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Observation and characterization of the vestige of the jamming transition in a thermal
three-dimensional system
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We study the dependence on the packing fraction of the pair-correlation function g(r) and particle mobility
in a dense three-dimensional packing of soft colloids made of poly N-isopropyl acrylamide (pNIPAM), a
thermosensitive gel. We find that g(r) for our samples is qualitatively like that of a liquid at all packing fractions.
There is a peak in g1, the height of the first peak of g(r), as a function of the packing fraction. This peak is
identified as a vestige, which remains at finite temperature, of the divergence found at the jamming transition
in simulations of soft frictionless spheres at zero temperature. As the density is increased, the particle dynamics
slow down and near the packing fraction where there is a peak in g1 the particles become arrested on the time
scale of the experiment.
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I. INTRODUCTION

From hard-packed granular roadbeds to glass lookout
ledges in skyscrapers, amorphous materials are used as solid
support structures. Yet we do not understand the origin of
rigidity in those materials. In the case of crystalline solids, the
onset of rigidity is a consequence of the breaking of transla-
tional symmetries during the fluid-to-crystal transition [1]. In
contrast, no obvious symmetries are broken in the transition
of a fluid to an amorphous solid. Indeed, an instantaneous
snapshot of the structure is remarkably unaffected by the
transition [2]. Is there any structural signature, however subtle,
that can be identified with the onset of rigidity? Previous
work has searched for such a signature in the pair-correlation
function g(r). Different criteria have been proposed. These
include the splitting of the second peak of g(r) into two
subpeaks [3], the ratio of the first minimum to the first
maximum of g(r) [4,5], and changes to the contact-force
distribution which is related to g(r) at small r [6].

Recent simulations of jamming have suggested another
structural signature for rigidity onset. To produce an amor-
phous jammed solid, a dilute system of particles is compressed
until the particles are no longer free to rearrange without
traversing a potential energy barrier [7]. A great deal of effort
has been devoted to understanding the jamming transition at
temperature T = 0 where there is no thermal motion [8,9]. The
rigidification of random packings of finite-range soft repulsive
spheres at T = 0 is controlled by the packing fraction φ.
Such packings have a sharp jamming transition at a critical
packing fraction φc, where the particles first unavoidably make
contact [10]. Below φc all particles are sufficiently separated
so that no particles overlap whereas above φc particles must
overlap with their nearest neighbors. In the second case the
system supports stress and can no longer rearrange without
energy cost. For large system sizes and a given preparation
protocol, the value of φc is well defined. However, different
protocols can produce measurable variations in the average
value of φc [11,12].

This onset of rigidity at T = 0, which is a purely geometric
effect, has a distinct signature in the pair-correlation function

that is independent of the form of the repulsive force between
overlapping particles. At φc all nearest-neighbor pairs are
separated by precisely one particle diameter. This leads to a δ

function in g(r) at its first peak. This divergence is a signature
of the jamming transition at T = 0; varying φ above or below
φc suppresses the divergence. In this paper we focus on how a
finite temperature affects this divergence.

The relevance of the T = 0 jamming transition to systems
at finite temperature, as well as its relation to dynamical arrest
and the glass transition, has not been clear. The inclusion
of thermal effects has important consequences. In a thermal
system the overlap of particles can be created not only by
direct external compression of the system but also by thermal
motion as the particles vibrate and collide with one another.
Moreover, a thermal system evolves in time and can visit
numerous minima in the potential-energy landscape as it
traverses potential-energy barriers. What average properties
of the single minima behavior remain as the system evolves
over time? What vestiges of the divergence in g(r), a T = 0
structural signature of the jamming transition, remain as the
temperature is increased? Some of these issues have been
addressed in a two-dimensional sample [13]. Our present work
extends those results to a three-dimensional system.

Dense suspensions of hard colloids have been thoroughly
studied in the context of the colloidal glass transition and
supercooled fluids [3,14–25]. However, hard colloids are ill
suited for studying many aspects of jamming. Since they
cannot overlap they can only access configurations with
φ < φc. (We note here, however, that the configurations at the
T = 0 jamming transition in soft-sphere systems are allowable
hard-sphere configurations as well.) In this paper, we study
a three-dimensional packing of soft colloids made from a
thermosensitive hydrogel. Our particles are small enough to
undergo Brownian motion and thus can be considered to be
at a finite temperature. We use optical confocal microscopy
and particle-tracking techniques to determine the positions
and displacements of particles to calculate the pair-correlation
function g(r) and the particle mobility.

