aq(t)B∗
q(−t)(0)〉 can be written as follows:

〈Aq(t)B∗
q(−t)(0)〉

=
〈[∑

i

eiLtAi(�(0))eiq·r i

]∑
j

Bj (�(0))∗eiLγ̇r t e−iq·rj

〉
.

(43)

Even when the advection Liouvillian iLγ̇r
commutes with

Ai(�(0)) and Bj (�(0)), which is the case of interest in the
MCT, where these variables are the density and the current-
density fluctuations, Eqs. (42) and (43) are not equivalent. This
can be seen by the use of the adjoint relation of the Liouvillians,
Eq. (34), and the relations [iLγ̇r

,iL] �= 0 and iLγ̇r
�= iL†

γ̇r
. It

can also be foreseen from Eqs. (42) and (43) that different
definitions of the two-point functions lead to different physical
consequences.

We assert that the specific definition, Eq. (40), is the
physically sensible choice. It states that a fluctuation at time
t = 0 with a wave vector q = q(0) is correlated at time t with
a fluctuation with a wave vector q(t), exclusively. Note that
the definition of the advected wave vector, Eq. (22), is chosen
for its compatibility with the intuitive picture described above.
This definition is essentially coincident with the one adopted
in the previous studies [21,25,30], although it appears to be
〈Aq(−t)(t)B∗

q (0)〉 in Refs. [21,25]. This superficial discrepancy
with Eq. (40) is due to the different definition of the advected
wave vector, q(t) ≡ q + q · κ t .

IV. MORI-TYPE EQUATIONS

In liquid theory, slowly varying (i.e., long-wavelength and
low-frequency) conserved variables are of interest. Conven-
tionally these are the density fluctuation and the current-
density (momentum) fluctuation. In MCT for sheared ther-
mostated systems, the formula for the steady-state quantities is
formulated in terms of a time correlator for density fluctuations
(density time correlator). In this section, we introduce the time
correlators of interest and derive the Mori-type equations [36]
for them by applying the projection operator formalism. First,
we derive the Mori-type equations without the isothermal
condition. Then we formulate the isothermal condition by
introducing a multiplier for this constraint. Finally, we derive
corrections to the Mori-type equations, where the multiplier is
introduced.

A. Time correlators of interest

Density and current-density fluctuations at equilibrium are
denoted in Fourier space as

nq ≡
∑

i

eiq·r i − Nδq,0, (44)

jλ
q ≡

∑
i

pλ
i

m
eiq·r i (λ = x,y,z), (45)

respectively. The spatial dimension is assumed to be 3, in
accordance with the numerical calculation which is carried
out in Sec. VII. The corresponding time correlators of interest,
of the form of Eq. (40), are as follows:

�q(t) ≡ 1

N
〈nq(t)(t)nq(0)∗〉, (46)

Hλ
q (t) ≡ i

N
〈jλ

q(t)(t)nq(0)∗〉. (47)

Here, �q(t) is the density time correlator, and Hλ
q (t) is

referred to as the density-current cross time correlator. As
already mentioned, the Fourier coefficient Ai(�(0)) in Eq. (41)
is Ai(�(0)) = 1 for the density fluctuation and Ai(�(0)) =
pλ

i /m for the current-density fluctuation; hence they com-
mute with iLγ̇r

, respectively. This leads to the following
expression for the density and current-density fluctuations at
time t :

ξq(t)(t) = eiLt e−iLγ̇r t ξq = eiLt ξq(t) = U (t)ξq, (48)
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where

ξq(t) ≡ e−iLγ̇r t ξq, (49)

U (t) ≡ eiLt e−iLγ̇r t . (50)

Here, ξ is either of the hydrodynamic variables, n or j , and
U (t) is the time-evolution operator for ξ in Fourier space.
Note that U (t) is non unitary since the Liouvillians are non-
Hermitian. Then Eqs. (46) and (47) are expressed, respectively,
as

�q(t) = 1

N
〈[U (t)nq]n∗

q〉, (51)

Hλ
q (t) = i

N

〈[
U (t)jλ

q

]
n∗

q

〉
. (52)

B. Continuity equations

Now we derive the equations of motion for Eqs. (51)
and (52). The time derivative of U (t) is

d

dt
U (t) = eiLt

(
iL − iLγ̇r

)
e−iLγ̇r t = eiLt iL̃e−iLγ̇r t , (53)

where iL̃ is defined in Eq. (25). The action of iL̃ on nq is
obtained from Eqs. (11), (13), and (26) as

iL̃nq = iq · j q . (54)

From Eqs. (52)–(54) we obtain

d

dt
�q(t) = 1

N

〈[
d

dt
U (t)nq

]
n∗

q

〉

= 1

N

〈[
eiLt iL̃nq(t)

]
n∗

q

〉 = q(t) · Hq(t). (55)

On the other hand, the action of iL̃ on j q cannot be written in
a concise form as simply as Eq. (54):

d

dt
Hλ

q (t) = i

N

〈[
d

dt
U (t)jλ

q

]
n∗

q

〉

= i

N

〈[
eiLt iL̃jλ

q(t)

]
n∗

q

〉
. (56)

A conventional way to handle Eq. (56) is to deform it into a
Mori-type equation [36]. This task is conducted in Sec. III C
by the application of the projection operator formalism.

C. Projection operator formalism

We have introduced the time correlators, Eqs. (46) and (47),
in a physically sensible way that a fluctuation at time t = 0
with a wave vector q is correlated at time t with a fluctuation
with a wave vector q(t). We refer to this feature as the
“alignment of the wave vectors” in this paper. Even if the
wave vectors of the time correlators are aligned, this feature is
not necessarily preserved in their entire continuity equations.
As for the density time correlator �q(t), this is positive, as can
be seen from Eq. (55). In deriving a Mori-type equation for
the cross time correlator Hλ

q (t), we demand the alignment of
the wave vectors as a principle.

For this purpose, we introduce the time-dependent projec-
tion operator [30],

P(t)X ≡
∑

k

〈
Xn∗

k(t)

〉
NSk(t)

nk(t) +
∑

k

〈
Xjλ∗

k(t)

〉
Nv2

T

jλ
k(t), (57)

and its complementary operator,

Q(t) ≡ 1 − P(t). (58)

Here, X is an arbitrary phase-space variable in Fourier
space and the normalization factors are determined from
the equal-time (equilibrium) correlators, 〈nqn

∗
q ′ 〉 = NSqδq,q ′

and 〈jλ
q j

μ

q ′ 〉 = Nv2
T δλμδq,q ′ , where Sq is the static structure

factor [36] and vT ≡ √
kBT /m is the thermal velocity. These

operators preserve the desired properties: (i) idempotency,
P(t)2 = P(t), Q(t)2 = Q(t); (ii) orthogonality, P(t)Q(t) =
Q(t)P(t) = 0; and (iii) Hermiticity,

〈[P(t)Aq(t)(t)]Bq(0)∗〉 = 〈Aq(t)(t)[P(t)Bq(0)]∗〉, (59)

〈[Q(t)Aq(t)(t)]Bq(0)∗〉 = 〈Aq(t)(t)[Q(t)Bq(0)]∗〉. (60)

In addition, we further introduce a “rescaled static projection
operator” [30],

P̄tX =
∑

k

〈Xn∗
k〉

NSk(t)
nk +

∑
k

〈
Xjλ∗

k

〉
Nv2

T

jλ
k , (61)

whose raison d’être is explained later. Although Eq. (61) is
a projection operator onto the subspace spanned by the static
density and current-density fluctuations {nk, j k}, it involves a
dependence on time through the advected index of Sk(t), so we
appended a subscript t . One can easily verify, by the use of
Eq. (34), the following relation between P(t) and P̄t ,

P(t) = e−iLγ̇r t P̄t e
iL†

γ̇r
t , (62)

where the adjoint of the advection Liouvillian iL†
γ̇ r is defined

in Eq. (33).
Now we derive a Mori-type equation for Eq. (56) by

inserting the projection operators as follows:

d

dt
U (t) = eiLt [P(t) + Q(t)] iL̃e−iLγ̇r t

= eiLt [e−iLγ̇r t P̄t e
iL†

γ̇r
t + Q(t)]iL̃e−iLγ̇r t

= eiLt e−iLγ̇r t [P̄t e
iL†

γ̇r
t + eiLγ̇r tQ(t)]iL̃e−iLγ̇r t

= U (t)[P̄t e
iL†

γ̇r
t iL̃e−iLγ̇r t + eiLγ̇r tQ(t)iL̃e−iLγ̇r t ].

(63)

The formal solution of Eq. (63) is given as

U (t) = U0(t,0) +
∫ t

0
dsU (s)P̄se

iL†
γ̇r

s iL̃e−iLγ̇r sU0(t,s), (64)

where U0(t,t ′) is the solution of the homogeneous
equation. U0(t,t ′) can be written in terms of
the time-ordered exponential, exp→[

∫ t

t ′ dsX(s)] ≡
1 +∑∞

n=1

∫ t

t ′ ds1 · · · ∫ sn−1

t ′ dsnX(sn) · · · X(s1), as follows:

U0(t,t ′) = exp→

[∫ t

t ′
dseiLγ̇r sQ(s)iL̃e−iLγ̇r s

]
. (65)
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From Eqs. (63) and (64), the time derivative of the current-
density fluctuation, which appears in Eq. (56), can be decom-
posed into the “correlated part” and the “uncorrelated part”:

d

dt
U (t)jλ

q = U (t)P̄t e
iL†

γ̇r
t iL̃jλ

q(t) + U0(t,0)eiLγ̇r tQ(t)iL̃jλ
q(t)

+
∫ t

0
dsU (s)P̄se

iL†
γ̇r

s iL̃e−iLγ̇r sU0(t,s)

× eiLγ̇r tQ(t)iL̃jλ
q(t). (66)

Here, the first term on the right-hand side (r.h.s.) is the
correlated part and the second and third terms are the
uncorrelated part. Applying Eq. (61) to Eq. (66), and then
substituting Eq. (66) to Eq. (56), we obtain the Mori-type
equation. Following the derivation in Appendix C 3, we obtain

d

dt
Hλ

q (t) = −v2
T

q(t)λ

Sq(t)
�q(t) − α0H

λ
q (t) − [κ · Hq(t)]λ

+ i

N

〈
Rλ

q(t)(t)n
∗
q

〉− ∫ t

0
dsLλ

q(t,s)�q(s)

−
∫ t

0
dsMλμ

q (t,s)Hμ
q (s), (67)

where we have introduced

Rλ
q(t)(t) ≡ U0(t,0)eiLγ̇r tRλ

q(t), (68)

Rλ
q(t) ≡ Q(t)iL̃jλ

q(t), (69)

iLλ
q(t,s) ≡ 1

NSq(t)

〈[
iL̃Ũ0(t,s)Rλ

q(t)

]
n∗

q(s)

〉
, (70)

Mλμ
q (t,s) ≡ − 1

Nv2
T

〈[
iL̃Ũ0(t,s)Rλ

q(t)

]
j

μ∗
q(s)

〉
, (71)

Ũ0(t,s) ≡ e−iLγ̇r sU0(t,s)eiLγ̇r t . (72)

Here, Rλ
q(t)(t) is the “random force,” whose time evolution is

given by the projected time-evolution operator, U0(t,0). Two
types of memory kernels appear, Lλ

q(t,s) and M
λμ
q (t,s), due to

the projection onto the current-density and the density fluctua-
tions, respectively. The correction of the friction coefficient α0

due to the introduction of the isothermal condition is discussed
in Sec. IV E.

Note that the random force, Eq. (68), is not orthogonal to
the density fluctuation at this stage. An additional requirement
leads to the orthogonality, which is discussed in Eqs. (88)
and (89) in Sec. V. Note also that the memory kernels possess
two time arguments, in contrast to those which appear in CK.
This issue is also discussed in Sec. V.

D. Isothermal condition

So far we have derived the Mori-type equations without the
isothermal condition, which is the condition necessary to hold
the kinetic temperture unchanged. In this section, we attempt
to implement the isothermal condition. The derivation of the
resulting Mori-type equations is performed in Sec. IV E.

At the level of the Sllod equation, it is known that the
isothermal condition is satisfied by the specific choice of
α(t) given by Eq. (3), which is referred to as the Gaussian

isokinetic thermostat. In principle, the Mori-type equations
derived from the corresponding Liouville equation, with α(�)
given by Eq. (3), no longer contain any multiplier, and the
invariance of the kinetic temperature is assured automatically.
However, this choice of α(�) leads to difficulty in deriving the
Mori-type equations, since the integral of a rational function
with Gaussian weight is difficult to perform explicitly.

This motivates us to implement the isothermal condition
at the level of the Mori-type equations, which is attained by
requiring the time derivative of the average kinetic temperature
to vanish. Note that this scheme requires the time derivative
of the kinetic temperature, not necessarily itself but at least its
average, to vanish. In this scheme, we avoid to fully incorporate
the fluctuations as in Eq. (3) and attempt to incorporate them
partially, compensating it with a multiplier at the level of
the Mori-type equations. We denote this multiplier, which
corresponds to the multiplier of the Liouville equation α(�),
as λα(t) in the remainder.

By differentiating the generalized Green-Kubo formula for
the kinetic temperature, we obtain

d

dt
〈T (�(t)) 〉 = 2

3NkB

〈K(�(t))�(�) 〉

= − 2β

3NkB

{γ̇ GK,σ (t) + 2GK,αδK (t)}, (73)

where

GK,σ (t) ≡ 〈 [U (t)K(�)]σxy(�) 〉 (74)

and

GK,αδK (t) ≡ 〈 [U (t)K(�)]α(�)δK(�) 〉 . (75)

Hence, the isothermal condition at the level of the Mori-type
equations reads

γ̇ GK,σ (t) + 2GK,αδK (t) = 0. (76)

In order to satisfy this constraint, we introduce λα(t) in
GK,αδK (t), the result of which we denote G

(λ)
K,αδK (t), and recast

Eq. (76) as

γ̇ GK,σ (t) + 2G
(λ)
K,αδK (t) = 0. (77)

However, from Eq. (75), we can see that the definition of
G

(λ)
K,αδK (t) is nontrivial, since the effect of the time evolution

of the multiplier appears in U (t), rather than α(�). This leads
us to define a “renormalized” time-evolution operator UR(t),
where

UR(t) ≡ λα(t)U (t), (78)

and define G
(λ)
K,αδK (t) as

G
(λ)
K,αδK (t) ≡ 〈 [UR(t)K(�)]α(�)δK(�) 〉

= λα(t)GK,αδK (t). (79)

Here, λα(t) factors out, since it is not a phase-space variable.
Then, if GK,αδK (t) �= 0, choosing the multiplier as

λα(t) = − γ̇

2

GK,σ (t)

GK,αδK (t)
(80)

assures the isothermal condition, Eq. (77), to be satisfied. Note
that, while α(�) is expressed in terms of the phase-space
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variables �, λα(t) is expressed in terms of time correlators
at time t , when the constraint, Eq. (77), is satisfied. Concrete
examples of α(�) and λα(t) are discussed in Sec. VI B.

