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In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and
refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum
regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting
that is permanently, weakly, coupled to two spectrally separated heat baths at different temperatures. The equation
of motion allows us to compute the stationary power and heat currents in the machine consistent with the second
law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump)
depending on the modulation rate. In both modes of operation, the maximal Carnot efficiency is reached at zero
power. We study the conditions for finite-time optimal performance for several variants of the model. Possible
realizations of the model are discussed.
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I. INTRODUCTION

Emerging technologies aim at operation based on quantum
mechanics [1,2], but power-supply and cooling devices are
still governed by traditional (19th century) thermodynamics
[3]. It is therefore imperative to examine the conceptual
compatibility of the two disciplines as regards the performance
of such devices [4–8]. On the practical side, progress in
computer nanotechnology is currently constrained by the need
to understand and optimize power and cooling generation on
space [9] and time [10,11] scales where quantum effects are
unavoidable. Thus, we need to achieve a better grasp on the
fundamental thermodynamic bounds of quantum devices, in
particular, those that may act as heat machines. Quantum
devices that convert information into work are outside the
scope of our analysis.

In traditional thermodynamics, the Carnot cycle [3] yields
the ideal performance bound of heat engines and pumps
(refrigerators). In this cycle the evolution consists of “strokes”
in which the system (“working fluid”) alternates between
coupling to the “hot” and “cold” heat baths. Yet in microscopic
or nanoscopic devices, certainly when they operate quantum
mechanically, such cycles pose a serious problem: on-off
switching of system-bath interactions may strongly affect
energy and entropy exchange, which casts doubts on the
validity of commonly discussed models that ignore such effects
[3–7].

In this paper we put forward a more rigorous approach
to working cycles in quantum devices: We describe the
steady-state dynamics of periodically driven open quantum
systems that are permanently coupled to heat baths by Floquet
(harmonic) expansion of their coarse-grained Liouvillian
evolution. The accuracy of this approach and its consistency
with thermodynamics are ensured for weak system-bath
coupling [12]. Here we apply this theoretical machinery to the
description and performance analysis of a minimal model of
a quantum heat machine (QHM), with the following features:
(1) It is self-contained, i.e., described by a quantum mechanical
Hamiltonian. (2) It is universal, i.e., it can act on demand as
either a quantum heat engine (QHE) [6,7,13] that produces
work or as a quantum refrigerator (QR) [14,15] that refrigerates

a bath with finite heat capacity, depending on a control
parameter. (3) It is broadly adaptable to the available baths
and temperatures.

Our minimal model consists of a single qubit permanently
attached to both baths and controlled by a harmonic-oscillator
“piston.” A related (mostly numerical) study of QR has
employed a qubit that alternately couples to one or another
of two baths whose spectra have different cutoffs [6]. A QR
based on a harmonic oscillator that alternately couples to one
of two qubits, each attached to a different Markovian bath,
has also been suggested [7]. Our goal is the development,
from first principles, of a comprehensive analytical theory
for universal, dual-purpose (QHE or QR) operation and its
performance bounds in our minimal QHM model, wherein the
spectral separation of the two baths plays a key role. Broad
applicability is here ensured by bath engineering: attaching
a “doorway mode” to an arbitrary bath acts as a bandpass
filter that can impose the required spectral separation on
the two baths. Such doorway (filter) modes are realizable
by interfacing the system (qubit) with the baths through a
tunable cavity [16] or an impurity in a periodic structure or
chain [17].

The simplicity of the model allows closed-form analytical
solutions, in which the piston-qubit coupling strength is the
“knob” that can transform a QR to QHE (or vice versa)
and controls their efficiency, after appropriately engineering
the baths in question. Remarkably, Carnot efficiency is
analytically shown to be achievable at the value of the control
parameter that transforms the QR into a QHE. The optimal
power and efficiency for finite-time cycles are analytically
shown to surpass the established Curzon-Ahlborn bound [18].