To investigate the structure of our samples as a function
of packing fraction, we control φ by varying the particle
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diameter at a fixed number density. As we vary φ, the height
of the first peak of g(r), g1, varies in a nonmonotonic fashion
and has a maximum at φ = φ∗. There is also a dramatic
reduction in the particle mobility near the same value of
the packing fraction. This maximum in g1 is a vestige of
the zero-temperature jamming transition. The value of φ∗ is
greater than φc, the packing fraction where jamming would
occur at T = 0. These observations are qualitatively consistent
with recent simulations [26] and two-dimensional experiments
using bidisperse soft colloids [13].

The fact that g1, the first peak in g(r), is highest at φ∗
suggests that the sample at φ∗ may have more medium- and
long-range order than at other packing fractions. Indeed, at
φ∗, we observe that g(r) has at least 14 evenly spaced peaks
that decay in height as r increases. This structure does not
vary dramatically for φ > φ∗. This suggests that most of the
salient structural features of the system are frozen in when the
system first becomes jammed as it passes through φ∗. However,
the damping of the higher-order peaks increases rapidly as φ

is decreased below φ∗. We see no evidence of a split second
peak in g(r) as is seen in simulations [27] and in hard-colloidal
systems at the colloidal glass transition [28].

In the next section, we will describe the experimental
methods for creating the samples and for measuring the
structure and mobility of the systems as a function of packing
fraction. In Sec. III, we report our results for the behavior of the
pair-correlation function and in particular for how the first peak
in g(r) varies with φ. We also describe how the dynamics of the
particles become dramatically slower near the same packing
fraction where g1 has its maximum value. Finally in Sec. IV,
we discuss the implications of our results for understanding
the jamming transition at finite temperatures.

II. METHODS AND MATERIALS

We synthesize poly N-isopropyl acrylamide (pNIPAM) col-
loids using surfactant-free emulsion polymerization [29,30].
The pNIPAM colloids are uniformly dyed with a rhoadamine-
based dye so that they can be imaged using fluorescent
microscopy. The size, stiffness, and temperature dependence of
the colloids is highly sensitive to the details of the synthesis and
each batch must be calibrated independently. The colloids are
an open cross-linked polymer mesh in water [31]. At packing
fractions less than φ = 1.0 the colloids distort while conserv-
ing their internal volume [32]. Above φ = 1.0 the particles can
de-swell and interpenetrate in addition to distorting [33]. This
compression and distortion of colloids is sufficiently small
so as not to be visualized by light microscopy and does not
negatively impact centroid identification algorithms.

The hydrodynamic particle diameter σ depends on tem-
perature. We measure σ (T ) by observing the diffusion of
the colloids in a dilute sample. The sample temperature,
measured to a precision of 0.1◦ C, is controlled with a
Bioptechs objective heater thermally coupled to the sample
via the objective immersion fluid. As shown in Fig. 1(a), over
the range 24◦ C< T < 34◦ C, the diameter varies by nearly
a factor of 2. The data for σ (T ) is empirically fit by two
linear segments connected by a cubic spline. Above 35◦ C,
the colloids collapse to a constant size [29]. We assume that
the hydrodynamic particle diameter is also the extent of the
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FIG. 1. (a) The hydrodynamic diameter σ versus temperature T

of the pNIPAM colloids used in the experiments. The solid line is
an empirical fit to the data (open circles). The horizontal dashed line
is the average nearest-neighbor spacing r1 for the number density n

used in the experiments. (b) Absolute packing fraction versus T for
the n used in the experiments. Vertical dotted lines in both graphs
show the temperature where φ = φ∗ and φ = φc.

particle’s finite-range repulsion. The polydispersity is less than
10%, which is the bound we can set by measuring the variation
in individual particle diffusion constants. We note, however,
that this synthesis protocol typically produces colloids with
an even smaller polydispersity of around 3% as measured by
dynamic light scattering [13].