E. Isothermal Mori-type equations

Now we figure out how the multiplier λα(t) enters into
the Mori-type equations. The identification of the complete
correction is possible but rather lengthy. Furthermore, most of
the modifications vanish in the mode-coupling approximation,
which we discuss in Sec. V. Hence, we only focus on the
modification which survives the mode-coupling approxima-
tion, which is for the friction term α0H

λ
q (t) in Eq. (67). As

shown in Appendix C 3, this term arises from the correlated
part in Eq. (66), which is explicitly〈[

U (t)P̄t e
iL†

γ̇r
t iLαjλ

q(t)

]
n∗

q

〉
= 〈[

U (t)P̄t e
iL†

γ̇r
t α(�)iLpjλ

q(t)

]
n∗

q

〉
. (81)

Here, we extract α(�) and define the remaining part as iLp ≡
−∑

i pi · ∂/∂ pi . We introduce λα(t) here as done in Eq. (78),
which leads to〈[

UR(t)P̄t e
iL†

γ̇r
t α(�)iLpjλ

q(t)

]
n∗

q

〉 = λα(t)α0, (82)

where the explicit form of α(�), which is specified in
Sec. VI B, Eq. (112), is utilized. Hence, the Mori-type equation
with the isothermal condition is

d

dt
Hλ

q (t) = −v2
T

q(t)λ

Sq(t)
�q(t) − λα(t)α0H

λ
q (t) − [κ · Hq(t)]λ

+ i

N

〈
Rλ

q(t)(t)n
∗
q

〉− ∫ t

0
dsLλ

q(t,s)�q(s)

−
∫ t

0
dsMλμ

q (t,s)Hμ
q (s). (83)

The fact that λα(t) does not appear in the memory kernels in the
mode-coupling approximation can be verified in Sec. V, where
the resulting memory kernels turn out to be independent of α0.
In addition, as shown in Sec. V, the vanishing of 〈Rλ

q(t)(t)n
∗
q〉

is not affected by α(�), and hence λα(t) does not appear here
either.

In principle, the Mori-type equations which follow from the
choice, Eq. (3), of α(�) contain no multiplier and are expected
to satisfy the isothermal condition, Eq. (76), automatically. On
the other hand, the Mori-type equations, Eqs. (55) and (83),
which follow from α(�) of Eq. (112) contain a multiplier λα(t),
and the isothermal condition, Eq. (77), is explicitly satisfied
if λα(t) is chosen as Eq. (120), which is derived in Sec. VI B.
We expect that the physical equivalence is achieved for these
two schemes. The Mori-type equations of the underdamped
and overdamped [30] cases are compared and discussed in
Appendix B.

V. MODE-COUPLING APPROXIMATION

We have derived an isothermal Mori-type equation for the
cross time correlator Hλ

q (t), Eq. (83), in the previous section.
However, this is not a closed equation for the time correlators
�q(t) and Hλ

q (t), unless the memory kernels are expressed in
terms of them. For this purpose, we introduce a time-dependent

second projection operator [30], which extracts the dynamics
correlated with the slowly varying pair-density modes:

P2(t)X ≡
∑
k> p

〈
Xn∗

k(t)n
∗
p(t)

〉
N2Sk(t)Sp(t)

nk(t)n p(t). (84)

The normalization factor is determined by the factorization
approximation of the equal-time (equilibrium) four-point
function of the density fluctuations, 〈nk(t)n p(t)n

∗
k′(t)n

∗
p′(t)〉 �

〈nk(t)n
∗
k′(t)〉〈n p(t)n

∗
p′(t)〉 = δk,k′δ p, p′N2Sk(t)Sp(t)(k> p,k′ > p′).

The second projection operator, Eq. (84), is idempotent and
Hermitian, similar to the projection operator, Eq. (57).

In underdamped MCT, there exists a potential next-
to-leading second projection operator, which projects the
dynamics onto the density-current modes [37]. However, it
can be shown that this projection is negligible compared
to the projection onto the pair-density modes, at least for
time-reversible thermostated systems [38]. Hence, the choice
of Eq. (84) is assured. Note that this feature does not always
hold, e.g., for granular systems, where the projection onto the
density-current modes plays an essential role [23,37].

There is one subtle issue we should handle in order for
the application of Eq. (84) to work [39]. The operator which
appears in the memory kernels defined in Eqs. (70) and (71),
iL̃Ũ0(t,s)Rλ

q(t), can be deformed as follows,

iL̃Ũ0(t,s)Rλ
q(t)

= iL̃ [1 + �(s)] e−iL†
γ̇r

sU0(t,s)eiLγ̇r tQ(t)Rλ
q(t), (85)

where Eq. (72), the idempotency of Q(t), and the identity

e−iLγ̇r t = [1 + �(t)] e−iL†
γ̇r

t (86)

is applied. Here,

�(t) ≡ βγ̇

∫ t

0
dseiL†

γ̇r
sσ (pot)

xy e−iLγ̇r s (87)

is the accumulated elastic energy due to shear, where σ
(pot)
xy is

the potential part of the shear stress introduced in Eq. (35).
As discussed in FC [30], the shear-induced term �(t) is an
obstacle for the application of the second projection operator
and the factorization approximation. We assume here �(t) �
0, whose validation is discussed in FC [30]. At least, this
assumption is valid in the weak-shear regime, since �(t) is
proportional to γ̇ .

The neglect of �(t) leads to the following relation,

e−iL†
γ̇r

sU0(t,s) = Q(s)e−iL†
γ̇r

sU0(t,s), (88)

whose proof is given in Appendix C 4. The first implication of
Eq. (88) is the orthogonality of the random force,〈

Rλ
q(t)(t)ξ

∗
q

〉 = 〈 [
U0(t,0)eiLγ̇r tRλ

q(t)

]
ξ ∗

q

〉
= 〈 [

Q(0)U0(t,0)eiLγ̇r tRλ
q(t)

]
ξ ∗

q

〉
= 〈 [

U0(t,0)eiLγ̇r tRλ
q(t)

]
Q(0)ξ ∗

q

〉 = 0, (89)

where ξ = n or j . The second implication is the form of the
aforementioned operator described in Eq. (85),

iL̃Ũ0(t,s)Rλ
q(t) � iL̃Q(s)e−iL†

γ̇r
sU0(t,s)eiLγ̇r tQ(t)Rλ

q(t), (90)
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which now has the desirable feature, i.e., the projection of
U0(t,s) is now complete. The memory kernels, Eqs. (70)
and (71), can be rewritten, from Eq. (90), as follows:

iLλ
q(t,s) = 1

NSq(t)

〈 [
Ũ ′

0(t,s)Rλ
q(t)

]
Q(s)

[
n∗

q(s)�̃
] 〉

, (91)

Mλμ
q (t,s) = 1

Nv2
T

〈[
Ũ ′

0(t,s)Rλ
q(t)

]
�R

μ∗
q(s)

〉
. (92)

Here,

Ũ ′
0(t,s) ≡ Q(s)e−iL†

γ̇r
sU0(t,s)eiLγ̇r tQ(t) (93)

is the modified projected time-evolution operator,

�R
μ

q(s) ≡ R
μ

q(s) − Q(s)
[
j

μ

q(s)�̃
]

(94)

is the modified random force, and �̃ is the modified work
function defined in Eq. (30). The derivation of the above
equations, Eqs. (91)–(94), is reported in Appendix C 5.

Now we insert the second projection operator, Eq. (84),

into Eqs. (91) and (92) as Q(s)e−iL†
γ̇ r sU0(t,s)eiLγ̇r tQ(t) �

P2(s)Q(s)e−iL†
γ̇r

sU0(t,s)eiLγ̇r tQ(t)P2(t), which results in the
following form, i.e., products of vertex functions at times s

and t , bridged by a propagator from time s to t :

iLλ
q(t,s) � 1

NSq(t)

∑
k′> p′

∑
k> p

〈
Rλ

q(t)n
∗
k(t)n

∗
p(t)

〉
N2Sk(t)Sp(t)

× 〈[
Ũ ′

0(t,s)nk(t)n p(t)
]
n∗

k′(s)n
∗
p′(s)

〉
×
〈
nk′(s)n p′(s)Q(s)

[
n∗

q(s)�̃
]〉

N2Sk′(s)Sp′(s)
, (95)

Mλμ
q (t,s) � 1

Nv2
T

∑
k′> p′

∑
k> p

〈
Rλ

q(t)n
∗
k(t)n

∗
p(t)

〉
N2Sk(t)Sp(t)

×〈[Ũ ′
0(t,s)nk(t)n p(t)]n

∗
k′(s)n

∗
p′(s)〉

× 〈nk′(s)n p′(s)�R
μ∗
q(s)〉

N2Sk′(s)Sp′(s)
. (96)

We can see from the above expressions that the derived forms
of the memory kernels are consistent with the principle of
the alignment of the wave vectors; the vertex function at time
t includes as indices only the advected wave vectors with
argument t , e.g., q(t), and a similar feature also holds for the
propagator.

The remaining tasks are the calculation of the vertex
functions and the approximation of the propagators. As for
the vertex functions, the convolution approximation [36] is
applied. We only show the results below, since the derivation,
which is reported in Appendix C 6, is straightforward:〈

Rλ
q(t)n

∗
k(t)n

∗
p(t)

〉
N2Sk(t)Sp(t)

= −i
n

N
δq,k+ pV

λ
q(t),k(t), p(t), (97)

〈
nk(t)n p(t)�Rλ∗

q(t)

〉
N2Sk(t)Sp(t)

= i
n

N
δq,k+ pV

λ∗
q(t),k(t), p(t), (98)

V λ
q,k, p ≡ v2

T (kλck + pλcp), (99)

〈nk(t)n p(t)Q(t)[n∗
q(t)�̃]〉

N2Sk(t)Sp(t)
= 0. (100)

As for the propagator, we adopt the factorization approxima-
tion, which replaces it with the product of the projection-free
propagators:

1

N2
〈[Ũ ′

0(t,s)nk(t)n p(t)]n
∗
k′(s)n

∗
p′(s)〉

� δk′,kδ p′, p�k(s)(t − s)� p(s)(t − s). (101)

The derivation of Eq. (101) is reported in Appendix C 7.
From Eqs. (95)–(101), we arrive at the final expressions for

the memory kernels,

iLλ
q(t,s) = 0, (102)

Mλμ
q (t,s) = n

2v2
T

∫
d3k

(2π )3
V λ

q(t),k(t), p(t)V
μ∗
q(s),k(s), p(s)

×�k(s)(t − s)� p(s)(t − s), (103)

where the summation of the wave vectors is replaced by
the integral, and p ≡ q − k. Note that the memory kernel
Lλ

q introduced by CK [26] vanishes in our formulation. This
helps us to connect our formulation with the previous ones
[24,25,30]. Note also that the memory kernel in Eq. (103)
cannot be expressed solely in terms of the time difference t − s,
even after the application of the mode-coupling approximation.
This is in contrast to the cases of CK [26], where the memory
kernels depend only on the time difference t − s at the level
of the Mori-type equations.

VI. STEADY-STATE PROPERTIES

In the previous sections, we have derived a set of closed
equations for the time correlators �q(t) and Hλ

q (t), i.e.,
Eqs. (55) and (83), where the memory kernels are given by
Eqs. (102) and (103). According to the integration through
transient (ITT) scheme [24,28,30], the steady-state properties
are written in terms of the time correlators, with equilibrium
quantities (e.g., the static structure factor) as the only inputs.
We follow this scheme and derive a closed formula for the
steady-state quantities. In the course of this procedure, we
derive an explicit expression of the multiplier λα(t) introduced
in Sec. IV D. A specific formula for the steady-state shear
stress is derived in Sec. VI C.

A. Time correlators of interest

From the analog of the Green-Kubo relation, Eq. (19), time
correlators of interest are of the following form:

GA,B(t) ≡ 〈A(�(t))B(�)〉 = 〈[U (t)A(�)]B(�)〉, (104)

B(�) ≡ σxy(�) or α(�)δK(�). (105)

In this paper, we concentrate on the steady-state kinetic
temperature and the shear stress; i.e., we consider the specific
cases, A(�) = K(�) and σxy(�).

Similarly to the case of static projection operators [26],
we can show that the time correlator, Eq. (104), resides in
the subspace orthogonal to the density and the current-density
fluctuations, i.e.,

GA,B(t) = 〈 [U0(t,0)A(�)] B(�) 〉 , (106)
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whose proof is given in Appendix C 8.
Now we apply the second projection operator to Eq. (106).

Since B(�) = σxy(�) and α(�)δK(�) are zero-wave-vector
quantities, it is sufficient to project onto the “zero-mode” pair-
density correlator,

P0
2 (t)X ≡

∑
k>0

〈Xn∗
k(t)nk(t)〉

N2S2
k(t)

nk(t)n
∗
k(t), (107)

which is a restricted form of Eq. (84). The mode-coupling
approximation to Eq. (106) is then

GA,B(t) � 〈 [
P0

2 (0)Ũ0(t,0)P0
2 (t)A(�)

]
B(�)

〉
= 〈 [

Ũ0(t,0)P0
2 (t)A(�)

]
P0

2 (0)B(�)
〉
, (108)

where the Hermiticity of the projection operator P0
2 is applied

in the last equality. Note that Ũ0(t,0), rather than U0(t,0),
appears due to the insertion of P0

2 (t).

B. Isothermal condition in MCT

To proceed further, it is necessary to calculate the explicit
form of the multiplier λα(t) given by Eq. (80). For this
purpose, we specify the form of α(�) and explicitly calculate
GK,σ (t) and GK,αδK (t), which are given in the mode-coupling
approximation as

GK,σ (t) � 〈[
Ũ0(t,0)P0

2 (t)K(�)
]
P0

2 (0)σxy(�)
〉
, (109)

GK,αδK (t) � 〈[
Ũ0(t,0)P0

2 (t)K(�)
]
P0

2 (0)α(�)δK(�)
〉
. (110)

In the following, we examine concrete examples of α(�)
and λα(t). The simplest choice of α(�) is to fully neglect its �

dependence. In this case, no fluctuations are incorporated, and
α(�) is a constant, which we denote α0. However, we illustrate
here that this choice always causes a heating-up of the kinetic
temperature [40]. For α(�) = α0, Eq. (110) reads

GK,αδK (t) = α0
〈[
Ũ0(t,0)P0

2 (t)K(�)
]
P0

2 (0)δK(�)
〉
, (111)

which vanishes due toP0
2 (0)δK(�) = 0. This implies, together

with the fact that GK,σ (t) �= 0, which is shown below,
that the isothermal condition, Eq. (77), cannot be satisfied.
Hence, the average kinetic temperature calculated in this
way is unphysical and cannot be regarded as a steady-state
temperature. Note that this case is the one adopted by CK [26].