In Sec. II the model and the analysis framework are
introduced. In Sec. III the periodically modulated steady state
is evaluated by the Floquet expansion method. In Sec. IV the
steady-state thermodynamic relations are derived. In Sec. V
we investigate the operation modes and bounds of the QHM,
based on the steady-state solution of Sec. IV. In Sec. VI
we investigate the finite-time optimal performance bounds.
Realizations are discussed in Sec. VII. The conclusions are
presented in Sec. VIII.
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FIG. 1. (Color online) Inset: Illustration of the QHM by double-
well qubits (with periodically modulated tunneling barrier) embedded
between cold and hot baths. (a) Sinusoidal-modulation effects
[Eqs. (18) and (19)]. Harmonic (Floquet) peaks of the response
superimposed on rising cold and hot bath spectra Gj (ω) = Ajω3(top)
and on the spectra of the same baths recalculated in the presence of
different filter modes, transforming these baths’ spectra into skewed
Lorentzians [according to Eqs. (40) and (41)]. The filtered spectra
obey condition A1 (left) or A2 (right). The parameters (in arbitrary
units) used to calculate the spectra are AC = 1,AH = 1/10 and, for
the graph on the left, γ H

f = 22, γ C
f = 1, ωH

f = 13, and ωC
f = 1

and, for the graph on the right, γ H
f = 1, γ C

f = 2, ωH
f = 13, and

ωC
f = 20. (b) Same, under condition B (phase-flip modulation), for

rising hot-bath spectra and cold-bath spectrum with cutoff.

II. MODEL AND TREATMENT PRINCIPLES

The Hamiltonian of the QHM in question can be written as

HQHM = HS(t) + HB + HSB ; (1)

HSB = σx(BH + BC). (2)

Here the control two-level system (TLS) is weakly coupled
simultaneously to two baths via HSB , where σx is the spinor
x component and BH and BC are respectively the operators
of a very large hot bath (H) and of a finite cold bath (C). The
TLS frequency is periodically modulated about its resonance
frequency ω0 by the Hamiltonian

HS(t) = 1
2σzν(t). (3)

This model Hamiltonian is realizable by adiabatically
eliminating a highly detuned level of a three-level system and
allowing for a periodic ac Stark shift by a time-dependent
control field (Sec. VII C). The fully quantized version of this
model, wherein the classical time-dependent control field is
replaced by a quantum harmonic-oscillator field dispersively
coupled to the TLS, merits separate discussion.

A scenario that illustrates the model (Fig. 1 inset) is
as follows: A charged quantum oscillator in a double-well
potential which is “sandwiched” between the baths, a C bath
with finite heat capacity, and a nearly infinite H bath which

serves as heat dump. The oscillation is periodically modulated,
e.g., by off-resonant π pulses. These phase flips control the
heat current between the baths via the particle.

In the refrigerator mode, corresponding to C-bath cooling,
this model is reminiscent of the so-called sideband cooling: an
optical Raman process in solids and molecules [19,20]. Here
the red- and blue-shifted TLS frequencies play the role of
Stokes and anti-Stokes lines of sideband cooling respectively:
Heat is pumped into an upshifted line in the H-bath spectrum,
at the expense of a downshifted C-bath spectral line, and the
energy difference is supplied by the modulation. In the engine
mode, the opposite occurs: The modulation converts part of
the heat-flow energy from the H bath to the C bath into work
extractable by the control field. This entails energy transfer
from the H bath to the field.

Work extraction or refrigeration conditions are determined
by the direction of power and heat flow (the heat current).
The heat current, in turn, is given by the polarization rate
of the TLS, obtained from the steady-state solution of a
master equation (ME) for the TLS density operator. This ME,
which allows for non-Markovian (bath-memory) effects, is
accurate to second order in the system-bath coupling, at any
temperature, as verified by us both theoretically [21] and exper-
imentally [22,23]. Inaccuracies of the ME [24] are negligible
for weak coupling. (See the Supplementary Material [25].)

The refrigeration of a finite-capacity C bath represents a
succession of tiny temperature changes over many modulation
cycles. Hence, the Born approximation underlying the ME
is consistent with such cooling. The finite-capacity C bath is
assumed to have a continuous spectrum, since bath-mode dis-
creteness and the associated recurrences may render the Born
approximation invalid and preclude bath thermalization [26].

The TLS density matrix ρS is assumed diagonal in the
energy-state basis: Starting at equilibrium, where off-diagonal
elements of ρS are absent, they remain so, when the TLS is
subject to σZ modulation in Eq. (2). The interlevel transition
rates and their non-Markovian time dependence embody the
quantumness of the ME. Sufficiently fast periodic modulation
of the TLS frequency at intervals τ can change the detailed
balance of the transition rates (quanta absorption and emission)
and thereby allows either heating up or cooling down of the
TLS, depending on τ [10,23]. Here our goal is the analysis
of work extraction or heat flow between the baths enabled by
periodic modulation of the TLS. Two alternative methods yield
the same equations for these processes: (a) Floquet (harmonic)
expansion of the non-Markovian ME [10,21] under temporal
averaging (coarse graining over a modulation period) and
(b) Floquet expansion of the Markovian evolution superop-
erator [12,27].

