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Modeling a washboard road: From experimental measurements to linear stability analysis
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When submitted to the repeated passages of vehicles unpaved roads made of sand or gravel can develop a
ripply pattern known as washboard or corrugated road. We propose a stability analysis based on experimental
measurements of the force acting on a blade (or plow) dragged on a circular sand track and show that a linear
model is sufficient to describe the instability near onset. The relation between the trajectory of the plow and the
profile of the sand bed left after its passage is studied experimentally. The various terms in the expression of
the lift force created by the flow of granular material on the plow are determined up to first order by imposing
a sinusoidal trajectory to the blade on an initially flat sand bed, as well as by imposing a horizontal trajectory
on an initially rippled sand bed. Our model recovers all the previously observed features of washboard road and
accurately predicts the most unstable wavelength near onset as well as the critical velocity for the instability.
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I. INTRODUCTION

When submitted to the repeated passages of vehicles,
gravel and sand roads can develop a ripply pattern known
as washboard or corrugated road. Not only is the bumpiness
of the track a disturbance to drivers, but it also causes a loss of
adherence and control and is therefore a real hazard. A similar
phenomenon occurs on train, tramway, or metro tracks and
is known as rail corrugation. Due to its obvious economic
importance, rail corrugation, which is caused by wear or
plastic deformation, has been extensively studied as reported
in the engineering literature [1] through experiments [2], field
work [3], and theoretical and numerical analysis [4–9]. The
formation of a washboard road over a sand bed was first studied
experimentally by Mather [10], and theoretical models have
been proposed by Both et al. [11] and Kurtze et al. [12] but
these include an ad hoc diffusion term whose physical meaning
remains unclear. Recently, it has been shown that a washboard
road can develop when a simple inclined blade or plow (instead
of a rolling wheel) is dragged along a sand road [13,14]. The
formation of an instability during a unique passage of a plow
under its own weight over an initially flat surface has also been
studied in viscous or viscoplastic fluids [15,16].

The aim of the present paper is to derive a model for the
washboard instability caused by the repeated passages of a
plow over a sand bed, from experimental measurements of the
forces acting on the plow. Previous work has focused on force
measurements in the simpler case of a blade at constant altitude
steadily dragging a mound of sand over a flat sand bed [17].
Herein, we extend these results by using force measurements
to probe the mechanical response to an oscillatory excitation.
These measurements are then used as the basis for a linear
stability analysis of the washboard road instability.

The paper is organized as follows. Section II gives a list of
previous experimental observations and results that a model
should recover. Section III presents the experimental methods
while Sec. IV introduces the framework and assumptions of
the linear stability analysis. The relation between the trajectory
of the plow and the shape left in the sand bed after its passage
is discussed in Sec. V. The expression of the lift forces acting
on the plow is discussed in Sec. VI. Finally the predictions
of the linear stability analysis are compared to experimental
results in Sec. VII.

II. PREVIOUS RESULTS

Our previous work has established a number of charac-
teristic features, which a model for washboard road ought to
reproduce. (i) There exists a critical velocity, vc, below which
the sand bed remains flat when perturbed and above which any
irregularity will develop into a regular rippled pattern. (ii) This
critical velocity increases with increasing mass of the plow or
wheel, following a power law. (iii) For velocities greater than
the critical velocity the rippled washboard road pattern appears
only gradually over several passages of the plow. While the
initial wavelength, λ keeps a finite and well-defined value, the
amplitude of the ripples grows continuously from zero to a
saturated value.

In the present paper we focus on the onset of the instability
(i.e., on velocities greater than yet close to the critical velocity).
The saturation and coarsening of the pattern remain to be
studied in further detail.

Previous work has shown that in the case of washboard
road caused by a plow, compaction of the sand bed has not
been observed nor seems to play any role [14], contrary to
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FIG. 1. Sketch of the experimental setup. A plow is dragged at a
constant horizontal velocity on a 5-m-long circular track filled with
sand.

the case of a rotating wheel. This may be due to the fact that
when using a plow the granular material is constantly shuffled
at every passage of the plow. Therefore compaction will be
neglected throughout the present stability analysis. Note that
this assumption would be highly debatable had a wheel been
used.