From the above argument, it is shown that, in order to
retain GK,αδK (t) nonvanishing, it is at least necesssary to
introduce fluctuations into α(�). The simplest choice for this
is to incorporate current fluctuations as

α(�) = α0
3
2NkBT

∑
i

p2
i

2m
, (112)

where α0 is a constant which gives the initial strength of
the dissipative coupling to the thermostat. Now we calculate
the projected properties P0

2 (0)[α(�)δK(�)], P0
2 (0)σxy(�), and

P0
2 (t)K(�), which appear in Eqs. (109) and (110), with the

choice of Eq. (112) for α(�). Straightforward calculation
leads to

P0
2 (0)[α(�)δK(�)] = α0

kBT

N

∑
k>0

nkn
∗
k

Sk

, (113)

P0
2 (t)K(�) = 3

2
kBT

∑
k>0

nk(t)n
∗
k(t)

Sk(t)
, (114)

and

P0
2 (t)σxy(�) = −kBT

N

∑
k>0

Wk(t)

Sk(t)
nk(t)n

∗
k(t), (115)

Wk ≡ kxky

k

1

Sk

∂Sk

∂k
, (116)

which are derived in Appendix C 9. From Eqs. (109), (110),
and (113)–(115), GK,σ (t) and GK,αδK (t) are given by

GK,σ (t) = −3

2

(kBT )2

N

∑
k>0

∑
k′>0

1

Sk(t)

Wk′

Sk′

× 〈[Ũ0(t,0)nk(t)n
∗
k(t)]nk′n∗

k′ 〉 (117)

and

GK,αδK (t) = 3

2
α0

(kBT )2

N

∑
k>0

∑
k′>0

1

Sk(t)

1

Sk′

× 〈[Ũ0(t,0)nk(t)n
∗
k(t)]nk′n∗

k′ 〉, (118)

respectively. Application of the factorization approximation to
the four-point function reads

1

N2
〈[Ũ0(t,0)nk(t)n

∗
k(t)]nk′n∗

k′ 〉 � [δk′,k + δk′,−k]�k(t)2,

(119)

where n∗
k = n−k, �−k(t) = �k(t) are applied. The derivation

of Eq. (119) is shown in Appendix C 7. From Eqs. (80)
and (117)–(119), the functional form of the multiplier λα(t)
should be given by

λα(t) = γ̇

2α0

∑
k>0

1
Sk(t)

Wk
Sk

�k(t)2∑
k>0

1
Sk(t)Sk

�k(t)2
(120)

in order to satisfy the constraint, Eq. (77). This can be regarded
as an analog for MCT of the Gaussian isokinetic thermostat,
Eq. (3), for MD.

We note here that, with the choice of Eq. (112), the second
term of �(�) in Eq. (9) reads

∑
i[∂α(�)/∂ pi] · pi = 2α(�).

This is negligible compared to the first term of Eq. (9), which
is proportional to N , in the thermodynamic limit.

C. Steady-state stress formula

We define the steady-state shear stress by the steady-state
stress tensor as follows:

〈σ 〉SS ≡ − 1

V
〈σxy〉SS. (121)

From the steady-state formula, Eqs. (19) and (20), and
remembering that 〈σxy(�)〉 = 0, the steady-state shear stress
is given by the time correlators as

〈σ 〉SS = βγ̇

V

∫ ∞

0
dtGσ,σ (t) + 2β

V

∫ ∞

0
dtG

(λ)
σ,αδK (t), (122)
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where the time correlators Gσ,σ (t) and G
(λ)
σ,αδK (t) are given by

Gσ,σ (t) ≡ 〈[U (t)σxy(�)]σxy(�)〉 (123)

and

G
(λ)
σ,αδK (t) ≡ 〈[UR(t)σxy(�)]α(�)δK(�)〉

= λα(t)Gσ,αδK (t). (124)

In Eq. (124), we have introduced the multiplier λα(t) by
applying UR(t), Eq. (78), which is required from the arguments
in Sec. IV D. In the mode-coupling approximation, Gσ,σ (t) and
G

(λ)
σ,αδK (t) are approximated as

Gσ,σ (t) � 〈 [
Ũ0(t,0)P0

2 (t)σxy(�)
]
P0

2 (0)σxy(�)
〉

(125)

and

G
(λ)
σ,αδK (t) � λα(t)

〈[
Ũ0(t,0)P0

2 (t)σxy(�)
]

× P0
2 (0) [α(�)δK(�)]

〉
, (126)

respectively. From Eqs. (113), (115), (119), (125), and (126),
Eq. (122) reads

〈σ 〉SS = kBT

2

∫ ∞

0
dt

∫
d3k

(2π )3

Wk(t)

Sk(t)

γ̇Wk − 2λα(t)α0

Sk

�k(t)2.

(127)

We can see that a correction due to the dissipative coupling,
which originates in the current fluctuation incorporated in
α(�), arises to the well-known formula for the overdamped
case [30]. This is in contrast to the case of α(�) = α0, where the
steady-state stress formula is coincident with the overdamped
case [26]. Note that this correction parallels the “cooling
effect” of the kinetic temperature, which compensates the
“heat-up” by the shearing and keeps the kinetic temperature
unchanged from its initial equilibrium value.

VII. NUMERICAL CALCULATION

To demonstrate the validity of our formulation, we show
the results of the numerical calculations in this section. As
is well known, it is ineffective at present to perform grid
calculations for a three-dimensional system, due to limitations
of computational resources. In this work, we adopt the
“isotropic approximation,” which has been formulated and
implemented by FC [28,30] and CK [26]. The grid calculations
in two-dimensional sheared Brownian systems [41,42] show
that the anisotropy is relatively small, which assures the
validation of this approximation, at least in two dimensions
[43]. This approximation also enables us to compare formally
similar equations for the underdamped and overdamped cases,
as discussed in Appendix B. The details of the formulation of
the isotropic approximation are well described by CK [26], so
we only report the results below and make some additional
remarks in Appendix D.

Sheared systems are genuinely anisotropic, which can
be seen from, e.g., the existence of the anisotropic term
−[κ · Hq(t)]λ in the Mori-type equation, Eq. (83). By the
application of the isotropic approximation, the anisotropic
terms are neglected, which allows us to obtain a single second-
order equation for the density time correlator by combining

Eqs. (55) and (83). The resulting (MCT) equation is

d2

dt2
�q(t) � −v2

T

q̄(t)2

Sq̄(t)
�q(t) −

[
λα(t)α0 − γ̇

2
3 γ̇ t

1 + 1
3 (γ̇ t)2

]

× d

dt
�q(t) −

∫ t

0
dsM̄q̄(s)(t − s)

d

ds
�q(s),

(128)

where the memory kernel is given by

M̄q̄(s)(t − s)

= nv2
T

2q2

[
1 + 1

3
(γ̇ t)2

] ∫
d3k

(2π )3
[(q · k)ck̄(t) + (q · p)cp̄(t)]

× [(q · k)ck̄(s) + (q · p)cp̄(s)]�k̄(s)(t − s)�p̄(s)(t − s).

(129)

Here, p ≡ q − k is assumed. The notation and the derivation
of Eqs. (128) and (129) are reported in Appendix D 1. Since
the multiplier λα(t) given by Eq. (120) is a functional of �q(t),
Eq. (128) is solved by iteration between �q(t) and λα(t).

A. Time correlators

In the isotropic approximation, the MCT equation Eq. (128)
is numerically solved on one-dimensional spatial and temporal
grids. The spatial grid is for the wave number (modulus of the
wave vector). The discretized form of the memory kernel,
Eq. (129), on the spatial grid is reported in Appendix D 2.
For the time integration, we adopt the algorithm in Ref. [44],
which enables us to calculate robustly in long time scales by
gradual coarse-graining in the temporal grid. For the units
of nondimensionalization, we choose the diameter d and the
mass m of the sphere for the length and mass, respectively, and
τ0 ≡ d/v0, where v0 ≡ v

(+)
0 − v

(−)
0 = γ̇ L is the relative shear

velocity at the two boundaries, for the time.
The conditions of the calculation are as follows. The spatial

grid is chosen as qd = q̂�, where � = 0.4 is the grid spacing
and q̂ = (2m − 1)/2 (m = 1,2, . . . ,100) is the discretized
index. The cutoff of the wave number is qmaxd = 39.8. The
number of temporal grids is Nt = 256. The time step is
initially �t0 = 10−6τ0, which is doubled in every Nt/2 steps.
There are three inputs; the volume fraction ϕ ≡ πnd3/6, the
static structure factor Sq , and the shear rate γ̇ . The volume
fraction is expressed in terms of the “distance” from the critical
volume fraction of the MCT transition in the equilibrium MCT,
ϕc = 0.515 912 13 [45], which is denoted ε ≡ (ϕ − ϕc) /ϕc.
This definition of the distance implies ε > 0 for the glass
phase, while ε < 0 for the liquid phase. The value of ε is fixed
at ε = +10−3 for the calculation of the time correlator, while
it is varied for the shear stress, as reported in Sec. VII B.
As for the static structure factor, the analytic solution of
the Percus-Yevick equation [36] for three-dimensional hard-
sphere systems is adopted, whose explicit expression in the
Fourier space can be found in, e.g., Ref. [46]. The initial
conditions are �q(t = 0) = Sq and [∂�q(t)/∂t]t=0 = 0.

The result of the calculation is shown in Fig. 1. Here, the
wave number is fixed at qd = 7.0 (the first, highest peak of
the static structure factor; refer to Fig. 4), while the shear rate
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FIG. 1. (Color online) Numerical solution for the normalized
density time correlator. The wave number is fixed at qd = 7.0 (the
first, highest peak of the static structure factor), while the shear rate
γ̇ is varied. The lines correspond to γ̇ τ0 equal to (a) 0 (no shear),
(b) 10−8, (c) 10−6, (d) 10−4, (e) 10−2, and (f) 1.

γ̇ is varied. The lines correspond to γ̇ τ0 = 0 (no shear), 10−8,
10−6, 10−4, 10−2, and 1.

For comparison, we show the result for the overdamped
case in Fig. 2. The MCT equation for this case is presented
in Appendix B, Eq. (B8). The effective friction coefficient
which appears in Eq. (B8), αod, is fixed as αodd

2/(v2
T τ0) = 0.1.

The result in Fig. 2 is qualitatively in accordance with the
previous results [41,42] and almost coincident with them at
the quantitative level as well.

From Figs. 1 and 2, the density time correlator decays
due to shearing around the time scale τα � γ̇ −1 (α-relaxation
time), for both the underdamped and the overdamped cases.
The resemblance between the two cases can be seen not
only in the α-relaxation time τα , but also in the NEP, which
is almost coincident. These results are consistent with the
observation that the long-time dynamics after the early-β-
relaxation time τβ is dominated by the memory kernel, and the
instantaneous dynamics are invalid at this time scale [31–33].
The difference between the two cases can be seen at the
early stage before τβ [41]. As for the underdamped case, the
density time correlator is held constant at its initial value until
t � 10−1τ0, since the frequency of the sound wave, ωq(t) ≡

FIG. 2. (Color online) Numerical solution for the normalized
density time correlator in the overdamped limit. Conditions and
captions are the same as for Fig. 1.

FIG. 3. (Color online) Numerical solution for the normalized
density time correlator. The shear rate is fixed at γ̇ τ0 = 10−2, while
results for several wave numbers below the first, highest peak of
the static structure factor are shown. The lines correspond to wave
numbers qd of 5.0, 6.2, and 6.6. u.d., underdamped case; o.d.,
overdamped case.

√
v2

T q̄(t)2/Sq̄(t) , dominates the transient behavior at this stage
(for qd = 7.0, ωq(t)−1 � 0.27τ0 at t � τβ). On the other
hand, for the overdamped case, the density time correlator
is already decreasing at t � 10−4τ0, which can be seen from
its approximate solution at this stage, �q(t) � exp[−t/τod],
where τod ≡ αodSq̄(t)/[v2

T q̄(t)2] = αod/ωq(t)2 is the time scale
of this damping (for qd = 7.0, τod � 7 × 10−3τ0 at t � τβ).
The emergence of two time scales is one of the significant
features of the underdamped systems. In overdamped systems,
there is only a single time scale which is the ratio of αod

and ωq(t), while λα(t)α0 and ωq(t) settle independent time
scales in the underdamped case. Due to this fact, overdamped
systems are scaled by a single nondimensional parameter,
the Péclet number, Pe ≡ γ̇ τ0, while this is not the case
for the underdamped case. There are also effects of the
difference on the steady-state shear stress, which is discussed
in Sec. VII B.

Next, we show the results for several wave numbers in
Fig. 3. The shear rate is fixed at γ̇ τ0 = 10−2, and other
conditions are the same as in Fig. 1. Three wave numbers
below the first, highest peak of the static structure factor are
chosen: qd = 5.0, 6.2, and 6.6. They are depicted in Fig. 4
by filled (red) circles, where the static structure factor we
adopt is shown. We can see that the density time correlator is
almost monotonically decreasing, except for the spike around
t � 10−1τ0, for the underdamped case. This spike is the vestige
of the oscillation of the sound wave, which is smeared out at
longer time scales. In fact, there is no spike in the result for
the overdamped case, which is shown in Fig. 3.

Next, we show the result for the CK theory [26] in
Fig. 5, where the conditions are the same as in Fig. 3. The
difference from the result of our formulation is obvious; there
are significant signals of overshoot or undershoot, i.e., the
normalized density time correlator exceeds 1.0 or becomes
negative. For equilibrium systems, it is easy to prove that the
absolute value of the normalized density time correlator is
<1.0 [36] and that the density time correlator monotonically
decays in the overdamped limit [2]. On the other hand, for
general nonequilibrium systems, there seems to be no rigorous
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FIG. 4. (Color online) The structure factor used as an input in the
calculation. The three wave numbers whose density time correlator
is shown in Fig. 3 are highlighted by filled (red) circles; qd = 5.0,
6.2, and 6.6, from left to right. qd = 7.0 corresponds to the first,
highest peak.

proof of the bounded property or the monotonicity of the
density time correlators. However, it is natural to expect that
these properties also hold as well, at least for cases with
small shear. In addition, it is obvious that the overshoot or
undershoot is not the result of the oscillating nature of the
underdamped system. The overshoot or undershoot appears in
the α-relaxation regime, where the instantaneous oscillation
is already sufficiently damped. From these considerations, we
conclude that the overshoot or undershoot found in CK theory
[26] is an artifact of the inappropriate definition of the density
time correlator. The problem of overshoot or undershoot is
discussed further in Sec. VIII around Eq. (135).

B. Shear stress

Now we present the result for the steady-state shear stress
in units of kBT /d3, where d is the diameter of the sphere, in
Fig. 6, which is calculated from the solution of the density
time correlator by Eq. (127). The conditions are the same
as in Sec. VII A, aside from two exceptions. One is the
strength of the thermostat in the overdamped case αod, which
is fixed at αodd

2/(v2
T τ0) = 1 here. This value is chosen to

FIG. 5. (Color online) Numerical solution for the normalized
density time correlator of the theory of Chong and Kim [26]. The
conditions are the same as for Fig. 3.

FIG. 6. (Color online) Numerical result for the steady-state shear
stress, in units of kBT /d3. Solid lines represent the underdamped
case; dotted lines, the overdamped case. The four lines for each case
are for ε = ±10−2, ±10−3, where ε ≡ (ϕ − ϕc) /ϕc is the distance
of the volume fraction ϕ from the MCT transition point ϕc. u.d.,
underdamped case; o.d., overdamped case.

conform with the previous work [24] which is the direct
reference for our calculation. Another is the volume fraction,
where four cases, ε = ±10−2, ±10−3, are considered for
underdamped and overdamped cases, respectively. The results
for the underdamped case are shown by solid lines, while those
for the overdamped case are shown by dotted lines.

