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Critical behavior of the three-dimensional Ising model with anisotropic bond randomness
at the ferromagnetic-paramagnetic transition line
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We study the ±J three-dimensional (3D) Ising model with a spatially uniaxial anisotropic bond randomness
on the simple cubic lattice. The ±J random exchange is applied on the xy planes, whereas, in the z direction, only
a ferromagnetic exchange is used. After sketching the phase diagram and comparing it with the corresponding
isotropic case, the system is studied at the ferromagnetic-paramagnetic transition line using parallel tempering
and a convenient concentration of antiferromagnetic bonds (pz = 0; pxy = 0.176). The numerical data clearly
point out a second-order ferromagnetic-paramagnetic phase transition belonging in the same universality class
with the 3D random Ising model. The smooth finite-size behavior of the effective exponents, describing the
peaks of the logarithmic derivatives of the order parameter, provides an accurate estimate of the critical exponent
1/ν = 1.463(3), and a collapse analysis of magnetization data gives an estimate of β/ν = 0.516(7). These results
are in agreement with previous papers and, in particular, with those of the isotropic ±J three-dimensional Ising
model at the ferromagnetic-paramagnetic transition line, indicating the irrelevance of the introduced anisotropy.
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I. INTRODUCTION

Ising spin-glass models yield phase diagrams with dis-
tinctively complex ordered phases in d = 3. These models,
although relatively simple in their formulation, have been
proposed to describe complex systems, exhibiting frustration,
e.g., materials, such as Fe1−xiMnxiTiO3 and Eu1−xBaxMnO3

[1–3], neural networks [4], etc.
The simplest of such models, but most influential over the

years, is the Edwards-Anderson model [5,6], defined by the
Hamiltonian,

H = −
∑

〈ij〉
Jij sisj , (1)

where the summation is over nearest neighbors, s = ±1, and
Jij denotes the uncorrelated quenched exchange interaction.
There are two popular random disorder distributions, the
Gaussian distribution of random bonds with zero mean and
unity standard deviation and the bimodal distribution of Jij ,
given by

P (Jij ) = pδ(Jij + 1) + (1 − p)δ(Jij − 1). (2)

Recently, the spatially uniaxial anisotropic d = 3 spin-glass
system has been solved exactly on a hierarchical lattice by
Güven et al. [7]. Their general study revealed a rich phase
diagram topology and several new interesting features. This
anisotropic spin-glass model is also the subject of this paper
and is defined by the Hamiltonian,

H = −
∑

u

∑

〈ij〉u
J u

ij sisj , (3)

where the exchange interactions are uncorrelated quenched
random variables, taking the values ±J xy on the xy planes
and the values ±J z on the z axis. Accordingly, the bimodal
distribution of J u

ij takes the more general form

P
(
J u

ij

) = puδ
(
J u

ij + J u
) + (1 − pu)δ

(
J u

ij − J u
)
, (4)

where u denotes the z axis (u = z) or the xy planes (u = xy),
J u denotes the corresponding exchange interaction strength,

and pu are the probabilities of two neighboring spins (ij ),
having antiferromagnetic interaction.

The standard isotropic model, defined by Eqs. (1) and
(2), corresponds to J z = J xy = J (=1) and pz = pxy . The
global phase diagram of this model separates three distinctive
phases, ferromagnetic, paramagnetic, and glassy phases. All
transitions among these phases are believed to be of second
order and to belong to different universality classes. The
phase diagram of the isotropic model will be presented in
Sec. III A together with the corresponding phase diagram for
the anisotropic model considered in this paper.

For the isotropic model, several accurate studies have been
carried out to determine the critical behaviors along the tran-
sition lines for the finite-temperature phase transitions [8–27].
Most of these studies concern the ferromagnetic-paramagnetic
(FP) and the glassy-paramagnetic (GP) lines. There also was
a recent study for the ferromagnetic-glassy (FG) transition
line [8]. The transition lines meet in a multicritical point
located along the Nishimori line [18–27].