We estimate the packing fraction of dense systems from the
particle diameter σ and the number density n

φ(T ) = π

6
nσ (T )3. (1)

To determine the absolute packing fraction for our system, we
first determine the number density of our system. At φc and
T = 0, r1 = σ . We substitute this into Eq. (1) to find n = 6φc

πr3
1

and

φ(T ) = φc

(
σ (T )

r1

)3

. (2)

We use φc = 0.64, which is the density of random close
packing as measured in hard- and soft-sphere simulations and
hard-sphere experiments [10,34].

The primary effect of changing the environmental temper-
ature is to change the size of the colloids (and hence φ) rather
than the thermal energy. Over a 10◦ C temperature range, φ

varies by a factor of 7 as shown in Fig. 1(b). We take data
in the range between T = 27◦ to 32◦ C, which corresponds
to 0.55 < φ < 1.17. Over this range, the sample transforms
from a liquid state, where the particles are diffusive, to a fully
arrested packing.

Sample chambers are made from microscope slides and
cover slips and sealed with epoxy (Norland 61). The chambers
are small, 0.15 mm × 5 mm × 3 mm, to minimize internal ther-
mal gradients. To prepare dense samples, sparse suspensions
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of colloids are centrifuged to sediment the colloids. The
suspension is then heated to 35◦ C to shrink the particles.
The sediment is then pipetted into the sample chamber, which
is quickly sealed with epoxy so that the total volume and
number of particles (and thus the number density n) are fixed.
After enclosure in the chamber, the samples are prepared for
observation by first heating to 35◦ C to turn the system into a
fluid. Because there is always a danger of crystallization when
the particle mobility is large, we quickly quench the system
into an amorphous solid by placing the sample chamber onto
a 4◦ C metal surface. This cools the sample in less than 5 s
and prevents the nucleation of crystals. This quench protocol
consistently generates arrested amorphous configurations. To
perform a measurement, we then heat the amorphous solid to
obtain the desired φ.

Particle dynamics and g(r) were extracted from data sets
taken at different discrete values of φ. Between subsequent
measurements, the sample was melted and requenched. The
waiting time from the quench to observation was approxi-
mately 900 seconds and was controlled to minimize possible
complications due to aging [25,35]. To obtain g(r) in finer
increments of φ, the packing fraction was also swept continu-
ously. For increasing φ ramps, a fluidized sample is placed on
a preheated objective. The objective heater was then turned off
and the sample was periodically imaged as it cooled slowly to
ambient temperature.

We are unable to acquire three-dimensional (3D) stacks
rapidly enough to track particle motion accurately at all φ of
interest. Thus, we acquire two-dimensional (2D) data using the
same imaging conditions at all φ to avoid possible systematic
effects due to varying the imaging conditions. We image a
2D slab far from the boundaries of a 3D sample using a
Yokogawa CSU-XI confocal head and a Nikon 60x(N.A. =
1.2) water immersion objective. The images are acquired at
frame rates between 0.3 and 10 Hz using a 14 bit-depth Roper
Coolsnaps HQ camera. The field of view is 150 × 111 μm
and contains approximately 20 000 particles. The accuracy of
feature identification in the x-y plane is approximately 0.1
pixel in the camera, corresponding to 15 nm in our imaging
setup.

Due to the confocal slice having a finite thickness w,
particles both above and below the focal plane are imaged
as being in the plane. This introduces an uncertainty w/2 ≈
400 nm in the z position of the particle. As a result the
measured distance between two particles, which is the distance
projected onto the x-y plane, will be less than the true distance.
The difference between the measured and true distance is
significant at small r but is small when r � w. This introduces
a systematic error in g(r) which can be corrected [36]

g(r) ≈ graw

[
r

(
1 − 1

12

w2

r2
+ 1

720

w4

r4

)]

+ 7

1440

w4

r4
r2 d2graw

dr2
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r

, (3)

where graw is the pair-correlation function measured prior to
taking into account the effects of projection. We have used
simulations to check the validity of this approximation.