III. FLOQUET EXPANSION AT STEADY STATE

A. Non-Markovian master-equation approach

Since ρS is diagonal (see above) in the energy basis of the
TLS (|e〉, |g〉), the diagonal HS(t) [Eq. (3)] yields the following
rate equations from the non-Markovian ME [21]:

ρ̇ee(t) = −ρ̇gg(t) = Rg(t)ρgg − Re(t)ρee. (4)

The non-Markovian, time-dependent |e〉 → |g〉 and |g〉 →
|e〉 transition rates are given, respectively, by the real part of
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the integrals [21,28]

Re(t) = 2 Re
∫ t

0
dt ′ exp[iω0(t − t ′)]ε(t)ε
(t ′)�(t − t ′),

(5)

Rg(t) = 2 Re
∫ t

0
dt ′ exp[−iω0(t − t ′)]ε
(t)ε(t ′)�(t − t ′),

where ε(t) is the periodically modulated phase factor (a uni-
modular periodic complex function), ω0 is the TLS resonance
frequency, and the bath-response (autocorrelation) function
�(t) ≡ ∫

dωG(ω) exp(−iωt) is the Fourier transform of the
bath coupling spectrum GT (ω).

The TLS evolution caused by the baths under weak coupling
conditions is much slower than their memory (correlation)
time tc. Hence, in steady state, we can use time-averaged
(coarse-grained) level populations and transition rates (see the
Supplementary Material [25]. In Eq. (3) the coarse-grained
dynamics yields the following additive contributions of the
two baths (labeled by j = C,H ) to the harmonic expansion
(labeled by m) of the time-averaged TLS polarization S ≡
ρee−ρgg

2 :

Ṡ =
∑
m

(
ṠC

m + ˙
SH

m

)

−
∑
m,j

(
− (

R
j (m)
g + R

j (m)
e

)
S + R

j (m)
g − R

j (m)
e

2

)
, (6)

where the time-averaged transition rates are found from the
Floquet expansion of the modulation ν(t) to be [3,21,28]

R
j

e(g) ≡ 2π
∑
m

PmGj [±(ω0 + m�)]. (7)

Here

Pm = |εm|2, εm = 1

τ

∫ τ

0
ei

∫ t

0 (ν(t ′)−ω0)dt ′eim�tdt (8)

are the probabilities of shifting the j th-bath coupling spectrum
Gj (ω) by m�, � = 2π

τ
, from the average frequency ω0, and

Gj (ω) =
∫ +∞

−∞
eiωt 〈Bj (t)Bj (0)〉dt = eω/T Gj (−ω). (9)

For a bosonic bath (h̄ = kB = 1),

Gj (ω) = G
j

0(ω)(nj (ω) + 1);
(10)

G
j

0(ω) = |gj (ω)|2ρj (ω);

gj (ω) being the system-bath coupling, ρj (ω) the bath-mode
density, and nj (ω) = 1

e
ω
Tj −1

the ω-mode thermal occupancy.

B. Markovian master equation approach

An alternative method using the combination of the weak-
coupling limit and Floquet expansion [27] of a periodi-
cally flipped qubit coupled to two baths is based on the
Lindblad-Gorini-Kossakowski-Sudarshan (LGKS) operator,
as described in the tutorial in Ref. [12]. It has the advantage of
ensuring positivity and additivity of the evolution due to the
two baths. The Markovian master equation in the interaction
picture reads dρ

dt
= Lρ, where Lj,m. We expand L = ∑

Lj
m,

where again j = H,C, and m is the Floquet harmonic. The
expansion yields

Lj
mρ = Pm

2
(Gj (ω0 + m�)([σ−ρ,σ+] + [σ−,ρσ+])

+Gj (−ω0 − m�)([σ+ρ,σ−] + [σ+,ρσ−])). (11)

This LGKS approach yields the same equations of motion
for the qubit polarization as the time-averaged non-Markovian
approach above [Eqs. (5) and (6)].