As discussed in Sec. VII A, underdamped systems are not
scaled by a single parameter, the Péclet number Pe, in contrast
to overdamped systems. Hence, we choose as the horizontal
axis the nondimensionalized shear rate, γ̇ τ0.

The results for the overdamped case reproduce those found
in Ref. [24]. We can see from Fig. 6 that the underdamped
case shows similar tendencies to the overdamped case. That
is, in the liquid phase with ε < 0, the shear stress shows the
Newtonian behavior, σxy ∝ γ̇ , for small shear rates. For large
shear rates, the above linearity is broken, which signals “shear
thinning.” In the glass phase with ε > 0, the shear stress
remains finite in the limit γ̇ → 0, which is nothing but the
yield stress.

At the quantitative level, however, discrepancies can be
observed. For high shear rates, e.g., γ̇ τ0 > 1.0, the shear stress
is larger for the underdamped case. This is because the density
time correlator is held constant in the short-time regime t <

0.1τ0 due to the inertia effect in the underdamped case, while
it is already decreasing in the overdamped case, as previously
discussed.

On the other hand, for low shear rates, the yield stress
which emerges in the glass phase (ε > 0) is smaller for the
underdamped case. This is due to the analog of the “cooling
effect,” which is explained after Eq. (127). To prove this
statement, the accumulated shear stress as a function of time,
which we define by

〈σ (t)〉 ≡ kBT

2

∫ t

0
ds

∫
d3k

(2π )3

Wk(s)

Sk(s)

× γ̇Wk − 2λα(s)α0

Sk

�k(s)2, (130)

is shown in Fig. 7, and the multiplier λα(t), given by Eq. (120),
is shown in Fig. 8, for the case ε = +10−3 and γ̇ τ0 = 10−4,
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FIG. 7. (Color online) Numerical result for the accumulated
steady-state shear stress 〈σ (t)〉, Eq. (130), in units of kBT /d3. The two
lines are for the underdamped and overdamped cases, respectively,
for ε = +10−3 and γ̇ τ0 = 10−4. The steady-state value of the shear
stress is indicated for each line.

respectively. In Fig. 7, the steady-state value of the shear stress
is attatched to each result. We can see that the discrepancy
between the underdamped and the overdamped cases arises
in the α-relaxation regime, t ∼ γ̇ −1 = 104τ0. It is notable
that the multiplier λα(t) correspondingly magnifies in this
regime, which suggests the growth of the current fluctuation
incorporated in α(�). This implies that the growth of the
current fluctuation in the dissipative coupling results in a
significant relaxation of the shear stress in the underdamped
case. It might also be worth noting that the density time
correlators are almost coincident in the α-relaxation regime
for the underdamped and overdamped cases. However, in
the underdamped case, the time derivative of the density
time correlator is nothing but the density-current cross time
correlator, Eq. (B2), which also exhibits growth in the α-
relaxation regime. This is an additional evidence that the
current fluctuation incorporated in α(�) is the origin of the
stress relaxation.

Now it is clear why the correction in Eq. (127) appears in the
vertex function; since it originates in the current fluctuation, it
cannot appear in the density time correlator, which leaves the
vertex function as the only possibility. Together with the fact

FIG. 8. (Color online) Numerical result for the mutiplier λα(t).
We plot λα(t)α0 in units of γ̇ . Conditions are the same as for Fig. 7.

that the correction is actually the multiplier, Eq. (120), which
is written in terms of the density time correlator.

It is remarkable that the existence of a discrepancy between
the overdamped MCT and the MD simulation, which has an
inertia effect in the α-relaxation regime, has been reported [35].
Our result presented here suggests that the discrepancy is quite
generic. Thus, we should be careful in comparing the results of
MD with overdamped dynamics, such as Brownian dynamics
or the overdamped MCT.

C. Response to a perturbation

As an application of the underdamped MCT so far
constructed, we calculate the response of the density time
correlator to a perturbation of the shear rate and demonstrate
the significance of the underdamped formulation. We discuss
a response to an instantaneous change in the shear rate γ̇ at
quasi–steady state which corresponds to the plateau of the
density time correlator at t = t0. Specifically, we consider a
pulse-like perturbation of the form

γ̇ (t) = γ̇ + �γ̇ [�(t − t0) − �(t − (t0 + �tγ̇ ))], (131)

where �tγ̇ is the width of a rectangular pulse, �(t) is
Heaviside’s step function, and t0 is of the order of the
early-β-relaxation time, t0 ∼ τβ .

For a time-dependent external field (the shear rate in our
case), the time-evolution operator is expressed in terms of a
time-ordered exponential [27], and hence we cannot simply
apply the MCT formulated in this paper, which is valid for a
constant shear rate. However, for a pulse-like perturbation, it
can be shown that the time-ordered exponential reduces to a
normal exponential for the case of a weak and instantaneous
perturbation, i.e., �γ̇ /γ̇ � 1 and �tγ̇ /(t − t0) � 1. In this
case, the time-evolution operator U→(t0,t) can be expanded as

U→(t0,t) = eiL(�γ̇ )(t−t0) + O(�γ̇ 2(t − t0)2), (132)

where iL(�γ̇ ) is the perturbed Liouvillian, whose shear part
iLγ̇ ≡ γ̇ iL̃γ̇ , iL̃γ̇ ≡ ∑N

i=1

(
yi∂/∂xi − p

y

i ∂/∂px
i

)
is given by

iLγ̇ (�γ̇ ) = ˜̇γ (t)iL̃γ̇ , (133)

˜̇γ (t) ≡ γ̇

{
1 + �γ̇

γ̇

�tγ̇

t − t0
�(t − (t0 + �tγ̇ ))

}
. (134)

That is, we can apply the MCT formulated for a normal expo-
nential, together with a time-dependent shear rate, Eq. (134).

The conditions of the calculation are as follows. The time
when the perturbation is switched on, i.e., t0, is set to the
order of the early-β-relaxation time τβ ∼ 102τ0. This choice
is made by the observation that the onset of the plateau of
the density time correlator is around 102τ0, which is shown
in Fig. 1. The shear rate and its magnitude of perturbation
are set to γ̇ = 10−4τ0 and �γ̇ /γ̇ = 0.1, respectively. Note
that the α-relaxation time is τα ∼ γ̇ −1 = 104τ0, and hence the
quasi–steady state lasts for a time interval of 99t0. The initial
time step is set to �t0 = 10−6τ0, which is doubled every 4096
steps (Nt = 8192). The width of the pulse is set to �tγ̇ =
�t0, which is small enough compared to the time scale of the
response. Hence, the shear rate Eq. (134) is pulse-like at this
time scale.
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FIG. 9. (Color online) Response of the density time correlator.
Top: Underdamped case. Bottom: Overdamped case. The four lines
correspond to nondimensionalized wave numbers qd = 0.6, 7.0, 7.4,
and 7.8.

The result for the response of the normalized density
time-correlator, −[�(�γ̇ )

q (t) − �(0)
q (t)]/Sq , is shown in Fig. 9,

for both the underdamped and the overdamped cases. Here,
�

(�γ̇ )
q (t) and �(0)

q (t) are the perturbed and the unperturbed
density time correlators, respectively, and the sign convention
is chosen simply for convenience. We can see that, in the
underdamped case, there is a delay in the emergence of the
response, and an oscillation of period typically of the order
of 5 × 10−3t0 can be seen. This feature is due to the inertia
effect of the underdamped system. On the other hand, in
the overdamped case, the response emerges instantaneously
and then decays with the relaxation time 10−3t0. Hence, even
though the density plateau coincides for the underdamped and
overdamped cases, a clear difference can be observed in the
response at this quasi–steady state.

The result of this subsection can be further applied to
the response theory. The formulation and calculation of the
response of the shear stress to a perturbation of the shear rate
are presented in Appendix A.

VIII. DISCUSSION

In this section, we first compare our work with the
previous works. To the best of our knowledge, the major
representative works in sheared MCTs are Fuchs-Cates1 (FC1)
[24,28], Fuchs-Cates2 (FC2) [30], Miyazaki et al. [25,41],
CK [26], and HO [21]. Besides HO, which is formulated for
inelastic granular systems, they are for sheared Brownian or
thermostated systems. The relations among the above theories

FIG. 10. Schematic of the structure of the memory kernel in our
formulation. The kernels in the theories of Fuchs and Cates [30] and
Miyazaki et al. [25,41] also have the same structure.

might be confusing, so we briefly review their basic setups and
then discuss the resulting formulations.

The FC theories, FC1 and FC2, are for overdamped
systems whose dynamics is governed by the Smoluchowski
operator. In FC1, the density time correlator is defined as
�

(FC1)
q (t) ≡ 〈nq(t)n∗

q(t)(0)〉/N , with q(t) ≡ q + q · κ t . It is
discussed in Ref. [30] that the application of MCT to the above
time correlator leads to non-positive-definite “initial decay
rates,” which causes numerical instabilities. This has motivated
the modification which leads to FC2. In FC2, the density
time correlator is defined as �

(FC2)
q (t) ≡ 〈nq(t)(t)n∗

q(0)〉/N ,
with q(t) ≡ q − q · κ t , which is identical to our definition.
Moreover, the resulting MCT equation is also formally
correspondent if we neglect the transverse mode (or adopt the
isotropic approximation) and take the overdamped limit (i.e.,
neglect the inertia term) in our framework; refer to Appendix B
for this issue. Hence, our formulation can be regarded as an
extension of that of FC2 to underdamped systems. To be more
concrete, the initial decay rate �q(t) ≡ q(t)2v2

T /Sq(t) is prop-
erly advected, and the memory kernel possesses the structure of
wave-vector indices depicted schematically in Fig. 10; i.e., the
memory kernel consists of vertex functions with wave-vector
indices advected to time s, Vq(s),k(s),k(s), and time t , Vq(t),k(t), p(t),
respectively, which are bridged by a projection-free propagator
starting from time s with interval t − s, e.g., �k(s)(t − s).
These features seem physically sensible, which manifests the
alignment of the wave vectors which we adopt as a principle
in Secs. III C and IV C. As discussed in Ref. [30], note that the
application of the time-dependent projection operators enables
the preservation of this principle.

The CK theory starts with a microscopic framework
almost-identical to ours; i.e., an underdamped Sllod equation
governed by a Liouvillian. The crucial difference at this
level is that the dissipative coupling to the thermostat is a
constant, while it contains current fluctuations in order to
satisfy the isothermal condition in our framework. At the
level of the Mori-type equations, another crucial difference
is that the time correlators are defined as equivalent to FC1,
e.g., �

(CK)
q (t) = �

(FC1)
q (t) for the density time correlator,

which are inequivalent to our definition. The conventional
static projection operators are applied, and the resulting MCT
equation differs from ours in two respects: (a) it breaks the
alignment of the wave vectors, and (b) the memory kernel Lλ

q
survives. The feature (a) can be seen in (i) the initial decay
rate �

(CK)
q ≡ q2v2

T /Sq , which is not advected; (ii) the memory
kernel, which has the structure of wave-vector indices depicted
schematically in Fig. 11; and, probably most significantly, (iii)
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FIG. 11. Schematic of the structure of the memory kernel in the
theory of Chong and Kim [26].

the wave-vector structure of the time integration, which reads∫ t

0
dsMq(t − s)

∂

∂s
�q̄(t−s)(s) (135)

in the isotropic approximation. The advection of the
wave-number index appears in the time derivative of the
density time correlator, while it appears in the memory kernel
in our framework [cf. Eq. (128)]. Numerically, the overshoot
or undershoot found in the CK theory is a consequence of
the term ∂�q̄(t−s)(s)/∂s, which shows a singular behavior
when the advected wave number passes the first peak of the
static structure factor. On the other hand, since the memory
kernel includes only the density time correlator, not its time
derivative, a singular behavior is not found in our result. As
for feature (b), the memory kernel Lλ

q has been confirmed
to be numerically negligible [26], at least for the situation of
concern, which is compatible with our result, Lλ

q = 0.
In Miyazaki et al. [25,41], an alternative approach is

adopted. They start with a generalized fluctuating hydrody-
namics for the density and the velocity fields with a Gaussian
noise. Aside from the drawbacks of this approach, which have
been discussed [e.g., (i) the assumption of the fluctuation-
dissipation theorem, which is known not to hold in sheared
systems, and (ii) the formulation based on the steady-state
fluctuations], the resulting MCT parallels that derived by
the projection operator formalism. The time correlators are
defined in accordance with our work and FC2, and it turns out
that the MCT equation for the density time correlator in the
overdamped limit coincides with that in FC2.

Next we discuss the novelties which result from our
framework. First, a pronounced relaxation of the shear stress
at the α-relaxation regime compared to the overdamped
case is a genuine feature of our underdamped formulation.
This result fills the gap between the MD simulation and
the overdamped MCT reported in Ref. [35], where the
overdamped MCT underestimates the “stress overshoot.” In
our underdamped fomulation, this gap is naturally interpreted
as a result of the “cooling effect,” which is accompanied by
the growth of current fluctuations, which is not considered
in the overdamped case. In the overdamped case, it might be
possible to incorporate density fluctuations into the dissipative
coupling αod, but this does not lead to a relaxation of the shear
stress discussed here.

Second, as demonstrated in Sec. VII C, we consider an
application to the calculation of a response. In addition, in
Appendix A we report the corresponding response of the stress
tensor, which is formulated by the response of the density time
correlator. From these results, it can be seen that although there

is no difference in the plateau of the density time correlator
for the underdamped and overdamped cases in the absence
of a perturbation, there is a clear difference in the short-time
response to a perturbation for the two cases. This is more clear
evidence for the relevance of using the underdamped model
even in glassy systems, where the dynamics is expected to be
slow and neither the effects of current fluctuations nor those
of inertia are believed to be irrelevant.

Another virtue of the present framework is that its extension
to other systems, such as an assembly of granular particles,
is relatively simple. One just has to replace the coupling to
the thermostat [the term −α(�) pi(t) in Eq. (2)] with, e.g.,
interparticle viscous interactions of the Stokes’ type. In fact,
it is difficult to incorporate viscous interactions inherent in
granular materials into the formulation of either FC [24,28,30]
or Miyazaki et al. [25,41]. Dissipation has been introduced
in the MCT by HO [21] and Kranz et al. [22], but they seem
not to be satisfactory. As for HO, which deals with sheared
granular systems, dissipation is introduced by the inelastic
Boltzmann operator, i.e., the pseudo-Liouvillian [47]. The
model considered by Kranz et al. [22] is for a driven granular
system under a white-noise thermostat, which does not have
any advected wave number. Moreover, the connection between
the model of Kranz et al. and actual vibrating granular systems
is unclear. The application of the MCT formulated here to
sheared granular fluids is now in progress [23,37]. We have
already found some remarkable features in the MCT for
sheared granular fluids, where the projection onto the density-
current mode plays an important role in destructing the plateau
of the density time correlator [23]. Details will be reported
elsewhere [37].