For the range of velocities and masses of the plow used
we found that the horizontal length of the plowed material,
L0 (typically a few centimeters), remains smaller than the
wavelength of the washboard road pattern, λ typically ten
centimeters. Its influence is briefly discussed in Sec. VI C but
unless otherwise mentioned it will be neglected.

III. EXPERIMENTAL SETUP

The experimental setup consists in a circular track of
length 5 m (average diameter of 80 cm), width 25 cm, filled
with a 20-cm-high layer of granular material (Fig. 1). The
granular material used is sand-blasting sand of size ranging
from 200 μm to 400 μm. The plow consisting of a flat blade
made from PVC (inclined at 45◦) of width 14.5 cm is dragged
at a constant horizontal velocity v, ranging from 0.1 m s−1 to
2 m s−1. These values of the speed are high enough to produce
a continuous-flow regime and low enough to avoid a gaseous
regime. The plow is either attached to an arm whose end is
free to rotate [Fig. 2(a)] or mounted on a translation stage
[Fig. 2(b)].

In the former case [Fig. 2(a)], the length of the arm is 50 cm
while the amplitude of the ripples near onset is typically of
the order of a few millimeters. Therefore, we will consider that
the arm remains nearly horizontal and the pendulum motion
of the arm is neglected, so that any change in either the horizon-
tal speed or in the inclination of the plow due to a change in al-
titude is neglected. The vertical dynamics of the plow is there-
fore governed only by its own weight and the lift force caused
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FIG. 2. (Color online) Sketch of the experimental setups.
(a) Plow attached to an articulated arm and free to move vertically.
(b) Plow mounted on force sensors attached to a computer-controlled
translation stage which allows one to impose the trajectory.

by the plowed material, while its horizontal motion is imposed
by a motor and the washboard road pattern may develop. Com-
pared to most engineering work [1] our system is simplified in
that the plow has no tire nor suspension. Movies in the Supple-
mental Material [18] show both the steady-state washboard in-
stability in real time and the growth of the ripples through stro-
boscopic images. The vertical position of the plow is recorded
using a magnetic angle sensor (ASM-PRAS1) placed on one
end of the arm. Unless otherwise mentioned, prior to any
experiment the sand bed is made flat by dragging (over several
tens of rotations) a gradually rising vertical blade around the
track.

In the second case [Fig. 2(b)] the plow is rigidly mounted
on a vertical translation stage (5μm accuracy), while its
horizontal velocity remains imposed. Two force sensors
(Testwell KD40S) are used to measure the vertical lift force
acting on the plow. In this second case the trajectory of the plow
is imposed through a NIUSB6259 card. The sand bed profiles
prior to and after the passage of the plow are measured using
two laser telemeters [optoNCDT 1302 from Micro-Epsilon
not shown on Fig. 2(b)] of 0.02 mm accuracy. Obviously no
washboard road pattern can appear using this setup, which is
used only to probe the mechanical response of the material to
an imposed trajectory.

The following variables are defined: x is the horizontal
position of the lower tip of the plow (set to zero at time t = 0),
y {x = v[t − (n − 1)T ])} its vertical position where n is the
number of passages and T the duration of one passage, hn(x)
is the profile of the sand bed after the nth passage of the plow
(h0 being therefore the initial profile prior to the experiment)
(see Fig. 2).

Note that since the horizontal velocity is imposed there
always exists a correspondence between the position x and
the time t . Any variable can therefore be differentiated with
respect to x or t , although for convenience hn will be expressed
as a function of x and y as a function of t .
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FIG. 3. Diagram representing the coupling between the dynamics
of the plow and the reshaping of the sand bed due to erosion and
deposition.

The sand bed being largely thicker than the amplitude of the
ripples near onset it can be considered infinitely deep (having
halved the thickness of the sand bed in our experiments showed
no noticeable effects). The reference of the vertical variable y

and hn is therefore arbitrary.