IV. STEADY-STATE THERMODYNAMIC RELATIONS

The qubit steady state [found from Eq. (11)] has the
diagonal form characterized by the population ratio w

ρ̃ =
(

ρ̃ee 0

0 ˜ρgg

)
,

(12)

w = ρ̃ee

˜ρgg

=
∑

q,j PmGj (ω0 + m�)e
− ω0+m�

Tj∑
m,j PmGj (ω0 + m�)

,

where, as in Eq. (6), � = 2π
τ

. The cold (hot) current is then
given by

JC(H ) =
∑
m

(ω0 + m�)PmGC(H )(ω0 + m�)
e
− (ω0+m�)

TC(H ) − w

w + 1
.

(13)

The magnitudes and signs of these steady-state currents
are the same as for the time-averaged (non-Markovian) ME
solutions detailed above [Eqs. (5) and (6)].

The first law of thermodynamics allows us to define the
stationary power as

P = −(JC + JH ), (14)

i.e., the power investment P by the piston is negative when the
machine acts as an engine. One obtains from Eq. (14)

P =
∑
m,j

(ω0 + m�)Pm

w + 1

[
Gj (ω0 + m�)

(
w − e

− (ω0+m�)
Tj

)]
.

(15)

One can show using the Spohn theorem for Markovian
evolution [29] that the heat currents satisfy the second law of
thermodynamics:

S(t) = −Tr[ρ̃(t) ln ρ̃(t)],
d

dt
S(t) − JC(t)

TC

+ JH (t)

TH

� 0,

(16)

where the left-hand side of the inequality (16) is the entropy
production rate.

These standard thermodynamical relations imply the valid-
ity of the Carnot bound on the engine efficiency η and on the
coefficient of performance (Cp) for the refrigerator

η = −P
JH

� 1 − TC

TH

,

(17)

Cp = JC

P � TC

TH − TC

.
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V. UNIVERSAL MACHINE OPERATION MODES

The choice of parameters that may affect the QHM
operation are mainly the shape of the modulation ν(t) and
the form of bath-response (coupling spectra) spectral densities
GC(ω) and GH (ω). These choices may enable the machine to
act as both an engine and a refrigerator, as shown below. In the
following we discuss two such choices of the modulation and
the requirements each type entails on the bath spectra.

A. Sinusoidal modulation

We consider the sinusoidal time dependence of the external
(modulating) field, i.e.,

ω(t) = ω0 + λ� sin(�t), (18)

under the condition

0 � λ � 1. (19)

The condition (19) implies that only the harmonics m = 0, ±
1 with

Pm=0 	 1 − λ2

2
, Pm=±1 	 λ2

4
(20)

should be taken into account. Even under this simplifying
condition the formulas for heat currents and power are
complicated (see Appendix A). More detailed analysis of the

various terms in those formulas shows that in order to reach
the Carnot bound, we have to reduce the number of relevant
harmonics to two. This can be done by system-bath coupling
engineering (Sec. VII), so as to impose the spectral separation
of the two baths, in the cases discussed below.

1. A1

We assume that the upper cutoff of C nearly coincides
with lower cutoff of H and ω0 is near the two cutoffs
[Fig. 1(a)]:

GC(ω) 	 0 for ω � ω0, GH (ω) 	 0 for ω � ω0,

(21)

We discuss this case in more detail, as the condition (21)
is the easiest to implement in practice (see Sec. VII). This
condition leads to the following simplified formulas for heat
currents and power obtained from the general expressions
(Appendix A):

JH = (ω0 + �)N
(
e
−( ω0+�

TH
) − e

−( ω0−�

TC

)
),

JC = −(ω0 − �)N
(
e
−( ω0+�

TH
) − e

−( ω0−�

TC
))

, (22)

P = −2�N
(
e
−( ω0+�

TH
) − e

−( ω0−�

TC
))

,

where the positive normalizing constant is

N = λ2

4

GC(ω0 − �)GH (ω0 + �)

GC(ω0 − �)
[
1 + e

−( ω0−�

TC
)] + GH (ω0 + �)

[
1 + e

−( ω0+�

TH
)] . (23)

It follows from Eq. (22) that there exists a critical value of the
modulation frequency

�cr = ω0
TH − TC

TH + TC

, (24)

such that for � < �cr the machine acts as an engine with the
efficiency

η = 2�

ω0 + �
(25)

and for � > �cr as a refrigerator with

Cp = ω0 − �

2�
. (26)

At � = �cr the engine (refrigerator) reaches its maximal
Carnot efficiency (Cp). This corresponds to the vanishing value
of power (cold) current [see Fig. 2(a)]. The operation mode
change prevents the machine from breaking the second law.