IX. SUMMARY AND CONCLUDING REMARKS

In this paper, we have constructed a nonequilibrium
MCT for uniformly sheared underdamped systems. For such
systems, the theory of CK [26] has been known, but the
discrepancies with the theory of FC [30] in the overdamped
limit have been left unresolved. We have figured out that
the formulation of CK is physically not sensible; i.e., it
does not satisfy the translational invariance in the sheared
frame and leads to peculiar overshoot or undershoot of the
density time correlator. We have performed a reformulation,
starting from the redefinition of the time correlators to satisfy
the alignment of the wave vectors, which is a consequence
of the translational invariance. The resulting MCT equation
preserves this alignment, coincides with that of FC in the
overdamped limit, and avoids peculiar overshoot or undershoot
in the density time correlator. Furthermore, motivated by
the observation that the constant dissipative coupling to the
thermostat does not lead to a steady-state kinetic temperature,
we have implemented the isothermal condition at the level
of the Mori-type equations. It is essential to incorporate
current fluctuations in the dissipative coupling to satisfy the
isothermal condition. Hence, it may well be said that we have
nontrivially extended the FC theory to underdamped systems
in a physically sensible way.

Although it has been believed that the equivalence of
long-time dynamics in underdamped and overdamped systems
(e.g., the NEP and the scaling properties of the density time
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correlator at α relaxation) also holds for sheared systems,
we have figured out two deviations of the underdamped from
the overdamped case. These are the pronounced relaxation of
the shear stress in the α-relaxation regime due to the “cooling
effect,” accompanied by the growth of current fluctuations in
the dissipative coupling to the thermostat, and the short-time
response to a perturbation of the shear rate. These findings
are the genuine features of our underdamped formulation,
which cannot be derived from the conventional overdamped
framework. We also stress that our formulation provides a
physically natural explanation to the discrepancy between MD
and the overdamped MCT reported in Ref. [35].

An attractive feature of our formulation is that it is relatively
simple to extend to granular systems. In these strongly
nonequilibrium, nonlinear systems, genuine features of the
underdamped dynamics are also expected to be observed. The
construction of the theory and its numerical analysis is under
investigation and will be published elsewhere [23,37].
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APPENDIX A: APPLICATION TO THE
RESPONSE THEORY

In this Appendix we apply the MCT to the calculation of the
response formula for the stress tensor. We discuss a response
to an instantaneous change in the shear rate γ̇ at the quasi–
steady state which corresponds to the plateau of the density
time correlator at t = t0, where t0 is of the order of the early-
β-relaxation time, τβ . We consider a pulse-like perturbation
identical to the one specified in Eq. (131) in Sec. VII C. For
a time-reversible thermostated system, γ̇ −1 is of the order of
the α-relaxation time, γ̇ τα ∼ 1. On the other hand, there is a
large hierarchy between these two times in the weakly sheared
case, τβ � τα , and hence γ̇ t0 � 1 holds. In the remainder,
we perform expansions with γ̇ t0 and neglect terms with order
O(γ̇ 2t2

0 ).

1. Formulation

We first formulate a response formula of the stress tensor.
We consider a response of the stress tensor at t > t0 + �tγ̇ ,

δσxy(�(t)) ≡ σ (�γ̇ )
xy (�(t)) − σ (0)

xy (�(t)), (A1)

where σ
(�γ̇ )
xy (�(t)) and σ (0)

xy (�(t)) are the perturbed and
the unperturbed stress tensor, respectively. Our aim is to derive
a formula for the statistical average of this quantity at the
quasi–steady state. In the absence of perturbation, the average
of a phase-space variable A(�(t)) at the quasi–steady state is

given by

〈A(�(t))〉SS =
∫

d�(t0)ρSS(�,t0)A(�(t)) (A2)

for t > t0, where [27,48]

ρSS(�,t0) ≡ ρeq(�) exp

[∫ t0

0
ds�0(�(−s))

]
(A3)

is the distribution function of the quasi–steady state, expressed
in terms of the initial equilibrium distribution function ρeq(�)
and the unperturbed work function �0(�(t)). The unperturbed
work function is given by

�0(�) = −βγ̇ σ (0)
xy (�) − 2βα(�)δK(�), (A4)

where we include only the conservative part, −β�γ̇ σ (0)
xy (�), in

the perturbation of the work function. While the conservative
part of the work function is O(γ̇ ), the dissipative part,
−2βα(�)δK(�), is O(γ̇ 2t). This can be seen from the fact
that α(�) is accompanied by the time-evolution operator UR(t)
given by Eq. (78), where λα(t) is given by Eq. (120), and the
fact that the isotropic part of kxky is of the order of O(γ̇ t).
Hence, the following equality holds:

�0(�) = −βγ̇ σ (0)
xy (�) + O(γ̇ 2t), (A5)

which validates the approximation mentioned above. We
should note that γ̇ t � 1 holds, since t ∼ t0.

Then the average of the response of the stress tensor at the
quasi–steady state is given by

〈δσxy(�(t))〉SS

=
∫

d�(t0)ρ(�γ̇ )(�,t0 + �tγ̇ )δσxy(�(t)) +O(�γ 2) (A6)

for t > t0 + �tγ̇ , where

ρ(�γ̇ )(�,t0 + �tγ̇ )

= ρSS(�,t0)

{
1 − β

�γ

�tγ̇

∫ �tγ̇

0
dsσ (0)

xy (�(t0 − s))
}

(A7)

is the perturbed distribution function at t = t0 + �tγ̇ . Here,
�γ is the strain generated by the perturbation,

�γ ≡ �γ̇�tγ̇ , (A8)

which we fix at a small value �γ � 1 and take the limit
�tγ̇ → 0 later.

The linear response of the stress tensor is given from
Eq. (A6) by[

∂

∂�γ
〈δσxy(�(t))〉SS

]
�γ=0

= − β

�tγ̇

∫
d�(t0)ρSS(�,t0)δσxy(�(t))

×
∫ �tγ̇

0
dsσ (0)

xy (�(t0 − s))

= − β

�tγ̇

∫
d�(t0)

∫ �tγ̇

0
dsρSS(�,t0 − s)

× δσxy(�(t + s))σ (0)
xy (�(t0))

� −β
〈
δσxy(�(t))σ (0)

xy (�(t0))
〉
SS

, (A9)
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where, in the final equality, we have utilized the fact
that the pulse width is sufficiently small, �tγ̇ � t0, which
validates the following approximations: ρSS(�,t0 − s) �
ρSS(�,t0) and δσxy(�(t + s)) � δσxy(�(t)) (0 � s � �tγ̇ ).
Note that Eq. (A9) is equivalent to the conventional linear
response formula [49] if the steady state is sufficiently close
to equilibrium.

2. Steady-state distribution function

The response formula, Eq. (A9), is still merely a formal
expression, and additional approximations are necessary to
perform a concrete calculation. In this section we derive
an approximate expression for the distribution function of
the quasi–steady state, Eq. (A3), under a weakly sheared
condition.

It is notable that ρSS(�,t0) can be rewritten as [48,50]

ρSS(�,t0) = ρeq(�) exp
[

1
2

(〈�−〉γ ;0 + 〈�+〉γ ;t0

)]+ O
(
γ̇ 3t3

0

)
,

(A10)

where �± is defined as �± ≡ ∫ t0
0 dt�0(�(±t)), and 〈· · ·〉γ ;t0 ,

〈· · ·〉γ ;0 are the “conditioned averages.” Refer to Eqs. (3.2)
and (3.3) of Ref. [48] for their definition. By expanding
the Liouvillian as iL = iL0 + O(γ̇ ), �(t) = �0(t) + O(γ̇ t)
holds, where �0(t) ≡ eiL0t�(0). Then the two conditioned
averages which appear in Eq. (A10) can be expanded in terms
of γ̇ as ∫ t0

0
ds 〈�0(�(−s))〉γ ;0

=
∫ t0

0
ds 〈�0(�0(−s))〉γ ;0 + O

(
γ̇ 2t2

0

)
, (A11)∫ t0

0
ds 〈�0(�(s))〉γ ;t0

=
∫ t0

0
ds 〈�0(�0(s))〉γ ;t0 + O

(
γ̇ 2t2

0

)
, (A12)

where �0 = O(γ̇ ) should be reminded. Note that the phase-
space point which appears in the conditioned averages are
�0(0) and �0(t0) for 〈· · ·〉γ ;0 and 〈· · ·〉γ ;t0 , respectively. As in
Ref. [48], we can show that∫ t0

0
ds〈�0(�0(−s))〉γ ;0 =

∫ t0

0
ds 〈�0(�0(s))〉γ ;t0 . (A13)

From Eqs. (A11)–(A13), the following approximation holds:∫ t0

0
ds 〈�0(�(s))〉γ ;t0 =

∫ t0

0
ds 〈�0(�(−s))〉γ ;0 + O

(
γ̇ 2t2

0

)
,

(A14)

and hence

〈�−〉γ ;0 + 〈�+〉γ ;t0 = 2
∫ t0

0
ds�0(γ (−s)) + O

(
γ̇ 2t2

0

)
,

(A15)

where 〈�0(�(−s))〉γ ;0 = �0(γ (−s)) should be noted. From
Eqs. (A10) and (A15), we obtain

ρSS(�,t0) = ρeq(�) exp

[∫ t0

0
ds�0(γ (−s))

]
+ O

(
γ̇ 2t2

0

)
,

(A16)

where it should be remembered that
∫ t0

0 ds�0(γ (−s)) depends
on the choice of the phase-space point γ . Equation (A16)
might seem similar to Eq. (A3), but actually it is not. The
factor exp[

∫ t0
0 ds�0(γ (−s))] in Eq. (A16) is merely a number

and factors out from the phase-space integral, which is not the
case for the factor exp[

∫ t0
0 ds�0(�(−s))] in Eq. (A3).

The remaining task is to evaluate the factor
exp[

∫ t0
0 ds�0(γ (−s))]. One way to perform this is to expand

�0(γ (−t)) in terms of its equilibrium ensemble average
and the correction terms. By introducing the Kawasaki
transform γ K [51] of γ , and from the Kawasaki-transform
property 〈�0(�(−t))〉γ ;0 = −〈�0(�(t))〉γ K ;0, �0(γ (−t)) can
be approximated as

�0(γ (−t)) � −〈�0(�(t))〉eq

− (〈�0(�(t))〉2
γ K ;0 − 〈�0(�(t))2〉eq

)1/2

� −〈�0(�(t))〉eq, (A17)

where the correction term is expected to be negligible
compared to the equilibrium average. Furthermore, by only
retaining the conservative contribution to the work function as
in Eq. (A5), �0(�) � −βγ̇ σ (0)

xy (�), the exponent of the factor
is approximated as∫ t0

0
ds�0(γ (−s)) = βγ̇

∫ t0

0
ds
〈
σ (0)

xy (�(s))
〉
eq

+ O
(
γ̇ 2t2

0

)
.

(A18)

From Eqs. (A16) and (A18), the distribution function for the
quasi–steady state can be approximated as

ρSS(�,t0) = ρeq(�) exp

[
βγ̇

∫ t0

0
ds〈σ (0)

xy (�(s))〉eq

]
+ O

(
γ̇ 2t2

0

)
. (A19)

Finally, from Eqs. (A9) and (A19), the approximate formula
for the linear response is given by[

∂

∂�γ

〈
δσxy(�(t))

〉
SS

]
�γ=0

= −β exp

[
βγ̇

∫ t0

0
ds
〈
σ (0)

xy (�(s))
〉
eq

]
× 〈

δσxy(�(t))σ (0)
xy (�(t0))

〉
eq

+ O
(
γ̇ 2t2

0

)
. (A20)

3. Mode-coupling approximation

So far we have derived a response formula in terms of
an equilibrium two-point function. One way to calculate this
function is to apply the mode-coupling approximation, which
we perform in this section.

From the definition of the response, Eq. (A1), the two-point
function in Eq. (A20) consists of the following two terms:〈

σ (�γ̇ )
xy (�(t))σ (0)

xy (�(t0))
〉
eq

(A21)

and 〈
σ (0)

xy (�(t))σ (0)
xy (�(t0))

〉
eq

. (A22)

By inserting the “zero-mode” projection operator P0
2 (t) onto

pair-density modes, the perturbed two-point function in
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FIG. 12. Response of the stress tensor calculated from Eq. (A25),
normalized by their maximum values.

Eq. (A21), for instance, can be approximated as〈
σ (�γ̇ )

xy (�(t))σ (0)
xy (�(t0))

〉
eq

� 〈[
Ũ0(t,t0)P0

2 (t)σ (�γ̇ )
xy (�(t0))

]
P0

2 (t0)σ (0)
xy (�(t0))

〉
eq

.

(A23)

Applying the factorization approximation, Eq. (A23) can be
expressed in terms of the density time correlator �q(t) as〈

σ (�γ̇ )
xy (�(t))σ (0)

xy (�(t0))
〉
eq

� 1

2

(kBTeq)2

V

∫
d3k

(2π )3

Wk(t)

Sk(t)

Wk(t0)

Sk(t0)
�

(�γ̇ )
k(t0) (t)2, (A24)

where �
(�γ̇ )
k(t0) (t) is the density time correlator in the presence

of the perturbation. A similar approximation holds for the
unperturbed two-point function, Eq. (A22), as well, with
�

(�γ̇ )
q (t) replaced by its unperturbed counterpart, �

(0)
q (t). The

resulting expression reads[
∂

∂�γ
〈δσxy(�(t))〉SS

]
�γ=0

� −kBTeq

2
exp

[
− γ̇ 2V

2

∫ t0

0
ds

∫ s

0
ds ′

×
∫

d3k
(2π )3

Wk(s ′)

Sk(s ′)

Wk

Sk

�
(0)
k (s ′)2

]

×
∫

d3k
(2π )3

Wk(t)

Sk(t)

Wk(t0)

Sk(t0)

{
�

(�γ̇ )
k(t0) (t)2 − �

(0)
k(t0)(t)

2
}
.

(A25)

Equation (A25) is our stress formula for the isothermal sheared
thermostat system.

The result for the response formula, Eq. (A25), is shown in
Fig. 12. In this calculation, the result for the response of the
density time correlator, which is shown in Fig. 9, is utilized.
As already shown by the result in Fig. 9, an oscillation can
be observed for the underdamped case, while a monotonically
decreasing behavior is seen for the overdamped case.