The correction shifts peaks towards larger r , increases peak
heights, and decreases the valleys of g(r). It primarily affects

FIG. 2. (Color online) The corrected (solid) and raw (dashed)
g(r) curves for a sample at φ = φ∗. The correction accounts for
the finite thickness of the slab imaged by the confocal microscope.
The correction becomes progressively smaller at larger r and is only
significant for the first peak of g(r).

the first peak of g(r). This is shown in Fig. 2. The position of
the first peak is shifted by 4% and its height is enhanced by
10%. The effect on higher-order peaks is significantly smaller.
The projection is present in all of our data sets and will not
effect the relative measurements as a function of φ. At large r

the primary source of the noise in g(r) is from undersampling
configuration space.

The data are processed using a locally developed C++
implementation of the Crocker-Grier feature identification
and tracking algorithm [37] incorporating an existing im-
plementation of the identification routine [38]. Particles are
identified using a two-pass feature identification algorithm.
The first pass identifies to pixel resolution the local intensity
maximum corresponding to particle centers. The second
pass computes the center of mass in a window around the
local maximum to achieve subpixel resolution. The tracking
algorithm links particles in sequential frames by minimizing
the total magnitude of frame-to-frame displacement. Our
tracking and correlations software is available at [39] and is
an order of magnitude faster than equivalent code written in
an interpreted language.

III. RESULTS AND DISCUSSION

We will first discuss some of the general features of the pair-
correlation function. In Sec. III A, we describe the dependence
of g(r) on the packing fraction and in Sec. III B, we discuss the
long-range correlations seen in g(r). In Sec. III C, we describe
our measurements of the particle mobility.

Figure 3 shows the pair-correlation function at different
φ. These data have been corrected for the projection issues
discussed in Sec. II. In each case, there is a large first peak at
r1 ≈ 0.9 μm. At the lowest φ shown, only the first three peaks
are large enough to be easily discerned. As φ is increased, the
peaks at larger r grow and become clearly visible.
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FIG. 3. (Color online) The pair-correlation function g(r) at
different packing fractions φ. For clarity the curves are shifted
vertically by 2 for each successive packing fraction. The data have
been corrected for the projection effects discussed in the text. All but
the bottom curve have φ > φc. The thick (red) curve is for φ ≈ φ∗.
The position of the first peak remains fixed even though the nominal
particle diameter varies as indicated by the dot on each curve.

The position of the first peak, r1, does not shift appreciably
even though the packing fraction varies by a factor of 1.7.
To emphasize this point, the nominal particle diameter σ

is marked on each curve in Fig. 3. At all φ > φc, σ >

r1, indicating that the particles strongly interact with and
deform their neighbors. Despite this, we can easily detect the
particles and measure their positions as shown in Fig. 4. This
insensitivity of the peak position occurs because the average
interparticle spacing in this densely packed system is set by
the number density n, which is held constant.

2 µm

φ = 1 .05

2 µm

φ = 0 .88

FIG. 4. Raw 22 × 11-μm section from the images used to
generate the φ = 1.05 and φ = 0.88 curves in Fig. 3.

A. Behavior of first peak of g(r): Vestige of the
jamming transition

In Fig. 5, we plot the height of the mth peak gm of the first
three peaks in g(r) versus φ. We measure gm in two protocols:
(i) We quench the sample rapidly to a desired φ and (ii) we
slowly and continuously ramp the packing fraction. The two
protocols yield nearly identical results showing that the data
are not significantly affected by aging or by transient effects.

The first peak, g1, has nonmonotonic behavior. Starting at
small φ, g1 grows with φ until it reaches a maximum value
at φ ≡ φ∗ = 0.88 ± 0.02 and then decreases as φ is increased
further. Within the error bars of our measurement, the peaks
m = 2,3 grow monotonically until they reach a plateau value
at φ∗.

The behavior in g1 is consistent with the experiments [13]
and simulations [26] on thermal 2D bidisperse systems. As in
those cases, we interpret the peak in g1 as a vestige of the T = 0
jamming transition; it is due to the interplay between particle
overlap caused by thermal motion and particle overlap due
to geometric constraints, as described in [13]. This leads to a
peak in g1 versus φ as observed. φ∗, where g1 is a maximum, is
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FIG. 5. (Color online) (a) Height of the first peak of the pair-
correlation function versus packing fraction. g1 − 1 is plotted versus
normalized packing fraction φ/φ∗ for both quenched and ramped
experiments. The maximum in the height of the first peak is clearly
present in both measurement protocols. (b) The values of g(r) for the
quenched data evaluated at the second and third peaks. g2 − 1 and
g3 − 1 normalized by their values at φ∗ are plotted versus φ/φ∗. For
clarity the curve for the third peak is shifted vertically by 1. Both
peaks increase with φ up to φ∗ and then plateau above φ∗. Neither
peak shows a maximum versus packing fraction outside of our noise
level. In both plots the vertical dotted line indicates φc/φ