The FP transition line starts at the pure Ising model
(p = 0) for which all critical properties have been extensively
studied, and a recent very accurate estimate of the correlation
length exponent is ν = 0.630 02(10) [28–33]. As shown by
Hasenbusch et al. [9], the introduction of the ±J quenched
randomness changes the universality of the model along the FP
line to that of the random Ising model (RIM) or the randomly
diluted Ising model [9,16,34] in which several spin models
appear to belong. These include models, such as the randomly
sited and bond diluted, the random bond [35–39], the random
bond Blume-Capel [40] model, and, of course, the already
mentioned isotropic ±J three-dimensional Ising model at the
ferromagnetic-paramagnetic transition line [9]. An accurate
estimate of the correlation length exponent for these d = 3 FP
transitions, characterizing the RIM universality class, is that
given by Ref. [35] ν = 0.6837(53).

For the GP transition line, most of the work has been
curried out at p = 1

2 [11,13–15,41–53]. However, because of
severe inherent difficulties due to both strong frustration and
disorder effects in this region, there is a large spread in the
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estimates of critical exponents, and some questions related
to universality remain. This is clearly reflected in Table I of
Katzgraber et al. [11] in which one can observe a large spread
in the correlation length exponent and critical temperature
estimates. From this paper, we quote the estimates ν = 2.39(5)
and Tc = 1.120(4), which apply to the present isotropic ±J

spin-glass model. More recent estimates are ν = 2.45(15) and
Tc = 1.109(10) [10]. Finally, for the FG transitions, Ceccarelli
et al. [8] have estimated the correlation length exponent to
be ν = 0.96(2). Additional features [7,8,25,26,54–56] of the
global phase diagram of the isotropic model will be discussed
in Sec. III A.

The present paper is part of a research program to study,
by Monte Carlo (MC) methods, the general spatially uniaxial
anisotropic d = 3 spin-glass system considered by Güven
et al. [7] and defined by Eqs. (3) and (4). The main motivation
is to provide numerical evidence for the universality question
by investigating possible effects caused by the introduced
anisotropy on the critical exponents along the three different
transition lines. Our first attempt here concerns the model
pz = 0; pxy � 1

2 with J z = J xy = J (=1). For this model, we
will present an approximate sketch of the global phase diagram
and then will focus on the nature of the corresponding FP
transition by carrying out a detailed numerical study at the
particular case of pz = 0; pxy = 0.176.

The rest of the paper is laid out as follows: In the following
subsection, we give a description of our numerical approach,
utilized to derive numerical data for large ensembles of
realizations of the disorder distribution and lattices with linear
sizes in the range of L ∈ {8–44}. In Sec. II B, the finite-size
scaling (FSS) scheme is described. Then, in Sec. III A, we
present the phase diagrams of both isotropic and anisotropic
models, and for the latter, we present the numerical evidence
on which it is approximately constructed. In Sec. III B, we
present all our FSS attempts for the case od pxy = 0.176. This
FSS study provides good estimates of all critical exponents
and verifies that the present anisotropic model belongs to the
universality class of the RIM. Our conclusions are summarized
in Sec. IV.

II. MONTE CARLO SIMULATIONS AND FINITE-SIZE
SCALING SCHEME

A. Monte Carlo method

In the present paper, we use our recent approach to
disordered systems [40], based on a parallel tempering (PT)
practice. Our PT protocol uses adequate numbers of the
Metropolis et al. [57] sweeps of the lattice, and PT exchange
moves between neighboring temperatures as detailed below.
We mention here that parallel tempering combined with the
Metropolis algorithm has also been used by Ceccarelli et al. [8]
in their study of the FG transition. Furthermore, as pointed out
by Hasenbusch et al. [9] in their study of the isotropic case,
the Metropolis algorithm may be more effective than cluster
dynamics for intermediate lattice sizes as a result of frustration
effects present in the ±J models.