APPENDIX B: MORI-TYPE EQUATIONS FOR THE
UNDERDAMPED AND OVERDAMPED CASES

In this Appendix, we discuss the relation between the
Mori-type equations for the underdamped and overdamped

[30] cases. In the underdamped case, the Mori-type equation
consists of two equations, Eqs. (55) and (83). If we decompose
Hq(t) into the longitudinal and transverse components with
respect to q(t),

Hq(t) = HL
q (t) + HT

q (t), (B1)

the longitudinal component can be explicitly given from
Eq. (55) as

HL
q (t) = q(t)

q(t)2

d

dt
�q(t). (B2)

By differentiating Eq. (55) with time, and combining it with
Eq. (83), we obtain

d2

dt2
�q(t) = q̇(t) · Hq(t) + q(t) · d

dt
Hq(t)

= −v2
T

q(t)2

Sq(t)
�q(t) − αq(t)

d

dt
�q(t)

− 2q · κ · HT
q (t) −

∫ t

0
dsq(t)λLλ

q(t,s)�q(s)

−
∫ t

0
dsMq(t,s)

d

ds
�q(s)

−
∫ t

0
dsq(t)λMλμ

q (t,s)HT μ
q (s), (B3)

where we have utilized Eq. (B2). Here, the effective friction
coefficient αq(t) stands for

αq(t) ≡ λα(t)α0 + 2
q · κ · q(t)

q(t)2
, (B4)

and the scalar memory kernel Mq(t,s) is defined as

Mq(t,s) ≡ q(t)λMλμ
q (t,s)

q(s)μ

q(s)2
. (B5)

On the other hand, the Mori-type equation for the over-
damped case reads

d

dt
�q(t) = −�2

q(t)�q(t) −
∫ t

0
dsmq(t,s)

d

ds
�q(s), (B6)

where �2
q(t) ≡ v2

T q(t)2/[αodSq(t)] and mq(t,s) ≡ Mq(t,s)/αod

[25,30,41]. Here, αod is the effective friction coefficient,
which is related to the bare diffusion coefficient D0 by
αod = kBT /(mD0).

Aside from the inertia term, Eq. (B3) is not coincident with
Eq. (B6) in three aspects: (i) the transverse component HT

q (t)
does not decouple, (ii) there exists an additional memory kernel
Lλ

q(t), and (iii) the effective friction coefficient αq(t) depends
on q and t .

In situations where we can neglect HT
q (t) and Lλ

q(t), a con-
crete example of which is shown below, Eq. (B3) is reduced to

d2

dt2
�q(t) = −v2

T

q(t)2

Sq(t)
�q(t) − αq(t)

d

dt
�q(t)

−
∫ t

0
dsMq(t,s)

d

ds
�q(s). (B7)

Although Eq. (B7) is formally coincident with Eq. (B6) in the
overdamped limit (i.e., upon neglection of the inertia term),
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an exact correspondence is lacking due to the discrepancy
between αq(t) and αod. Still, however, it is tempting and mean-
ingful to compare Eqs. (B7) and (B6) and their implications.

One way to neglect HT
q (t) and Lλ

q(t) is to resort to the
isotropic approximation, which we adopt in this work (refer
to Appendix D 1 for details). In this approximation, HT

q (t)
is ignored by definition, and it is shown in Sec. V that the
memory kernel Lλ

q(t) exactly vanishes in the mode-coupling
approximation. The resulting equation for the underdamped
case is given by Eq. (128), and that for the overdamped case
is given as

d

dt
�q(t) = −�2

q(t)�q(t) −
∫ t

0
dsm̄q̄(s)(t − s)

d

ds
�q(s).

(B8)

Here, �2
q(t) ≡ v2

T q̄(t)2/[αodSq̄(t)] and m̄q̄(s)(t − s) ≡
M̄q̄(s)(t − s)/αod, where M̄q̄(s)(t − s) is given by Eq. (129).
Comparison of the solutions of Eqs. (128) and (B8) is
performed in this work.

APPENDIX C: DETAILS OF THE DERIVATIONS

Many of the details of the calculations can be found
in previous papers, e.g., CK [26] and FC [30]. In this
Appendix, we report some details which are specific to this
work.

1. Steady-state formula

One of the goals of this study is to derive a formula for the
statistical ensemble average of a phase-space variable at the
nonequilibrium steady state. For this purpose, we derive an
analog of the Green-Kubo formula which is valid for sheared
thermostated systems.

To begin with, we adopt the “Heisenberg picture” for the
statistical ensemble average of a phase-space variable A(�),
defined as

〈A(�(t))〉 =
∫

d�ρini(�)A(�(t)). (C1)

Here, A(�) is time evolved, while the distribution function
remains at its initial value, ρini(�) [27]. Since the system
is at equilibrium with temperature T at t = 0, ρini(�) is the
Maxwell-Boltzmann distribution,

ρini(�) ≡ e−βH0(�)∫
d�e−βH0(�)

, (C2)

where H0(�) ≡ K(�) + U (�) is the Hamiltonian, K(�) ≡∑
i p

2
i /2m is the total kinetic energy, and β ≡ 1/ (kBT ).

The starting point to derive the analog of the Green-Kubo
formula is the integral expression for the nonequilibrium
distribution function ρ(�,t),

ρ(�,t) = ρini(�) − βγ̇

∫ t

0
dse−iL†s[ρini(�)σxy(�)]

− 2β

∫ t

0
dse−iL†s[ρini(�)α(�)δK(�)]. (C3)

Here,

σxy(�) ≡
∑

i

(
px

i p
y

i

m
+ yiF

x
i

)
, (C4)

δK(�) ≡ K(�) − 3

2
NkBT (C5)

are the zero-wave-vector limit of the shear stress and the
fluctuation of the kinetic energy, respectively, which together
constitute the work function

�(�) ≡ −βγ̇ σxy(�) − 2βα(�)δK(�). (C6)

As explained in Sec. IV D, note that the parameter α(�)
depends on �, whose specific choice in our work is shown in
Eq. (112). From Eq. (C3), we obtain the following expression
for the nonequilibrium ensemble average for a phase-space
variable A(�(t)):

〈A(�(t))〉 =
∫

d�ρini(�)A(�(t)) =
∫

d�ρ(�,t)A(�(0))

= 〈A(�(0))〉 − βγ̇

∫ t

0
ds〈A(�(t))σxy(�(0))〉

− 2β

∫ t

0
ds〈A(�(t))α(�)δK(�(0))〉, (C7)

where the adjoint relation, Eq. (15), is utilized, and the inte-
grations are assumed to converge uniformly. Differentiation
of Eq. (C7) with time and the assumption of “mixing” results
in the existence of a steady state in the limit t → ∞, which
leads to the following formula for the steady-state ensemble
average:

〈A〉SS = 〈A(�)〉 − βγ̇

∫ ∞

0
ds〈A(�(t))σxy(�)〉

− 2β

∫ ∞

0
ds〈A(�(t))α(�)δK(�)〉. (C8)

Here, the abbreviated notation A(�) ≡ A(�(0)) is adopted.
This completes the derivation of Eq. (19).

2. Fourier transform in the sheared frame

The derivation of Eqs. (21), (22), and (24)–(26) is reported
here. Since the phase-space variables are defined in terms
of the phase-space coordinates, � = {r i , pi}Ni=1, we need to
define “field variables” to consider the properties with respect
to spatial transformations, e.g., translational invariance. A field
variable for a phase-space variable A(�) in the experimental
frame is introduced as

A(r,t) =
∑

i

Ai(�(t))δ(r − r i(t)), (C9)

where Ai(�(t)) is a coefficient which depends only on the
phase-space variables. Here, {r} is a coordinate fixed in space.
Its equation of motion is

∂

∂t
A(r,t) =

∑
i

∂

∂t
Ai(�(t))δ(r − r i(t))

=
∑

i

iLAi(�(t))δ(r − r i(t)) = iLA(r,t)

= [
iL0 + iLα + iLγ̇r

+ iLγ̇p

]
A(r,t), (C10)
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where the Liouvillians iL0, iLα , iLγ̇r
, and iLγ̇p

are given in
Eqs. (11), (13), (27), and (26), respectively. Simple observation
leads to

iLγ̇r
A(r,t) = −r · κT · ∂

∂ r
A(r,t). (C11)

From Eqs. (C10) and (C11), we obtain[
∂

∂t
+ r · κT · ∂

∂ r

]
A(r,t) = iL̃A(r,t), (C12)

where

iL̃ ≡ iL0 + iLα + iLγ̇p
(C13)

is the Liouvillian which is obtained by subtracting iLγ̇r
from

iL.
Next we move to the sheared frame (r̃,t̃), which is defined

by the coordinate transformation,

r̃ ≡ r − (κ · r)t = [1 − κ t] · r =
⎡
⎣x − (γ̇ t) y

y

z

⎤
⎦ ,

t̃ ≡ t. (C14)

This is a comoving frame with the stretching of the wave-
lengths due to shearing. The value of a field variable is
unaltered by the transformation, Eq. (C14), so

A(r,t) = A(r̃,t̃). (C15)

Simple calculation leads to[
∂

∂t
+ r · κT · ∂

∂ r

]
A(r,t) = ∂

∂t̃
A(r̃,t̃), (C16)

which implies, together with Eq. (C12),

∂

∂t̃
A(r̃,t̃) = iL̃A(r̃,t̃). (C17)

Hence, the time-evolution generator in the sheared frame is
iL̃, Eq. (C13).

Now we move on to the Fourier space. Fourier transform in
the experimental frame is

Aq(t) ≡
∫

d3rA(r,t)eiq·r =
∑

i

Ai(�(t))eiq·r i (t), (C18)

where q is some wave vector. It can easily be seen that Aq(t)
satisfies Eq. (C10) as well:

∂

∂t
Aq(t) = iLAq(t). (C19)

Fourier transform in the sheared frame is

Aq̃(t̃) ≡
∫

d3 r̃A(r̃,t̃)ei q̃·r̃

=
∫

d3r det

(
∂ r̃
∂ r

)
A(r,t)ei q̃·(1−κ t)·r

=
∫

d3rA(r,t)ei q̃·(1−κ t)·r , (C20)

where Eqs. (C14) and (C15) are applied. Equation (C15)
holds in the Fourier space as well, so comparing Eqs. (C18)
and (C20), we obtain a relation between the wave vectors in

both frames:

q = q̃ · (1 − κ t). (C21)

Inverting Eq. (C21),

q̃ = q · (1 + κ t) = q(−t), (C22)

q(t) ≡ q − q · κ t. (C23)

We verify that the wave vector in the sheared frame is Affine
deformed by the shear-rate tensor κ . We choose the signature
convention which is referred to as the “forward advection”
by FC [30]. It can also easily be seen that Aq(−t)(t̃) satisfies
Eq. (C17):

∂

∂t̃
Aq(−t)(t̃) = iL̃Aq(−t)(t̃). (C24)

3. The Mori-type equations

The derivation of Eqs. (67)–(72), i.e., the Mori-type equa-
tions without the isothermal condition, is reported here. Let us
start with the basic properties, i.e., the action of the Liouvillians
on the density and the current-density fluctuations, nq and jλ

q .
The following equalities can be verified by straightforward
manipulations. First, for the density fluctuation,

iL̃nq = [
iL0 + iLα + iLγ̇p

]∑
i

eiq·r i , (C25)

iL0nq =
∑

i

(
pi

m
· ∂

∂ r i

+ Fi · ∂

∂ pi

)∑
j

eiq·rj

=
∑

i

iq · pi

m
eiq·r i = iq · j q ; (C26)

iLαnq = −α(�)
∑

i

pi · ∂

∂ pi

∑
j

eiq·rj = 0; (C27)

iLγ̇p
nq = −

∑
i

pi · κT · ∂

∂ pi

∑
j

eiq·rj = 0. (C28)

From Eqs. (C26)–(C28), the action of iL̃ is obtained as

iL̃nq = iq · j q . (C29)

Next, for the current-density fluctuation,

iL̃jλ
q = [

iL0 + iLα + iLγ̇p

]∑
i

pλ
i

m
eiq·r i ; (C30)

iL0j
λ
q =

∑
i

(
pi

m
· ∂

∂ r i

+ Fi · ∂

∂ pi

)∑
j

pλ
j

m
eiq·rj

=
∑

i

(
iqμ p

μ

i pλ
i

m2
+ 1

m
Fλ

i

)
eiq·r i ; (C31)

iLαjλ
q = −α(�)

∑
i

pi · ∂

∂ pi

∑
j

pλ
j

m
eiq·rj = −α(�)jλ

q ;

(C32)

iLγ̇p
j λ

q = −
∑

i

pi · κT · ∂

∂ pi

∑
j

pλ
j

m
eiq·rj

= −
∑

i

1

m
(κ · pi)

λeiq·r i = −[κ · j q]λ. (C33)
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Now we calculate the “correlated part,” which is the first term on the r.h.s. of Eq. (66). It is projected by the rescaled
projection operator, Eq. (61), as

U (t)P̄t e
iL†

γ̇r
t iL̃jλ

q(t) = U (t)
∑

k

{〈[
eiL†

γ̇r
t iL̃jλ

q(t)

]
n∗

k

〉 1

NSk(t)
nk + 〈[

eiL†
γ̇r

t iL̃jλ
q(t)

]
j

μ∗
k

〉 1

Nv2
T

j
μ

k

}

=
∑

k

{〈
iL̃jλ

q(t)

[
e−iLγ̇r t nk

]∗〉 1

NSk(t)
nk(t)(t) + 〈

iL̃jλ
q(t)

[
e−iLγ̇r t j

μ

k

]∗〉 1

Nv2
T

j
μ

k(t)(t)

}

=
∑

k

{〈[
iL̃jλ

q(t)

]
n∗

k(t)

〉 1

NSk(t)
nk(t)(t) + 〈[

iL̃jλ
q(t)

]
j

μ∗
k(t)

〉 1

Nv2
T

j
μ

k(t)(t)

}
. (C34)

The two-point functions which appear in Eq. (C34) are obtained by explicit manipulations.
First, 〈[

iL̃jλ
q(t)

]
n∗

k(t)

〉 = −〈jλ
q(t)

[
iL̃nk(t)

]∗〉+ 〈
jλ

q(t)[nk(t)�̃]∗
〉

= −〈jλ
q(t)[ik(t) · j k(t)]

∗〉 = ik(t)μ
〈
jλ

q(t)j
μ∗
k(t)

〉 = iNv2
T q(t)λδq,k, (C35)

where Eq. (C29) and the fact that terms with an odd number of momentum variables vanish are applied.
Next, 〈[

iL̃jλ
q(t)

]
j

μ∗
k(t)

〉 = 〈[
iLαjλ

q(t)

]
j

μ∗
k(t)

〉+ 〈[
iLγ̇p

j λ
q(t)

]
j

μ∗
k(t)

〉
, (C36)

where the term with iL0 vanishes due to the odd number of momentum variables. In order to calculate the first term in Eq. (C36),
it is necessary to specify the explicit form of α(�). As explained in Sec. VI B, we adopt the form of Eq. (112), which leads to

〈[
iL̃jλ

q(t)

]
j

μ∗
k(t)

〉 = −Nv2
T

{
α0

(
1 + 2

3N

)
δλμ + κλμ

}
δq,k

� −Nv2
T {α0δ

λμ + κλμ}δq,k (C37)

in the thermodynamic limit. From Eqs. (C34), (C35), and (C37), the result for the correlated part is

U (t)P̄t e
iL†

γ̇r
t iL̃jλ

q(t) = iv2
T

q(t)λ

Sq(t)
nq(t)(t) − α0j

λ
q(t)(t) − [κ · j q(t)(t)]

λ. (C38)