∗.
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necessarily shifted to φ > φc by the thermal motion. Its value
will therefore depend on the thermal energy in the system.
In our 3D samples, φ∗ is shifted above φc by a much greater
amount than was reported in 2D [13].

B. Structure: Long-range correlations

The pNIPAM particles are soft yet they show a tall, well-
defined first peak in g(r) qualitatively similar to hard-sphere
systems [3]. However, for soft spheres the rise at low r in the
first peak in g(r) is steep but is not a step function since the
particles can deform or overlap. There is an even more dramatic
difference: in hard-sphere experiments [3] and simulations at
T = 0 [10,27], a split second peak is observed. This splitting
has been used as a possible signature to identify colloidal
glasses [28]. However, our soft-sphere amorphous packings,
as demonstrated by Figs. 3 and 6, show no sign of a split
second peak at any φ.

At large φ, many peaks, corresponding to higher-order
coordination shells, are visible. The height of these peaks
decays at large r . Remarkably, as shown in Fig. 6, near φ∗, we
can identify at least 14 peaks in g(r). The smallest of these is a
fluctuation of less than 1% from uniform density as seen in the
inset. We are unaware of any other experiment that identifies
as many peaks in an amorphous sample.

Figures 6(b) and 6(c), respectively, plot the peak height
gm − 1 and location rm versus peak number m. We can fit the
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FIG. 6. (a) The pair-correlation function g(r) for φ = 0.99φ∗.
The dotted line is the fit of Eq. (6). The inset shows a magnification
of the data for the peaks beyond r = 6 μm. (b) Peak height gm − 1
versus peak number m. gm − 1 is fit to the decay form of Eq. (4).
(c) Peak location rm/r1 versus m. The peak locations are evenly
spaced and can be fit to a straight line, Eq. (5), with slope 0.85.

decay envelope to the Percus-Yevic asymptotic form

gm − 1 = C
exp

(
rm

ξ

)
rm

, (4)

where rm is the location of the mth peak and C and ξ are
fitting parameters that depend on φ [40]. At φ∗ C = 2.31
and ξ = (−2.6 ± 0.1)r1, which is a longer correlation length
than seen in the hard-sphere simulations and experiments
[41,42].

Beyond the first peak, the interpeak spacing is very uniform:
the location of the mth peak, rm, is accurately given by

rm/r1 = 1 + (0.85 ± 0.02)(m − 1), (5)

as shown in Fig. 6(c). This spacing holds at all φ where we see
enough peaks to fit a line to the spacing. The peak spacing
is in quantitative agreement with what has been observed
in other systems: hard-sphere colloids [42], ball bearings
[34], simulations at φc [41], and experimental measurements
of liquid noble gases [34], despite the drastically different
interparticle potentials and temperatures. This suggests a
fundamental geometric origin for this peak spacing.

These two results taken together imply that beyond the first
peak, g(r) can be approximated by a damped sinusoid

g(r) = 1 + C

r
exp

(
r

ξ

)
cos

(
2π

r − r1

0.85r1

)
. (6)

This form is shown as the thin dotted line in Fig. 6(a). This
form is roughly consistent with a wide range of analytic
[43], simulation [41,44], and experimental [42] results and
indicative of a dense fluid structure.

C. Dynamics: Slowing at φ∗

We now investigate whether the packing fraction φ∗, where
g1 has a peak, is associated with any change in the particle
dynamics in the sample. To quantify the particle mobility we
use the van Hove correlation function

P (�x,τ ) = 1

N0

〈∑
i

δ[xi(t) − xi(t + τ ) − �x]

〉
, (7)

where xi(t) is the x component of the ith particle location
at time t , 〈〉 is an average over all starting times, and N0

is a normalization constant such that
∫

d�x P (�x,τ ) = 1.
P (�y,τ ) is similarly defined. Physically P (�x,τ ) is the
probability of a particle moving a distance �x in the x direction
in a time τ . The mobility is isotropic in all directions, as
demonstrated by Figs 7(a) and 7(c). Data for both P (�x,τ ) and
P (�y,τ ) are shown and are indistinguishable. We also measure
the distribution of the displacements of a given magnitude
P (| 	�|,τ ), which uses the data for the displacements in all
directions.