IV. FRAMEWORK OF THE LINEAR
STABILITY ANALYSIS

The washboard road pattern emerges from the interaction
between the plow and the sand bed. The trajectory of the plow
is governed by Newton’s second law where the vertical lift
force, fl , acting on the plow may depend on the plowed mass
M , the vertical position of the plow y, and the sand bed profile
h and their derivatives. Similarly the shape of the sand bed
depends on the trajectory of the plow, while the new profile
left after the nth passage, hn(x), may depend on the lift, the
previous profile hn−1(x) and the trajectory of the plow y(x).

The plow position y is governed by its dynamics (weight
and lift force) while an erosion-deposition law reshapes the
bed profile h (compaction being neglected). Although these
two processes are coupled and simultaneous a convenient way
to represent the coupling is the schematics of Fig. 3 commonly
used in the engineering literature [4,5,9]. In the following
section the reshaping of the sand bed is discussed whereas
the dynamics of the plow is studied in Sec. VI.

As mentioned in the introduction the present paper proposes
a linear stability analysis near the onset of the washboard
road instability. It will be shown that although nonlinearities
may be needed to account for the saturation and coarsening
of the ripple pattern, a linear model accurately reproduces
the experimental data. The linear response is probed using
sinusoidal excitations (of either the vertical position of the
plow, or of the initial bed thickness) of wave number k, or
corresponding angular velocity ω = vk. As mentioned above,
the origin of the vertical axes is arbitrary and does not play any
role. Since compaction is here neglected the average height and
thickness profile is constant and can be set to zero. Therefore,
the system can be described using complex variables indicated
by an under bar. M(t) = 〈M〉 + M0 eiωt , where 〈M〉 is the
plowed mass on time average, and similarly y = Ay eiωt and
h = Ah eikx . As a reminder, based on previous experimental
observations the four following assumptions are made. (i) A
two-dimensional (2D) model is suitable, (ii) compaction is
neglected, (iii) the length of the plowed material (L0 on Fig. 2)
is smaller than the wavelength of the pattern, and (iv) near
the onset of the instability studied here the plow remains in
contact with the sand bed.
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FIG. 4. (a) Plots of the trajectory of the plow y (solid symbols)
and the profile left after the passage of the plow, hn (open symbols),
for k = 21m−1 and v = 0.5m s−1. The profile hn measured after the
passage of the plow is translated by the distance to the tip of the plow.
(b) and (c) Ratio between the amplitude of the profile hn and the
trajectory, χ = hn/y as a function of k (for v = 0.5m s−1) and v (for
k = 21m−1).

V. RESHAPING OF THE SAND BED

In rail corrugation, the time evolution of the bed profile
can involve wear or plastic deformation [1] and is governed
by the normal and tangential forces acting between the wheel
and the track, as well as by the trajectory of the wheel y(t) and
the previous shape of the track, hn−1(x), these three variables
being coupled. Here in the case of a plow running over a sand
bed the sand is simply eroded and redeposited (compaction
being neglected).

In order to investigate the relation between hn(x) and the
other variables the plow is dragged at constant horizontal
velocity v while a vertical sinusoidal trajectory of angular
velocity, ω, (and corresponding wave number k = ω/v) is
imposed to the plow mounted on the translation stage:
y(t) = Aye

iωt . The profile, hn(x) is then recorded. Figure 4
shows a typical example of the outcome for v = 0.5 m s−1,
Ay = 0.6 mm, and k = 21 m−1 (corresponding wavelength
λ = 30 cm).

The first result is that there is no phase lag between the
imposed vertical position y and the profile left after the passage
of the plow hn [see Fig. 4(a)]. Our experiments have shown
that this remains true for the range of values of v, Ay , and
k of interest in this paper (near the onset of the instability, v

is ranging from 0.2 to 2.0m s−1 and k is ranging from 10 to
125 m−1).