This leads to the first three terms on the r.h.s. of Eq. (67).
Next, we calculate the uncorrelated part. The term without time integration is defined as the “random force” in Eqs. (68)

and (69). This is nothing but the fourth term on the r.h.s. of Eq. (67). The part which requires some calculation is the one with
memory kernels. Projection with the rescaled projection operator Eq. (61) is[

d

dt
U (t)jλ

q

](mem)

≡
∫ t

0
dsU (s)P̄se

iL†
γ̇r

s iL̃e−iLγ̇r sU0(t,s)eiLγ̇r tRλ
q(t)

=
∫ t

0
dsU (s)

∑
k

{〈[
eiL†

γ̇r
s iL̃Ũ0(t,s)Rλ

q(t)

]
n∗

k

〉 1

NSk(t)
nk + 〈[

eiL†
γ̇r

s iL̃Ũ0(t,s)Rλ
q(t)

]
j

μ∗
k

〉 1

Nv2
T

j
μ

k

}

=
∫ t

0
ds
∑

k

{〈[
iL̃Ũ0(t,s)Rλ

q(t)

]
n∗

k(s)

〉 1

NSk(t)
nk(s)(s) + 〈[

iL̃Ũ0(t,s)Rλ
q(t)

]
j

μ∗
k(s)

〉 1

Nv2
T

j
μ

k(s)(s)

}
, (C39)

where we have introduced the abbreviated notation,

Ũ0(t,s) ≡ e−iLγ̇r sU0(t,s)eiLγ̇r t . (C40)

Substitution of Eq. (C39) into Eq. (56) yields

i

N

〈[
d

dt
U (t)jλ

q

](mem)

n∗
q

〉
=
∫ t

0
ds

{〈[
iL̃Ũ0(t,s)Rλ

q(t)

]
n∗

q(s)

〉 i

NSq(t)
�q(s) + 〈[

iL̃Ũ0(t,s)Rλ
q(t)

]
j

μ∗
q(s)

〉 1

Nv2
T

Hμ
q (s)

}

≡ −
∫ t

0
dsLλ

q(t,s)�q(s) −
∫ t

0
dsMλμ

q (t,s)Hμ
q (s), (C41)

where the memory kernels Lλ
q(t,s) and M

λμ
q (t,s) are the ones defined in Eqs. (70) and (71). These are the last two terms on the

r.h.s. of Eq. (67).
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4. Insertion of the projection operator Q
The derivation of Eq. (88) is reported here. Let X be an

arbitrary phase-space variable and consider the expression

U
†
0 (t,t ′)eiLγ̇r t ′X∗ = U

†
0 (t,t ′)eiLγ̇r t ′ [P(t ′) + Q(t ′)]X∗,

(C42)

where U
†
0 (t,t ′) is the adjoint of U0(t,t ′):

U
†
0 (t,t ′) ≡ exp←

[
−
∫ t

t ′
dseiL†

γ̇r
s iL̃†Q(s)e−iL†

γ̇r
s

]
. (C43)

Here, the adjoint Liouvillians iL̃† and iL†
γ̇ r are defined

in Eqs. (29) and (33), respectively. The correlated part of
Eq. (C42) is

U
†
0 (t,t ′)eiLγ̇r t ′P(t ′)X∗

= U
†
0 (t,t ′)eiLγ̇r t ′

∑
k

{
〈X∗nk(t ′)〉
NSk(t ′)

n∗
k(t ′) +

〈
X∗jμ

k(t ′)

〉
Nv2

T

j
μ∗
k(t ′)

}

=
∑

k

{
〈X∗nk(t ′)〉
NSk(t ′)

U
†
0 (t,t ′)n∗

k +
〈
X∗jμ

k(t ′)

〉
Nv2

T

U
†
0 (t,t ′)jμ∗

k

}
.

(C44)

The action of U
†
0 (t,t ′) on ξ = n and j is

U
†
0 (t,t ′)ξ ∗

k

= exp←

[
−
∫ t

t ′
dseiL†

γ̇r
s iL̃†Q(s)e−iL†

γ̇r
s

]
ξ ∗

k

= exp←

[
−
∫ t

t ′
dseiL†

γ̇r
s iL̃†Q(s) [1 + �(s)] e−iLγ̇r s

]
ξ ∗

k

� exp←

[
−
∫ t

t ′
dseiL†

γ̇r
s iL̃†Q(s)ξ ∗

k(s)

]
= 0, (C45)

where we have neglected �(s) in the last step, as explained
following Eq. (86) in Sec. V.

From Eqs. (C44) and (C45), the correlated part vanishes,
and hence

U
†
0 (t,t ′)eiLγ̇r t ′ = U

†
0 (t,t ′)eiLγ̇r t ′Q(t ′) (C46)

or, taking the adjoint,

e−iL†
γ̇r

t ′U0(t,t ′) = Q(t ′)e−iL†
γ̇r

t ′U0(t,t ′). (C47)

This is the desired equality.

5. The memory kernels

The derivation of Eqs. (91)–(94) is reported here. We start
with the ensemble average of Eq. (70). From the adjoint
relation, Eq. (28),〈 [

iL̃Ũ0(t,s)Rλ
q(t)

]
n∗

q(s)

〉 = −〈[Ũ0(t,s)Rλ
q(t)

]
(iL̃nq(s))

∗〉
+ 〈[

Ũ0(t,s)Rλ
q(t)

]
n∗

q(s)�̃
〉
. (C48)

Substituting Eq. (90) into the two terms of Eq. (C48),〈[
Ũ0(t,s)Rλ

q(t)

]
X∗〉

� 〈[
Q(s)e−iL†

γ̇r
sU0(t,s)eiLγ̇r tRλ

q(t)

]
X∗〉

= 〈[
Q(s)Ũ ′

0(t,s)Q(t)Rλ
q(t)

]
Q(s)X∗〉, (C49)

where X = iL̃nq(s),nq(s)�̃. Here, the idempotency and the
Hermiticity ofQ(s) and the abbreviated notation of Eq. (93) are
used. From Eq. (C29), the first term in Eq. (C48) is projected
out by Q(s), which leaves〈 [

Q(s)Ũ ′
0(t,s)Q(t)Rλ

q(t)

]
Q(s)[nq(s)�̃]∗

〉
. (C50)

Similar manipulation for Eq. (71) leads to〈[
iL̃Ũ0(t,s)Rλ

q(t)

]
j

μ∗
q(s)

〉 = −〈[Q(s)Ũ ′
0(t,s)Q(t)Rλ

q(t)

]
�R

μ∗
q(s)

〉
,

(C51)

where �R
μ∗
q(s) is the modified random force defined in Eq. (94).

6. The vertex functions

The derivation of Eqs. (97)–(100) is reported here. We start
with Eq. (97). From the definition of Eq. (69),〈

Rλ
q(t)n

∗
k(t)n

∗
p(t)

〉
= 〈[

Q(t)iL̃jλ
q(t)

]
n∗

k(t)n
∗
p(t)

〉
= 〈[

iL̃jλ
q(t)

]
n∗

k(t)n
∗
p(t)

〉− 〈[
P(t)iL̃jλ

q(t)

]
n∗

k(t)n
∗
p(t)

〉
. (C52)

The first term in Eq. (C52) is evaluated, by the use of the
adjoint relation Eq. (28) and Eq. (C29), as〈[

iL̃jλ
q(t)

]
n∗

k(t)n
∗
p(t)

〉
= −〈jλ

q(t)[iL̃nk(t)]
∗n∗

p(t)

〉− 〈
jλ

q(t)n
∗
k(t)[iL̃n p(t)]

∗〉
= ik(t)μ

〈
jλ

q(t)j
μ∗
k(t)n

∗
p(t)

〉+ ip(t)μ
〈
jλ

q(t)j
μ∗
p(t)n

∗
k(t)

〉
. (C53)

The three-point function in Eq. (C53) can be calculated
explicitly as

〈
jλ

q j
μ∗
k n∗

p

〉 = ∑
i,j

〈
pλ

i

m
eiq·r i

p
μ

j

m
e−ik·rj n∗

p

〉

= δλμδq−k, pNv2
T Sp. (C54)

From Eqs. (C53) and (C54),〈[
iL̃jλ

q(t)

]
n∗

k(t)n
∗
p(t)

〉 = iδq,k+ pNv2
T [k(t)λSp(t) + p(t)λSk(t)].

(C55)

An explicit manipulation of the projection operator in the
second term in Eq. (C52) leads to〈[

P(t)iL̃jλ
q(t)

]
n∗

k(t)n
∗
p(t)

〉
=
∑

q ′

{〈[
iL̃jλ

q(t)

]
n∗

q ′(t)
〉 1

NSq ′(t)
〈nq ′(t)n

∗
k(t)n

∗
p(t)〉

+ 〈[
iL̃jλ

q(t)

]
j

μ∗
q ′(t)
〉 1

Nv2
T

〈
j

μ

q ′(t)n
∗
k(t)n

∗
p(t)

〉}

= − 1

NSq ′(t)

∑
q ′

〈
jλ

q(t)

[
iL̃nq ′(t)

]∗〉〈nq ′(t)n
∗
k(t)n

∗
p(t)〉

= iq ′(t)μ

NSq ′(t)

∑
q ′

〈
jλ

q(t)j
μ∗
q ′(t)
〉〈nq ′(t)n

∗
k(t)n

∗
p(t)〉

= iv2
T

q(t)μ

Sq(t)
〈nq(t)n

∗
k(t)n

∗
p(t)〉. (C56)

The convolution approximation [36],

〈nqn
∗
kn

∗
p〉 � δq,k+ pNSqSkSp, (C57)
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is applied for the three-point function, which finally leads to
the following expression:〈

Rλ
q(t)n

∗
k(t)n

∗
p(t)

〉
= iδq,k+ pNv2

T

[
k(t)λSp(t) + p(t)λSk(t)

]
− iv2

T

q(t)λ

Sq(t)
δq,k+ pNSq(t)Sk(t)Sp(t)

= iδq,k+ pNv2
T [k(t)λSp(t) + p(t)λSk(t) − q(t)λSk(t)Sp(t)]

= −iδq,k+ pNv2
T Sk(t)Sp(t)

×
(

k(t)λ + p(t)λ − k(t)λ

Sk(t)
− p(t)λ

Sp(t)

)
= −iδq,k+ pNv2

T Sk(t)Sp(t)n[k(t)λck(t) + p(t)λcp(t)].

(C58)

Here, cq is the direct correlation function [36], which is related
to the static structure factor Sq as

ncq = 1 − 1

Sq

(C59)

by the Ornstein-Zernike relation [36]. From Eq. (C58), it is
straightforward to verify Eqs. (97) and (99).

Next we deal with Eq. (98). From the definition of �Rλ
q ,

〈
nk(t)n p(t)�Rλ∗

q(t)

〉
N2Sk(t)Sp(t)

=
〈
nk(t)n p(t)R

λ∗
q(t)

〉
N2Sk(t)Sp(t)

−
〈
nk(t)n p(t)Q(t)

[
jλ

q(t)�̃
]∗〉

N2Sk(t)Sp(t)
, (C60)

where the first term in Eq. (C60) is the complex conjugate
of Eq. (97). Hence, we only need to handle the second term.
There are two terms in the modified work function, �̃(�) =
−βγ̇ σ (kin)

xy (�) − 2βα(�)δK(�). For the first term,

Q(t)
[
jλ

q(t)σ
(kin)
xy

] = jλ
q(t)σ

(kin)
xy − P(t)

[
jλ

q(t)σ
(kin)
xy

]
, (C61)

where σ (kin)
xy = ∑

i p
x
i p

y

i /2m is the kinetic part of the shear
stress. The projected term is

P(t)
[
jλ

q(t)σ
(kin)
xy

] =
∑

k

〈[
jλ

q(t)σ
(kin)
xy

]
n∗

k(t)

〉
NSk(t)

nk(t)

+
∑

k

〈[
jλ

q(t)σ
(kin)
xy

]
j

μ∗
k(t)

〉
Nv2

T

j
μ

k(t)

= mv2
T

(
δλxj

y

q(t) + δλyjx
q(t)

)
. (C62)

From Eqs. (C61) and (C62),Q(t)[jλ
q(t)σ

(kin)
xy ] is an odd function

of the momentum variables and, hence, vanishes. For the
second term,

Q(t)
[
jλ

q(t)α(�)δK(�)
]

= jλ
q(t)α(�)δK(�) − P(t)

[
jλ

q(t)α(�)δK(�)
]
, (C63)

where δK(�) = ∑
i p2

i /2m − 3NkBT/2 is the fluctuation of
the kinetic energy, and α(�) is given in Eq. (112). The projected

term is

P(t)
[
jλ

q(t)α(�)δK(�)
]

=
∑

k

〈[
jλ

q(t)α(�)δK(�)
]
n∗

k(t)

〉
NSk(t)

nk(t)

+
∑

k

〈[
jλ

q(t)α(�)δK(�)
]
j

μ∗
k(t)

〉
Nv2

T

j
μ

k(t)

∝ jλ
q(t). (C64)

From Eqs. (C63) and (C64), Q(t)[jλ
q(t)α(�)δK(�)] is an odd

function of the momentum variables and, hence, vanishes as
well. This completes the derivation of Eq. (98).