There is a qualitative change in particle mobility as the
packing fraction approaches φ∗. This change is evident in
the shape of P (�x,τ = 1.6 s) shown in Fig. 7(a). the curves
for φ < φ∗ and φ > φ∗ are plotted as dashed and solid lines,
respectively.
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FIG. 7. (Color online) (a) van Hove correlation functions for τ = 1.6 s. (a) P (�x) and P (�y) showing the symmetry around � = 0 for a
range of φ. The motions along the two axes are statistically indistinguishable. (b) P (|�|) versus the absolute value of the displacement �. In
(a) and (b) systems where φ < φ∗ are shown with dashed lines and open symbols, those where φ > φ∗ are shown with solid lines and closed
symbols. The vertical dotted lines indicate half the average particle spacing. In (a) the curves for φ > 1.07φ∗ cannot be distinguished because
they lie under the curve at 1.07φ∗. (c) The full width at 1% max versus φ. The width decreases rapidly with packing fraction up to φ/φ∗ ≈ 1
and is approximately constant above it. The widths of P (�x) and P (�y) are identical to the resolution of our data. (d) The location of the peak
of P (|�|) versus φ/φ∗. In (c) and (d), the vertical dotted lines indicate φc/φ

∗.

At the lowest φ plotted, 0.93φ∗, the distribution is nearly
Gaussian and a significant number of particles move more
than r1/2 (shown by the dotted vertical lines), indicating a
substantial rearrangement of the packing on the 1.6 s time
scale. As φ is increased, P (�x) and P (�y) narrow. Above
1.07φ∗, the curves are nearly indistinguishable and lie on top
of each other. In this dense state, the particles are essentially
arrested on the time scales probed. Even at these large values
of φ, the error in finding particle positions is much smaller
than the width of the distributions measured.

To look at a measure of mobility which does not select
any special direction in space, we plot P (| 	�|,τ = 1.6 s) in
Fig. 7(b). This shows the same trend as P (�x) and P (�y).
The peak in P (| 	�|,τ = 1.6 s) moves to smaller | 	�| as φ

increases. Above φ = 1.07φ∗, the position no longer evolves.
Figures 7(c) and 7(d) show, respectively, how the curves
for P (�{x,y},τ = 1.6 s) narrow and the peak position of
P (| 	�|,τ = 1.6 s) decreases as φ is increased.

We can compute the 3D mean-squared displacement of the
particles �2(τ ) in time τ plotted in Fig. 8(a). For comparison,
the expected �2(τ ) for a dilute sample is shown as the dotted
line. At the lowest φ the particles are nearly diffusive, but with
a diffusion constant significantly reduced from the dilute limit.
The narrowing of P (�x,τ ) is reflected in the vertical shift of
the curves and is accompanied by a suppression of the slope.
If we assume that �2(τ ) ∝ τα , then the by fitting the slope
we can extract α(φ), shown in Fig. 8(b). Although from our
data, which have a limited range in τ , we are unable to observe

either very early or very late times, there is nonetheless a clear
change in dynamics in the neighborhood of φ∗. This change
does not have a sharp signature but occurs over a range in φ.

It is tempting to associate the dynamical arrest at φ∗ with the
vestige of the jamming transition. However, this is problematic
because the peak in g1 is an unambiguous geometric signature
and does not display aging effects, whereas the dynamical
signature is not sharp and depends on the experimental time
scale used to perform the measurements.