The major result is that the amplitude of hn is slightly
smaller than that of y, meaning that the plow leaves a footprint
in the sand, which is similar yet not identical to its trajectory.
The ratio between the two amplitudes, χ , is plotted as a
function of wave number and velocity [in Figs. 4(b) and 4(c)].
The ratio χ is clearly independent of the wave number and
depends very weakly on the velocity. The ratio χ can be
seen as an imprinting efficiency ratio. It seems intuitive that it
should tend toward one for low velocities since when trying
to carve a shape in a sand bed, one should be as delicate
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(and slow) as possible. Note however that over the range of
velocities of interest χ remains rather constant at χ ≈ 0.9
and any dependence on v will be neglected in the following.
Moreover, the ratio χ is also found to be independent of the
amplitude of the imposed trajectory Ay for the range of small
amplitudes studied (Ay < 5 mm). In the present case where the
trajectory is imposed by the translation stage the profile left
after the nth passage of the plow hn is found to be independent
of that prior to this passage hn−1. In the following, we will
therefore consider that the profile left after the nth passage of
the plow hn(x) is simply given by

hn(x) = χ y(x), (1)

where χ = 0.9 ± 0.05. Although this value is close to unity it
will emerge that the difference between the trajectory of the
plow and the shape left in the sand bed is a key element of the
washboard road instability.

VI. DYNAMICS OF THE PLOW

A. Jerk equation

In a situation where the plow is free to move vertically its
dynamics is simply governed by the lift force acting on the
plow fl (its horizontal position being imposed)

mÿ = −mg + fl. (2)

Our recent study [17] has shown that in a uniform motion over a
flat bed (constant horizontal velocity and no vertical motion),
the lift force is simply proportional to the plowed mass M

and is independent of the velocity: fl = μMg, where μ is an
effective solid friction coefficient, which depends solely on the
inclination of the plow (or angle of attack), and μ = 0.56 for an
inclination of 45◦. The goal of this section is to extend our pre-
vious analysis to nonuniform motion over a rippled sand bed.

From mass conservation (and having neglected the length
L0, see Fig. 2) the rate at which mass is gained or lost is simply
given by

Ṁ = ρv [hn−1(x) − hn(x)] (3)

where ρ is the 2D density of the sand (ρ = bulk density of
sand × packing fraction × plow width).

In a steady state (horizontal or sinusoidal motion) Eqs. (2)
and (3) simply give a relation between the average plowed
mass and the mass of the plow,

μ〈M〉 = m (4)

On an initially flat sand bed [hn−1(x) = 0] differentiating
Eq. (2) and using Eqs. (1) and (3) yields

h
′′′
n (x) + K3 hn(x) = 0, (5)

where K = [μgρχ/(mv2)]1/3. This equation known as a jerk
equation governs the dynamics of third-order oscillators and
charged particles in motion in their own electromagnetic
field. Equation (5) has oscillatory solutions (of wave number√

3K/2) but with an exponentially growing amplitude along
the track during one unique passage over a flat bed, meaning
that the road is always unstable. This is in total contradiction
with the experimental observation of a critical velocity, at
least in the range of masses and velocities under study.
Therefore additional dissipative terms are needed in Eq. (5).

Note however that the wavelength predicted by the jerk Eq. (5)
is rather close to that observed near the onset of the instability
(i.e.. the most unstable mode for a velocity close to the
critical velocity). Indeed, for v = 0.8m s−1 and m = 0.25 kg,
Eq. (5) predicts a wavelength λ = 4π√

3K
= 0.41 m close to the

experimental wavelength of the pattern for similar values of
the parameters [13,14].

To the first order described in this section, the lift force de-
pends on the plowed mass M (i.e., on

∫
hn and

∫
hn−1) as seen

from Eq. (3). The simplest mathematical form is to include
the derivatives of hn and hn−1, whose physical meaning will
be discussed below: fl = f (

∫
hn,

∫
hn−1,hn,hn−1,h

′
n,h

′
n−1).

Under the linearity assumption used here it will be assumed
that the effects of all further terms are additive. Section VI B
is devoted to the study of the case hn−1 = 0 whereas Sec. VI C
will focus on the case where hn = 0 and hn−1(x) = Ahe

ikx .

B. Lift force over an initially flat bed

This section aims at determining the dependence of the lift
force on hn and h′

n in the case of an initially flat and horizontal
bed, hn−1 = 0. The plow is mounted on the translation stage
and the vertical force is recorded as the vertical position is
imposed.