Similar behavior was obtained [30] by numerical calculation
for a different model of a quantum machine.

2. A2

We assume the following conditions of the bath spectra
[Fig. 1(a)]:

GC(ω) 	 0 for ω ≈ ω0 ± �, GH (ω) 	 0 for ω � ω0.

(27)

This condition yields (Appendix A)

JH = (ω0 + �)N ′(e−( ω0+�

TH
) − e

−( ω0
TC

))
,

JC = ω0N
′(e−( ω0

Tc
) − e

−( ω0+�

TH
))

, (28)

P = −�N ′(e−( ω0+�

TH
) − e

−( ω0
TC

))
,

where the positive normalizing constant for this case is

N ′ = λ2

4

GC(ω0)GH (ω0 + �)

GC(ω0)
[
1 + e

−( ω0
TC

)] + λ2

4 GH (ω0 + �)
[
1 + e

−( ω0+�

TH
)] . (29)
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FIG. 2. (Color online) (a) Currents and power as function of
the machine modulation for an ideal heat machine. For � < �cr

it operates as a heat engine and for � > �cr as a refrigerator.
(b) Efficiency for the same machine. The Carnot bound is reached
at � = �cr . Inset: Periodic modulation of three-level impurities
embedded between hot and cold baths. The modulating field is
detuned from the |e〉 − |u〉 transition by �u and exerts periodic ac
Stark shift on |e〉.

From Eq. (28) it follows that the critical modulation
frequency is

�cr = ω0
TH − TC

TC

. (30)

Namely, for � < �cr the machine acts as an engine with the
efficiency

η = �

ω0 + �
(31)

and for � > �cr as a refrigerator with

Cp = ω0 − �

�
. (32)

At � = �cr the engine (refrigerator) reaches its maximal
Carnot efficiency (Cp).

B. π -flip modulation

Periodic π -phase shifts (phase flips) with alternating sign
give rise to only two leading harmonics, corresponding to
two symmetrically opposite frequency shifts in the Floquet
expansion of the probability distribution (since P0 = 0 for
symmetry reasons) [21,28]:

P±1 ≈ (2/π )2;
(33)

Gj (ω0) → Gj (ω0 ± �).

If � is comparable to 1/tc, the inverse memory time of
the cold bath, we may require that at ω 	 ω0 + � the TLS
be coupled only to the H bath, while at ω 	 ω0 − � it is
coupled to both the C and H baths. This is tantamount to the
requirement that

GH (ω0 + �) �GC(ω0 + �),
(34)

GH (ω0 − �), GC(ω0 − �).

TABLE I. Results of cases A1 [Eq. (21)] and A2 [Eq. (27)].

Efficiency Efficiency at Relation to
Case �cr = 2�max (� � �cr ) maximum power Curzon-Ahlborn

A1 ω0
TH −TC

TH +TC

2�

ω0+�
ηmax = 2(TH −TC )

3TH +TC
ηmax � ηCA

A2 ω0
TH −TC

TC

�

ω0+�
ηmax = TH −TC

TH +TC
ηmax > ηCA

This requirement can be satisfied if C has an upper cutoff

ωcut < ω0 + �. (35)

For H , by contrast, GH is only required to rapidly rise
with ω, which is true for blackbody radiation in open space,
GH (ω) ∝ ω3, or for phonons in bulk media.

If Eq. (35) is satisfied we find the same steady-state
expression for the currents and power and the same physical
behavior as for case A1: �cr is given by Eq. (24), η by Eq. (25),
and Cp by Eq. (26).

VI. FINITE-TIME OPTIMAL PERFORMANCE

The vicinity of the critical frequency is not a useful working
regime, since power and currents are small there. Much more
important is the region of parameters where the power or
cold current are maximal. We wish to find these parameters
and the corresponding efficiency of our QHM and compare
our efficiency to the so-called Curzon-Ahlborn efficiency at
maximum power of a macroscopic Carnot-type engine [18],

ηCA = 1 −
(

TC

TH

)1/2

. (36)

To this end we consider the case A2 [Eq. (27)] for our
universal machine and compute the maximal power P which
is produced for the optimal modulation frequency �max under
the following simplifying assumptions:

(a) The spectral density GH (ω) is flat, i.e., d
dω

GH 	 0 near
ω = ω0 + �max.

(b) High-temperature regime is e
ω
Ta ≈ 1 + ω

Ta
.