Finally, we show Eq. (100). The part which corresponds to
the first term of the modified work function �̃(�) is

Q(t)
[
nq(t)σ

(kin)
xy

] = nq(t)σ
(kin)
xy − P(t)

[
nq(t)σ

(kin)
xy

]
, (C65)

where the projected term vanishes,

P(t)
[
nq(t)σ

(kin)
xy

] =
∑

k

〈[
nq(t)σ

(kin)
xy

]
n∗

k(t)

〉
NSk(t)

nk(t)

+
∑

k

〈[
nq(t)σ

(kin)
xy

]
j

μ∗
k(t)

〉
Nv2

T

j
μ

k(t)

= 0, (C66)

since 〈px
i p

y

i 〉 p = 0. Here, 〈 · · · 〉 p is the ensemble average with
only the momentum variables integrated. From Eqs. (C65)
and (C66),〈

nk(t)n p(t)Q(t)
[
n∗

q(t)σ
(kin)
xy

] 〉 = 〈
nk(t)n p(t)n

∗
q(t)σ

(kin)
xy

〉
, (C67)

which again vanishes due to 〈px
i p

y

i 〉 p = 0. The second term is

Q(t)[nq(t)α(�)δK(�)]

= nq(t)α(�)δK(�) − P(t)[nq(t)α(�)δK(�)]. (C68)

Here, the projected term is

P(t)[nq(t)α(�)δK(�)]

=
∑

k

〈[nq(t)α(�)δK(�)]n∗
k(t)〉

NSk(t)
nk(t)

+
∑

k

〈
[nq(t)α(�)δK(�)]jμ∗

k(t)

〉
Nv2

T

j
μ

k(t)

= α0kBT nq(t), (C69)

where

〈α(�)δK(�)〉 p = α0kBT (C70)

is utilized. From Eqs. (C68) and (C69),

〈nk(t)n p(t)Q(t)[n∗
q(t)α(�)δK(�)]〉

= 〈nk(t)n p(t)n
∗
q(t)α(�)δK(�)〉

−α0kBT 〈nk(t)n p(t)n
∗
q(t)〉, (C71)

which again vanishes due to Eq. (C70).
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7. Factorization approximations

The derivation of Eqs. (101) and (119) is shown here. From
the definition, Eq. (93), the left-hand side (l.h.s.) of Eq. (101)
can be expanded as

1

N2
〈[Ũ ′

0(t,s)nk(t)n p(t)]n
∗
k′(s)n

∗
p′(s)〉

= 1

N2
〈[e−iL†

γ̇r
sU0(t,s)eiLγ̇r t nk(t)n p(t)]n

∗
k′(s)n

∗
p′(s)〉

= 1

N2
〈[U0(t,s)nkn p]n∗

k′n
∗
p′ 〉, (C72)

where the property eiLγ̇r t nk(t)n p(t) = nkn p is utilized. It is clear
that this is the propagator for the pair-density fluctuations with
respect to the projected time-evolution operator U0(t,s). As is
familiar in the conventional MCT, Eq. (C72) is approximated
by factorizing into a product of propagators for the density
fluctuation with respect to the projection-free time-evolution
operator eiL(t−s):

1

N2
〈[U0(t,s)nkn p]n∗

k′n
∗
p′ 〉

� 1

N2
〈[eiL†

γ̇r
seiL(t−s)e−iLγ̇r t nk]n∗

k′ 〉

× 〈[eiL†
γ̇r

seiL(t−s)e−iLγ̇r t n p]n∗
p′ 〉

= 1

N2
〈[eiL(t−s)e−iLγ̇r (t−s)nk(s)]n

∗
k′(s)〉

× 〈[eiL(t−s)e−iLγ̇r (t−s)n p(s)]n
∗
p′(s)〉

= 1

N2
〈[U (t − s)nk(s)]n

∗
k′(s)〉〈[U (t − s)n p(s)]n

∗
p′(s)〉

= δk′,kδ p′, p�k(s)(t − s)� p(s)(t − s). (C73)

In the first step on the r.h.s. of Eq. (C73), the advection

generators eiL†
γ̇r

s and e−iLγ̇ r t are inserted to account for the time
when the propagation starts, s, and ends, t . Hence Eq. (101) is
shown.

Similarly, the l.h.s. of Eq. (119) is

1

N2
〈[Ũ0(t,0)nk(t)n

∗
k(t)]nk′n∗

k′ 〉

= 1

N2
〈[U0(t,0)nkn

∗
k]nk′n∗

k′ 〉, (C74)

which is approximated as

1

N2
〈[U0(t,0)nkn

∗
k]nk′n∗

k′ 〉

� 1

N
〈[eiLt e−iLγ̇r t nk]n∗

k′ 〉 · 1

N
〈[eiLt e−iLγ̇r t n∗

k](n∗
k′ )∗〉

+ 1

N
〈[eiLt e−iLγ̇r t nk](n∗

k′)∗〉 · 1

N
〈[eiLt e−iLγ̇r t n∗

k]n∗
k′ 〉

= 1

N
〈[eiLt nk(t)]n

∗
k′ 〉 · 1

N
〈[eiLt n∗

k(t)](n
∗
k′ )∗〉

+ 1

N
〈[eiLt nk(t)](n

∗
k′)∗〉 · 1

N
〈[eiLt n∗

k(t)]n
∗
k′ 〉

= δk′,k�k(t) · δk′,k�−k(t) + δ−k′,k�k(t) · δk′,−k�−k(t)

= [δk′,k + δk′,−k]�k(t)2. (C75)

Hence Eq. (119) is shown. Note that Eq. (C75) is a special
case of Eq. (C73) with s = 0, aside from the possible pairings
of the density fluctuations.

8. The projected time correlator

The derivation of Eq. (106) is reported here. From Eq. (64),
it holds that

U (t)A(�) = U0(t,0)A(�) +
∫ t

0
dsU (s)P̄se

iL†
γ̇r

s

× iL̃e−iLγ̇r sU0(t,s)A(�). (C76)

For the second term, the application of the rescaled projection
operator, Eq. (61), leads to the form

∫ t

0
ds
∑

k

{
C

(n)
k

Sk(t)
nk(s)(s) + C

(j )λ
k

Sk(t)
jλ

k(s)(s)

}
, (C77)

where C
(ξ )
k (ξ = n,j ) is a correlator whose detailed expression

is not important for our purpose. The time correlators of the
density and the current-density fluctuations with zero-wave-
vector variables B(�) vanish,

〈nk(s)(s)B(�)〉 = δk,0〈nk=0(s)B(�)〉 = 0,
(C78)

〈jλ
k(s)(s)B(�)〉 = δk,0〈jλ

k=0(s)B(�)〉 = 0,

since nk=0 = 0 holds by definition, and

jλ
k=0(s) = eiLs

∑
i

pλ
i

m
= 0 (C79)

from the definition of the peculiar momentum, pi ≡ m(ṙ i −
κ · r i). This completes the derivation.

9. The projected shear stress

The derivation of Eq. (115) is reported here. The shear stress
is projected by the second projection operator as

P0
2 (t)σxy =

∑
k>0

〈σxyn
∗
k(t)nk(t)〉

N2S2
k(t)

nk(t)n
∗
k(t). (C80)

Only the potential part of the shear stress σ
(pot)
xy survives in the

correlator of Eq. (C80), since the kinetic part vanishes due to
〈px

i p
y

i 〉 p = 0. The remaining part is

〈
σ (pot)

xy n∗
k(t)nk(t)

〉 = ∑
i

〈xiF
(el)y
i nk(t)n

∗
k(t)〉. (C81)

We utilize the relation well known in equilibrium statistical
mechanics [36],

〈
AFλ

i

〉 = −
〈
A

∂U

∂rλ
i

〉
= −kBT

〈
∂A

∂rλ
i

〉
, (C82)

which also holds in our formulation since the ensemble average
〈 · · · 〉 is defined by an averaging with the Maxwell-Boltzmann
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distribution, Eq. (C2). Then it is straightforward to show〈
σ (pot)

xy n∗
k(t)nk(t)

〉
= −kBT

∑
i

〈
xi

∂

∂yi

[nk(t)n
∗
k(t)]

〉

= −kBT k(t)y
∑

i

〈
ixie

ik(t)·r i n∗
k(t) − ixie

−ik(t)·r i nk(t)
〉

= −kBT k(t)y
〈

∂nk(t)

∂k(t)x
n∗

k(t) + ∂n∗
k(t)

∂k(t)x
nk(t)

〉

= −kBT k(t)y
∂

∂k(t)x
〈
nk(t)n

∗
k(t)

〉
= −NkBT k(t)y

∂Sk(t)

∂k(t)x

= −NkBT
k(t)xk(t)y

k(t)

∂Sk(t)

∂k(t)
. (C83)

This, together with Eq. (C80), proves Eq. (115).

APPENDIX D: MISCELLANEOUS DETAILS ON THE
NUMERICAL ANALYSIS

1. The isotropic approximation

The basics of the isotropic approximation and the derivation
of its resulting equations, Eqs. (128) and (129), are reported
here. Refer to CK [26] for further details.

The fundamental idea of the isotropic approximation is to
reduce the dependence of the three-dimensional wave vector

to its modulus. This is accomplished for the time correlators
by the assumption of

�q(t) � �q(t), (D1)

Hq(t) � q(t)

q(t)2

d

dt
�q(t). (D2)

In addition, there are polynomials of the wave vectors to be
handled. They are approximated by their mean values with
respect to the solid angles. For instance,

q(t) · k(t) = q · k − (γ̇ t)(qxky + qykx) + (γ̇ t)2qxkx

� (q · k)
[
1 + 1

3 (γ̇ t)2
]
, (D3)

kx(t)ky(t) = kx[ky − (γ̇ t)kx] � − 1
3 (γ̇ t)k2. (D4)

Note that the anisotropic terms are neglected in the above
approximations, which are the leading terms in the shear rate
for the case γ̇ t � 1.

The modulus of the advected wave vector is approximated
as

q(t)2 = q2 − 2(γ̇ t)qxqy + (γ̇ t)2q2
x � q̄(t)2, (D5)

where q̄(t) is defined as

q̄(t) ≡ q

√
1 + 1

3 (γ̇ t)2. (D6)

Combining Eqs. (55) and (83), with the application of
Eqs. (D1) and (D2), leads to

d2

dt2
�q(t) = −γ̇

qxqy(t)

q(t)2

d

dt
�q(t) − v2

T

q(t)2

Sq(t)
�q(t) − λα(t)α0

d

dt
�q(t) − γ̇

qx(t)qy(t)

q(t)2

d

dt
�q(t) −

∫ t

0
dsMq(t,s)

d

ds
�q(s).

(D7)

The scalar memory kernel Mq(t,s), which is defined in Eq. (B5), reads

Mq(t,s) = nv2
T

2q(s)2

∫
d3k

(2π )3
[(q(t) · k(t))ck(t) + (q(t) · p(t))cp(t)][(q(s) · k(s))ck(s) + (q(s) · p(s))cp(s)]�k(s)(t − s)�p(s)(t − s),

(D8)

where Eqs. (103) and (99) are utilized. It is convenient to shift the integration variable in Eq. (D8) as k → k′ ≡ k(s), which leads to

Mq(t,s) = M̄q(s)(t − s), (D9)

where

M̄q(τ ) ≡ nv2
T

2q2

∫
d3k

(2π )3
[(q · k)ck + (q · p)cp][(q(τ ) · k(τ ))ck(τ ) + (q(τ ) · p(τ ))cp(τ )]�k(τ )�p(τ ). (D10)

Application of Eqs. (D3), (D4), and (D5) to Eq. (D7) leads to Eq. (128), and application to Eq. (D10) leads to Eq. (129).

2. Discretization

The discretized form of the memory kernel on the one-dimensional spatial grid is given by

M̄q(τ ) = 1

32π2

nv2
T

q3

[
1 + 1

3
(γ̇ τ )2

] ∫ ∞

0
dk

∫ q+k

|q−k|
dp[(q2 + k2 − p2)ck̄(τ ) + (q2 − k2 + p2)cp̄(τ )]

× [(q2 + k2 − p2)ck + (q2 − k2 + p2)cp]kp�k(τ )�p(τ )

� nv2
T

32π2

�5

d5

1

q̂3

[
1 + 1

3
(γ̇ τ )2

]∑
k̂

k̂�k(τ )
∑

p̂

′
[(q̂2 + k̂2 − p̂2)ck̄(τ ) + (q̂2 − k̂2 + p̂2)cp̄(τ )a]

× [(q̂2 + k̂2 − p̂2)ck + (q̂2 − k̂2 + p̂2)cp]p̂�p(τ ). (D11)
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In the last step, the wave number is discretized as qd = �q̂, where � is the grid spacing and q̂ is the discretized index of the
wave number, q̂ = (2m − 1)/2 (m = 1,2, . . . ,M), M being the number of grids. The summation with respect to p̂ is restricted
to those which satisfy the triangle inequality, i.e.,

∑
p̂

′ =
p̂=q̂+k̂−1/2∑
p̂=|q̂−k̂|+1/2

.
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[47] N. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular

Gases (Oxford University Press, New York, 2010).
[48] S.-H. Chong, M. Otsuki, and H. Hayakawa, Prog. Theor. Phys.

Suppl. 184, 72 (2010).
[49] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II:

Nonequilibrium Statistical Mechanics (Springer, Berlin, 1995).
[50] T. S. Komatsu and N. Nakagawa, Phys. Rev. Lett. 100, 030601

(2008).
[51] G. P. Morriss and D. J. Evans, Phys. Rev. A 39, 6335 (1989).

012304-27

http://dx.doi.org/10.1088/0034-4885/55/3/001
http://dx.doi.org/10.1103/PhysRevLett.70.2766
http://dx.doi.org/10.1103/PhysRevLett.70.2766
http://dx.doi.org/10.1103/PhysRevE.49.4206
http://dx.doi.org/10.1103/PhysRevE.49.4206
http://dx.doi.org/10.1063/1.471782
http://dx.doi.org/10.1103/PhysRevLett.80.4454
http://dx.doi.org/10.1103/PhysRevE.61.2730
http://dx.doi.org/10.1103/PhysRevE.64.041503
http://dx.doi.org/10.1103/PhysRevE.69.011505
http://dx.doi.org/10.1103/PhysRevLett.73.1376
http://dx.doi.org/10.1088/1742-5468/2006/07/P07008
http://dx.doi.org/10.1088/1742-5468/2006/07/P07008
http://dx.doi.org/10.1088/1751-8113/40/1/F04
http://dx.doi.org/10.1088/1742-5468/2008/02/P02004
http://dx.doi.org/10.1103/PhysRevE.78.061502
http://dx.doi.org/10.1103/PhysRevE.78.061502
http://dx.doi.org/10.1103/PhysRevLett.106.210602
http://dx.doi.org/10.1103/PhysRevLett.106.210602
http://dx.doi.org/10.1103/PhysRevLett.90.228301
http://dx.doi.org/10.1093/ptep/pts036
http://dx.doi.org/10.1103/PhysRevLett.97.095702
http://dx.doi.org/10.1103/PhysRevLett.97.095702
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1143/PTP.119.381
http://dx.doi.org/10.1103/PhysRevLett.104.225701
http://dx.doi.org/10.1103/PhysRevLett.104.225701
http://dx.doi.org/10.1103/PhysRevLett.89.248304
http://dx.doi.org/10.1103/PhysRevE.66.050501
http://dx.doi.org/10.1103/PhysRevE.66.050501
http://dx.doi.org/10.1103/PhysRevE.79.021203
http://dx.doi.org/10.1088/0953-8984/17/20/003
http://dx.doi.org/10.1088/0953-8984/17/20/003
http://dx.doi.org/10.1063/1.2192775
http://dx.doi.org/10.1122/1.3119084
http://dx.doi.org/10.1103/PhysRevA.44.8215
http://dx.doi.org/10.1103/PhysRevA.44.8215
http://dx.doi.org/10.1103/PhysRevLett.81.4404
http://dx.doi.org/10.1103/PhysRevLett.81.4404
http://dx.doi.org/10.1209/epl/i2004-10117-6
http://dx.doi.org/10.1088/0953-8984/20/40/404210
http://dx.doi.org/10.1088/0953-8984/20/40/404210
http://dx.doi.org/10.1103/PhysRevE.70.011501
http://dx.doi.org/10.1103/PhysRevE.70.011501
http://dx.doi.org/10.1098/rsta.2009.0191
http://dx.doi.org/10.1098/rsta.2009.0191
http://dx.doi.org/10.1088/0953-8984/3/26/022
http://dx.doi.org/10.1088/0953-8984/3/26/022
http://dx.doi.org/10.1103/PhysRevE.55.7153
http://dx.doi.org/10.1103/PhysRevA.7.2200
http://dx.doi.org/10.1143/PTPS.184.72
http://dx.doi.org/10.1143/PTPS.184.72
http://dx.doi.org/10.1103/PhysRevLett.100.030601
http://dx.doi.org/10.1103/PhysRevLett.100.030601
http://dx.doi.org/10.1103/PhysRevA.39.6335