An initial mass of sand 〈M〉 is plowed by lowering the plow
in the sand bed. From this position (at t = 0) a sinusoidal
motion is imposed to the plow: y = Aye

iωt = Aye
ikx . The

sand bed is flattened at every rotation using a vertical blade
attached to another arm which erases any pre-existing profile.
This allows the data to be averaged over typically 30 oscillation
periods. The lift force reads

fl(t) = μMg − b y − c ẏ (6)

where b and c are real and positive coefficients whose
dependence on the average plowed mass 〈M〉 and on the
velocity is key to the stability analysis. Note that in the steady
regime studied here Eq. (6) could be expressed as a function
of hn and h′

n using Eq. (1).
Although the two additional terms by and cẏ are introduced

as the simplest linear extension of the lift force, their physical
meaning is easily understood. The first additional term can
be seen as a restoring force acting on an intruder, adding an
extra force, which is proportional to the penetration depth y.
Clearly when pushing an intruder into the sand bed (y < 0),
the additional force is positive, hence the negative sign in −by.
Such linear restoring forces have been reported in the literature
[19–22]. The second term may be seen as a contribution of the
vertical penetration speed (or equivalently of the local slope of
the profile when hn−1 �= 0). Again the additional force should
be positive when penetrating into the sand bed (ẏ < 0), hence
the negative sign in −cẏ.

In order to measure the coefficients b and c and to study
their dependence on the average mass 〈M〉 and velocity v, the
transfer function H is defined: H = f

l
/y. Equation (6) yields

the following band-stop filter expression:

H = −b + i
(μgρχv

ω
− c ω

)
. (7)

Equation (7) predicts that there exists a minimum in |H |
when H is real and negative [ψ = arg(H ) = π ] [i.e., for
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FIG. 5. (a) Absolute value and argument of the transfer function
|H | for v = 0.3m s−1 and 〈M〉 = 0.58 kg. The solid lines correspond
to Eq. (7), the dashed line corresponds to ωc for which H is real and
|H | is minimal. (b) ωc as a function of v showing a linear dependence
for 〈M〉 = 0.58 kg.

ω = ωc ≡ (μgρχv/c)1/2]. Therefore the coefficient c can be
computed from the value of ωc while the coefficient b is simply
the minimum reached by |H |. In the framework of Eq. (6)
measuring min(|H |) and ωc is sufficient to experimentally
determine the values of the two coefficients b and c. The
experimental data of the absolute value has a higher noise
level (about 15%) than the argument (about 5%) and hence,
the value of ωc was measured from the argument ψ(ωc) = π

(dashed line on Fig. 5).
The transfer function H was measured for various plowed

masses 〈M〉 and velocities v and a typical example is shown on
Fig. 5 (v = 0.3 m s−1 and 〈M〉 = 0.58 kg). The experimental
data shows the features predicted by Eq. (7) [minimum in |H |,
reached for H real (ψ = π ), ψ ranging from π/2 to 3π/2]
and both the absolute value and the argument are well fitted
by Eq. (7) (solid lines). For the small amplitudes imposed
here (typically Ay < 5 mm) we found no dependence on the
excitation amplitude Ay . These results validate the linear form
of Eq. (6).

The values of ωc computed from the transfer function are
plotted in Fig. 5(c) as a function of v for an averaged plowed
mass 〈M〉 = 0.58 kg. It appears that ωc is a linear function of
the velocity v: ωc ∝ v + v0, where v0 = 0.1 ± 0.01 m s−1. The
physical meaning of this dependence remains to be explained.
Still this empirical expression along with measurements of
min(|H |) for various plowed masses and velocities allows the
plot of the two coefficients b and c as functions of 〈M〉 and
v with a typical uncertainty of 10% (Fig. 6). The following
observations emerge: over the range of parameters of interest,
b does not show any systematic dependence on 〈M〉 and is
a linear function of v [Figs. 6(a) and 6(b)] and the following
expression will be used b = B0 v, with B0 = 560 kg m−1 s−1.
The coefficient c appears to be proportional to the mass 〈M〉
[solid line of slope one in Fig. 5(c)] whereas its dependence on
v has already been determined from the empirical expression
of ωc (solid line on Fig. 5). Overall the following expression
emerges: c = C0μ〈M〉gρχv/(v + v0)2, where C0 is a constant
C0 = 8.710−2 m kg−1.
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FIG. 6. (a), (c) Coefficients of the additional terms b and c as a
function of 〈M〉 (for v = 0.5 m s−1) and v (for 〈M〉 = 1 kg). b appears
to be proportional to v (solid line of slope one) and independent of
M . c is proportional to M and its dependence on v is given by the
expression of ωc found in Fig. 5(c) (solid line).