Under these assumptions, the modulation �max that yields
the maximal power and the corresponding efficiency ηmax are
found to be

�max = 1

2
�cr, ηmax =

(
1 − TC

TH

)
1 + TC

TH

� ηCA. (37)

In Table I we present the results of the cases A1 [Eq. (21)]
and A2 [Eq. (27)]. While the relation �max = 1

2�cr is true for
all cases, at maximal power the efficiencies are different. In
the case A2 the Curzon-Ahlborn bound is always exceeded. In
fact, ηCA is then the minimum of (η)max. Numerical calculation
shows that the Curzon-Ahlborn bound is exceeded even if the
temperatures are not high (� ≈ ω0/2,TH 	 2,TC 	 1).

VII. REALIZATION CONSIDERATIONS

In the following we lay out general guidelines for experi-
mental realizations, i.e., the key considerations for satisfying
the operating conditions discussed above.
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A. Spectral separation of coupling to the C and H baths
via Debye cutoffs

Case B (periodic π flips) is the most flexible so far as
spectral separation is concerned: It allows for an arbitrary
rising coupling spectrum of the H bath, including a bulk-solid
phonon bath or the blackbody radiation spectrum GH (ω) ∝
ω3. The C bath should have GC(ω = 0) = 0, as for 1/f noise
spectra [31]. Preferably, the C bath is to have an upper cutoff,
as is the case for phonon baths in crystals (Debye cutoff)
and Ohmic or super-Ohmic noise baths [31]. By contrast, a
single mode of a cavity with finite linewidth (finesse) is a
Lorentzian bath [32], whose lack of cutoff would lower the
machine efficiency or Cp, unless the upshifted (anti-Stokes)
frequency ω0 + � is at the far tail of the Lorentzian (Fig. 1).

The spectral separation requirements are stricter in cases
A1 and A2 (under sinusoidal modulation). To impose these
requirements, we can choose the materials C and H in such a
way that the Debye frequencies match the desired temperatures
of the baths:

ωC
D 	 TC, ωH

D 	 TH . (38)

The coupling spectra of the baths are assumed to have the
Debye shape

Gj (ω) = fj

(
ω

ω
j

D

)3 1

1 − e−ω/Tj
θ
(
ω

j

D − |ω|), (39)

where fj are bath-specific constants and θ is the Heaviside
step function.

B. Filters

In general, the satisfaction of the spectral separation
conditions can be facilitated by imposing a “filter” onto
the qubit-bath coupling spectrum. To this end, we consider
the model whereby the qubit is (weakly) coupled to two
harmonic-oscillator “filter”modes with resonance frequencies
ωf and each such mode in turn is coupled to the respective (C
or H) bath via coupling spectrum Gj (ω); i.e., each filter mode
mediates between the qubit and the respective bath. The qubit
is then effectively coupled to the filter-mode bath response
via [17]

G
j

f (ω) = γf

π

[πGj (ω)]2

{
ω − [

ω
j

f + �
j

L(ω)
]}2 + [πGj (ω)]2

, (40)

where γ
j

f is the coupling rate of the qubit to the filter mode,
and

�
j

L(ω) = P

(∫ ∞

0
dω′ G

j (ω′)
ω − ω′

)
, (41)

with P being the principal value, is the respective bath-induced
Lamb shift [17,33]. The filter-mode response spectrum (40) is
a “skewed Lorentzian” for a completely general spectrally
structured Gj (ω). In particular, a cutoff or a band edge of
Gj (ω) curtails the Lorentzian and makes it strongly skewed
[17], whereas if Gj (ω) is spectrally flat, it is a simple
Lorentzian centered at ω

j

f . Such “filtering” can suppress
undesirable tails of Gj (ω) and thus enforce conditions (21)
or (35) in a broader range of media and parameters [Fig. 1(a)].

In addition, the desired bath spectra are achievable by
engineering. We note recent advances in microcavities, pho-
tonic crystals, and waveguides that can help reshape photon
bath spectra, as well as their phonon-bath counterparts, e.g.,
periodic structures with acoustic band gaps [13].