It has been argued that the particle mobility can be derived
from the pair-correlation function [45]. However, in Fig. 9
we compare g(r) at 0.96φ∗ and 1.07φ∗, with α = 0.32 and
α = 0.10, respectively, and we see that despite the difference in
particle mobility, the structure is experimentally indistinguish-
able. In the inset of Fig. 9, we show the difference between the
raw data: �q ≡ graw(r; φ = 0.96φ∗) − graw(r; φ = 1.07φ∗).
(We use raw data to avoid comparing possible artifacts intro-
duced by the correction.) The average of |�q| is 0.006. These
results are potentially problematic for mode-coupling theory
as we have experimentally shown that the same static structure
can give rise to very different dynamics [46]. This disconnect
between the structure and dynamics is in agreement with
recent work that showed that, by using different potentials,
configurations with very similar g(r) can have very different
dynamics [47]. It would be important to be able to compare
with a theoretical estimate of how much the pair-correlation
function would have to change to produce the observed
variation in the dynamics. To our knowledge such an estimate
is not available.
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(a)

(b)

FIG. 8. (Color online) (a) Mean-squared particle displacement
versus τ for different values of φ. The symbols and colors match
those in Fig. 7. The dotted line indicates the expected diffusion in
a dilute sample. (b) The slope of the lines in (a) α versus φ/φ∗. At
φ < φ∗ the system is nearly diffusive despite the particles strongly
interacting with their neighbors. The vertical dashed line indicates
φc/φ∗.

IV. CONCLUSION

We have demonstrated that there is a peak in g1 as a
function of φ in a 3D packing of soft pNIPAM colloids
undergoing Brownian motion. This is a vestige of the T = 0
jamming transition that survives at finite temperature and is
consistent with previous experiments in 2D systems [13]. It
has been argued that such a peak in g1 can be derived from
an analysis of the liquid state without reference to jamming
explicitly [48]. This does not mean that it is not a vestige of
the zero-temperature jamming transition. The T = 0 jamming
transition is the point at which the competition between
thermal effects and compression is the most pronounced. At
that point, everything is governed by compression because
the temperature is zero. This is what leads to the δ function
at r = σ . Temperature acts to smear out this sharp structure
as the motion of the particles can create overlap even if
the packing fraction is lower than φc. The physics of the
effect at high temperatures is in fact described [48] by
the same general considerations that had been earlier [13]
used to understand this behavior near the T = 0 jamming
transition.

In contrast with the results in two dimensions [13], the
packing fraction, φ∗, where g1 has a peak is significantly higher
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FIG. 9. (Color online) The corrected pair-correlation function
g(r) at 0.96φ∗ and 1.76φ∗. Inset: The difference between the raw pair-
correlation data �q ≡ graw(r; φ = 0.96φ∗) − graw(r; φ = 1.07φ∗) is
zero within the experimental resolution despite the difference in
particle mobility.

than φc, the packing fraction where particles would first jam
at T = 0. This indicates that, although the system is very far
from the jamming point, aspects of the jamming transition are
still observed in the sample’s structure. We have also shown
that the dynamics of our soft colloid fluid will become very
slow (that is, arrested on the time scale of our experiments)
when the packing fraction is increased above φ∗. This is an
example of a pressure-induced glass transition [7,49–52].

We have also observed that the pair-correlation function
for this soft-sphere system has features expected of a fluid.
For example, the second peak in g(r) is smooth with no sign
of any splitting that is characteristic of hard-sphere systems.
Moreover, near φ∗, we observe up to 14 equally spaced peaks
in g(r) whose amplitudes decay as a function of distance in
a fashion that is also consistent with the predictions of liquid
structure. As the packing fraction is decreased below φ∗, the
damping of the peaks becomes much more dramatic so that
near φc only three peaks are clearly visible. We observe that
in Fig. 5, g1 increases rapidly at low φ until it reaches a peak,
but then decreases more gradually above φ∗. This asymmetry
around the peak can be related to how the contributions to the
overlap of particles from thermal motion and from pressure
vary with the packing fraction. The role of temperature in
broadening the first peak rapidly becomes less important as
the packing fraction is increased [13].

Because the pNIPAM colloids are so soft, it is possible
to have a very large particle overlap. This not only changes
the structure of g(r), but also allows the system to be
diffusive at packing fractions φ that are inaccessible to hard
spheres. Further studies are needed on the dynamics in
the neighborhood of φ∗, particularly in comparison to the
dynamical heterogeneity and correlated motion observed in
hard-sphere packings near φc [15]. This system may also
be used to measure the density of states to determine if the
dynamical predictions [8] at T = 0 extend to T > 0 in three
dimensions.
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