C. Lift force over a rippled sand bed

The previous section has established empirical expressions
for the contribution of the derivatives of y(t) [or equivalently
hn(x)] to the lift force fl . In this section the contribution to fl

of a pre-existing profile prior to the nth passage of the plow
is studied by shaping a sinusoidal profile (hn−1 = Ahe

ikx =
Ahe

iωt ) over which a horizontal trajectory is imposed (y = 0,
and hence hn = 0) with a blade plowing an average mass of
sand 〈M〉.

Similar additional terms to the lift forces are expected
although with an opposite sign. Indeed a bump in the sand
bed (hn−1 > 0) will create an extra positive force as will a
positive slope h′

n−1

fl = μMg + b̃ hn−1 + c̃ ḣn−1, (8)

where b̃ and c̃ are coefficients whose dependence on the
averaged plowed mass 〈M〉 and on the velocity v has to be
determined.

It is expected that the role of y in Eq. (6) and hn−1 in
Eq. (8) are symmetrical and we propose that b̃ = b and c̃ = c.
A new transfer function can be defined as G = f

l
/hn−1 and

is plotted as a function of ω on Fig. 7 (for 〈M〉 = 1 kg and
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FIG. 7. Absolute value and argument of the transfer function |G|
for M = 1 kg and v = 1.5 m s−1. The solid lines correspond to Eq. (8)
with parameters inferred from Sec. VI B, showing good agreement
with the experimental data.
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v = 1.5 m s−1, one can note that v is high compared to the
previous experiment, this is to prevent the effect of the length
L0 and make sure that λ � L0). The solid lines correspond
to the predictions of Eq. (8) using the expressions of b and c

obtained in Sec. VI B. They show a good agreement with the
experimental data and validate the proposed expression of the
lift force.

VII. STABILITY ANALYSIS

A. Exponential growth rate

Having empirically established the mass and velocity
dependence of additional terms in the lift force in Sec. VI using
a plow whose trajectory is imposed, the equation of motion of
a plow free to move vertically can be given by combining
Eqs. (2), (6), and (8) under the assumption of additive forces
made above

mÿ = −mg + μgM(t) + b(v) (hn−1 − y)

+ c(〈M〉,v)(ḣn−1 − ẏ). (9)

Differentiating Eq. (9) and using Eq. (1) the growth rate of the
instability, σ = ln |hn|

|hn−1| , can be expressed

σ = 1

2

(
ln

(α − γ k2)2 + (βk)2

(αχ − γ k2)2 + (βk − k3)2

)
+ ln χ, (10)

where α = μgρ/(mv2), β = B0/(mv), and γ = C0gρχ/

(v + v0)2.
Experimentally this growth rate is measured by preparing

an initially rippled pattern (similarly to Sec. VI C) and instead
of imposing a vertical trajectory to the plow it is left free to
move vertically. After several rotations of the plow the ripples
either vanish or increase depending on the wavelength of the
pattern and on the velocity of the plow. Figure 8 shows two
typical examples of these behaviors. During the first rotations
(at least 10), the amplitude of the ripples can be fitted to an
exponential curve and the growth rate is calculated from the
exponential fit.
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FIG. 8. hn as a function of the number of rotations for v =
1.1m s−1 and λ = 195 mm (�) and v = 0.8 m s−1 and λ = 216 mm

(◦). Straight lines are exponential fits of the data over the first ten
rotations.
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FIG. 9. (Top) Predictions of equation, growth rate σ as a function
of λ for velocities ranging from 0.4 m s−1 to 1.2 m s−1 from bottom
to top: (10). (Bottom) Experimental measurements for v = 0.6 m s−1

(×), v = 0.8 m s−1 (•) and v = 1.1 m s−1 (◦). Above a critical velocity
vc there exist positive values of σ corresponding to the onset of the
instability.