C. Qubit realization and modulation

A qubit may be realized by atomic or molecular multi-
level impurities embedded at the interface between different
material layers (Fig. 2 inset) A qubit may also be realized
by a symmetric double-well (DW) potential with two bound
states |e〉, |g〉: for example, a single-electron quantum dot
or a superconducting Josephson qubit [1,2] as well as its
ultracold-atom analog [34]. The symmetric and antisymmetric
superpositions of |e〉 and |g〉, the eigenstates of σx [Eq. (2)],
are localized on the left- and right-hand wells, respectively. In
either bath the Debye cutoff should conform to the temperature
as specified above. One example is that of a DW quantum dot
“sandwiched” between dielectric layers with different Debye
cutoffs ω

j

D (Fig. 1 inset) Another example is an ultracold-atom
DW qubit embedded between two optical lattices, where
phonons have different ω

j

D (Fig. 2 inset).
The required modulation that conforms to Eqs. (19)

or (23) may be realized by changing the energy difference
of |e〉 and |g〉 by time-dependent ac Stark shift [21]. If |u〉 is
an upper state with energy ωu, then an off-resonant control
field detuned by �u from the |e〉-|u〉 resonance will realize
the piston-system coupling in Eq. (3) with ν(t) = �2(t)/�u,
with �(t) being the Rabi frequency of the control field (Fig. 2
inset). Thus, in DW qubits realized by ultracold atoms, the
optically induced potential barrier between the wells may be
periodically modulated or flipped in sign [34] (Fig. 1 inset).

In order to illustrate the performance of such a machine,
we numerically compute the dependence of the basic thermo-
dynamical parameters on the rate �. As shown in Fig. 2, the
operation mode, as well as its efficiency, depends on �. In the
plotted example, the overlap of spectral densities of the two
baths vanishes; i.e., they fully satisfy the spectral separation
condition A, and hence the ideal Carnot efficiency is reached.
If the overlap does not vanish, the Carnot bound is not attained.

VIII. CONCLUSIONS

A single TLS (qubit) with energy modulation has been
shown to constitute a minimal model for a universal quantum
heat machine (QHM) that is permanently attached to two
spectrally separated baths. Such simultaneous coupling to
both baths allows our rigorous analysis of energy and entropy
exchange in a cycle. The present approach stands in contrast
to the traditional cycles divided into “strokes,” each involving
one bath at a time where system-bath on-off switching effects
are not accounted for [4–9]. As shown, the analyzed machine
can be switched at will from an engine mode to refrigerator
mode and vice versa merely by varying the modulation rate.
This could be useful in situations where both kinds of thermal
machines are needed, and the operation is simplified by
having a single machine. The rate also allows us to control
the efficiency of our machines and in this way keep them
optimized under bath temperature change, which underscores
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the versatility of our machine. Recently we have shown that
this machine may violate the unattainability of the absolute
zero (the third law) in the refrigeration mode for certain bath
models [25].

The switching from engine to refrigerator mode in this
machine occurs at a critical rate, i.e., at the critical point where
Carnot limit appears to be close to be broken, yet instead the
mode switching prohibits breaking this limit. The maximum
efficiency is reached at the critical point, where the machine
yields zero power, consistent with the second law. Practical
engines are, however, designed to yield maximum power. It is
usually presumed that the upper bound is the Curzon-Ahlborn
efficiency [18]. However, as our model shows, this bound can
be exceeded; it is in fact the lower bound for our finite-time
engine.

Both impurities and double-well qubits embedded in
appropriate environments may act, depending on their energy
modulation, in either the engine (QHE) or the refrigerator
(QR) mode of the proposed QHM, with potentially signifi-
cant technological advantages. In particular, an impurity or
quantum-dot fast-modulated qubit “sandwiched” between two
nanosize solid layers (Fig. 1 inset) may act as a nanoscopic
refrigerator (heat pump) of a transistor (chip) that is much more
miniaturized and consumes less power than currently available
microelectronic refrigerators [9]. Under slower modulation
rate, the same setup may act as electron-current generator
without external voltage bias and as a substitute for phase-

coherent electron-current control [35] (whereas in the present
scheme the modulating field need not be coherent).

To conclude, the present scheme demonstrates the ability
of systematic quantum analysis of driven open systems to
yield accurate, physically lucid expressions for steady-state
heat machine performance. The analysis shows that quantum
mechanics and thermodynamics can be fully compatible on
the level of an elementary (single-qubit) system provided one
correctly accounts (by the Floquet expansion) for its entropy
and energy exchange with the baths. This essential point has
not been properly accounted for by previous treatments of
quantum heat machines.
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APPENDIX A: HEAT CURRENTS AND POWER UNDER
SINUSOIDAL MODULATION

In general, under the conditions (18) and (19), only three
frequencies ω = ω0,ω0 ± � need to be taken into account.
The expressions for power, cold current, and hot current (up
to terms of the order λ2) read as follows:

(1) The power is

P = − �∑
m,i=H,C PmGi(ω0 + m�)

(
1 + e

− ω0+m�

Ti

){
P1P0

[
GC(ω0 + �)GC(ω0)

(
e
− ω0+�

TC − e
− ω0

TC

)

+GC(ω0 + �)GH (ω0)
(
e
− ω0+�

TC − e
− ω0

TH

) + GH (ω0 + �)GC(ω0)
(
e
− ω0+�

TH − e
− ω0

TC

)
+GC(ω0 − �)GC(ω0)

(
e
− ω0

TC − e
− ω0−�

TC

) + GH (ω0 − �)GC(ω0)
(
e
− ω0

TC − e
− ω0−�

TH

)
+GC(ω0 − �)GH (ω0)

(
e
− ω0

TH − e
− ω0−�

TC

) + GH (ω0 + �)GH (ω0)
(
e
− ω0+�

TH − e
− ω0

TH

)
+GH (ω0 − �)GH (ω0)

(
e
− ω0

TH − e
− ω0−�

TH

)] + 2P 2
1

[
GC(ω0 + �)GC(ω0 − �)

(
e
− ω0+�

TC − e
− ω0−�

TC

)
+GC(ω0 + �)GH (ω0 − �)

(
e
− ω0+�

TC − e
− ω0−�

TH

) + GH (ω0 + �)GC(ω0 − �)
(
e
− ω0+�

TH − e
− ω0−�

TC

)
+GH (ω0 + �)GH (ω0 − �)

(
e
− ω0+�

TH − e
− ω0−�

TH

)]}
. (A1)

(2) The hot current is

JH = 1∑
m,i=H,C PmGi(ω0 + m�)

(
1 + e

− ω0+m�

Ti

){
P 2

0 ω0G
H (ω0)GC(ω0)

(
e
− ω0

TH − e
− ω0

TC

)

+P1P0
[−ω0G

C(ω0 + �)GH (ω0)
(
e
− ω0+�

TC − e
− ω0

TH

) + (ω0 + �)GH (ω0 + �)GC(ω0)
(
e
− ω0+�

TH − e
− ω0

TC

)
− (ω0 − �)GH (ω0 − �)GC(ω0)

(
e
− ω0

TC − e
− ω0−�

TH

) + ω0G
C(ω0 − �)GH (ω0)

(
e
− ω0

TH − e
− ω0−�

TC

)
+�GH (ω0 + �)GH (ω0)

(
e
− ω0+�

TH − e
− ω0

TH

) + �GH (ω0 − �)GH (ω0)
(
e
− ω0

TH − e
− ω0−�

TH

)]
+P 2

1

[−(ω0 − �)GC(ω0 + �)GH (ω0 − �)
(
e
− ω0+�

TC − e
− ω0−�

TH

) + (ω0 + �)GH (ω0 + �)GC(ω0 − �)
(
e
− ω0+�

TH − e
− ω0−�

TC

)
+ 2�GH (ω0 + �)GH (ω0 − �)

(
e
− ω0+�

TH − e
− ω0−�

TH

) + (ω0 − �)GH (ω0 − �)GC(ω0 − �)
(
e
− ω0−�

TH − e
− ω0−�

TC

)]}
. (A2)
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(3) The cold current expression can be obtained from JH by
interchanging C and H.

APPENDIX B: MASTER EQUATION

To second order in the system-bath coupling, the non-
Markovian master equation for the reduced system density
matrix, ρS(t), has the form [21]
ρ̇S(t) = −i [HS,ρS(t)]

+
∫ t

0
dτ {�T (t − τ )[S̃(t,τ )ρS(t),σx] + H.c.}. (B1)

Here S̃(t,τ ) = e−iHS (t−τ )σxe
iHS (t−τ ) and the bath autocorrela-

tion function is �T (t) = ε2〈Be−iHB tBeiHBt 〉B , with ε being
the coupling strength.

At equilibrium ρS is diagonal in the energy basis of the TLS
(|e〉, |g〉) and it remains so under the action of the diagonal
HS [Eq. (3)]. The rotation-wave approximation is not assumed
here and hence Eq. (B1) allows for arbitrarily fast modulations
of the system. The corresponding rate equation are then
given by Eqs. (4), with time-dependent rates Rg(e)(t) given by
Eq. (5).

[1] P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf,
and P. Zoller, Phys. Rev. Lett. 97, 033003 (2006); A. Imamoğlu,
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