Using the values of the coefficients B0 and C0 determined
experimentally in the previous sections, the growth rate σ can
be computed from Eq. (10) as a function of the wave number
k (or corresponding wavelength λ) for various values of the
average mass 〈M〉 and velocity v. Figure 9 (top) shows plots of
σ for 〈M〉 = 0.3 kg and for velocities ranging from 0.4 m s−1

to 1.2 m s−1. For comparison, the experimental growth rate per
rotation is shown in Fig. 9 (bottom).

The predictions of the model are in good qualitative and
quantitative agreement with experimental results and show an
important feature: for low velocities, the growth rate remains
negative for all wavelengths, meaning that any perturbation
will be gradually eroded, whereas for high velocities there
exists a positive maximum corresponding to the fastest
growing mode or the most unstable wavelength.

B. Critical velocity and fastest growing mode

The first velocity for which there exists a positive value of
the growth rate, σ , is the critical velocity of the instability,
vc. The model derived not only recovers the existence of a
critical velocity but also predicts the fastest growing mode:
the theoretical and experimental most unstable wavelengths
are in excellent agreement as shown in Fig. 9.

It should be noted that there is some degree of uncertainty
as to the asymptotic behavior of σ since the expressions for
the additional terms in Eq. (6) were determined over a limited
range of wavelengths and velocities near the transition.

The critical velocity vc for which the first positive value
of σ is observed depends only on one parameter: the average
plowed mass 〈M〉 (i.e., the mass of the plow m = μ〈M〉).
Figure 10 (top) shows the values of vc inferred from our
model for a plow mass ranging from 100 g to 2 kg. The
critical velocity follows a power law as a function of this
mass: vc ∝ m0.35, as found in previous experiments [14], yet
with a lower exponent (vc ∝ m0.25). Although it is satisfactory
to recover a power law, the origin of the discrepancy in the
exponent remains unclear. However the relevance of a power
law over only one decade is debatable. Again expanding the
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FIG. 10. (Top) Critical velocity vc as a function of the mass of
the plow m (◦), the straight line corresponds to the prediction of the
model and follows a power law with an exponent 0.35. (Bottom)
Experimental wave number as a function of the predicted one. The
straight line shows kexp = kth.

predictions of Eq. (10) to a wider range of masses m would
be questionable since the expression of the lift force was
determined in a somewhat narrow range of parameters near
the onset of the instability.

Finally the value of the predicted most unstable wave
number, kth, can be compared to that measured experimentally,
kexp. The latter was not measured from the plots of σ but
instead was simply deduced from the profile of the sand bed
after a few rotations. These values of kth and kexp depend on
the mass of the plow m as well as on the velocity, v [clearly for
v > vc(m)]. For simplicity, they are plotted not as a function
of m and v but instead kexp is plotted as a function of kth

on Fig. 10 (bottom). The agreement between the predicted
and experimentally measured most unstable wave number is
excellent for all values of the mass and velocity as shown by
the solid line of slope one.

VIII. CONCLUSION

We have presented a linear stability analysis based on
experimental measurements of the lift force acting on a blade
plowing a mound of sand on a sand bed. From previous
experimental work [17], which focused on the case of a steady
plow over a flat surface an equation for the dynamics of the
plow was derived. However we found that further terms were
needed to recover the observed features of the instability.
The empirical expressions of these additional terms were
obtained by probing the mechanical response of the system
to sinusoidal excitations, both in the trajectory of the plow and
in the initial profile of the sand bed. From this the growth rate
of a sinusoidal perturbation was calculated and we showed
that above a critical velocity, which depends on the mass
of the plow, it displays a positive maximum corresponding
to the most unstable or fastest growing mode. The critical
velocity as well as the most unstable wave number were
computed and showed excellent agreement with experimental
measurements.

The expression of the lift force was obtained for a range of
parameters near the onset of the washboard road instability.
Hence the model recovers all the experimental observations
near the threshold of the instability but fails to include the
saturation of the pattern observed in experiments. Further
measurements would be necessary and a thorough modeling
will be required to include nonlinearities.

Finally it would be interesting to extend the present study to
the case of a rolling wheel. However this remains challenging
since on the one hand the transport mechanism is clearly
different and may involve plastic deformation and on the other
hand compaction is expected to play a crucial role.
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