Our PT protocol has been described in detail in our recent
papers [40,58], and only a brief summary is given here. For the
estimation of the critical properties, we generate MC data that

cover several finite-size anomalies of systems with linear size
L. The PT approach is carried over to a certain temperature
range depending on the lattice size. These temperatures are
selected in such a way that the exchange rate is 0.5 using a
practice similar to that suggested in Ref. [59]. The appropriate
temperature sequences were generated via short preliminary
runs in which we applied a simple histogram method [60–62]
to determine, from the energy probability density functions,
the temperatures, satisfying the above exchange condition
[40,59]. The preliminary runs cover several disorder realiza-
tions, and the average over the temperature sequences provides
us with a protocol with very small variation in the exchange
rate condition as one moves from one realization to the other.

The MC scheme was carefully tested for all lattice sizes
before its implementation for the generation of MC data. These
tests included the estimation of the MC times necessary for the
equilibration and the thermal averaging process applied to a
particular disorder realization and the observation of running
sample averages of several thermodynamic quantities, such
as the magnetization or the susceptibility at a temperature
close to criticality. The computational effort, necessary for the
estimation of the critical behavior in the case of pz = 0; pxy =
0.176, was quite substantial. As mentioned earlier, MC data
were generated for lattices with linear sizes in the range of
L ∈ {8–44}. Selected tests together with all the simulation
conditions appear below.

In Fig. 1, we illustrate the well-equilibrated thermal process
of the system. For each lattice size and a temperature close to
the critical temperature, one disorder realization was tested by
observing the relaxation curves of the measurement process
of the relevant thermodynamic quantities. Figure 1 presents
such a relaxation process. This figure illustrates the behavior of
cumulative moving averages (M = 〈|M|〉t , with t = 1, . . . ,tm)
for the measurement process of the magnetization, corre-
sponding to the largest lattice L = 44. We point out here
that measurements of relevant thermodynamic quantities were

FIG. 1. Relaxation curve, illustrating the behavior of cumulative
moving averages for the measurement of the magnetization during
the thermal process.
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FIG. 2. Relaxation curve, illustrating the behavior of cumulative
moving averages of a total of 200 realizations for the sample averaging
process of the magnetization.

obtained at the end of each elementary MC step. Such an
elementary MC step consisted of a PT exchange attempt
followed by a full Metropolis sweep of the lattice (N = L3 spin
flip attempts). In a convenient notation, we use the pair (te; tm)
to denote the numbers of elementary MC steps for discarding
and measurement. For the lattice size shown in Fig. 1, the
times used were (te = N ; tm = 2N ), which correspond to
85 184 and 170 368 elementary MC steps (PT attempts plus
Metropolis lattice sweeps), respectively. From this figure, it is
apparent that good equilibration for the measurement process
is achieved, even if half the above time is used.

Similarly, Fig. 2 presents the relaxation of cumulative mov-
ing averages for the sample averaging process of magnetization
(M = [〈|M|〉]s with s = 1, . . . ,200), corresponding to the
same lattice and the same temperature used for Fig. 1 and
a total of 200 realizations. The sample-to-sample fluctuations
(indicated by the dashed lines in Fig. 2) are, in general, larger
than the statistical errors of the previous thermal averaging
process (dotted lines in Fig. 1). The PT protocol is repeated
several times by using new sets of temperatures and new
realizations, and a final sufficiently dense set of points is
obtained. The accuracy of the final MC data and the locations
of the finite-size anomalies used in our FSS attempts depend
on the detailed simulation conditions. The quality of the data
should be reflected in the shapes of the finite-size peaks of the
relevant thermodynamic quantities and can be observed from
the characteristic examples that are presented in Sec. III B.

For each lattice size, we used several independent runs of
large numbers of disorder realizations in order to obtain, in
the temperature range of interest, the averaged curves [Z],
where Z denotes the thermal average of some thermodynamic
quantity. In these runs, we use, in general, different temperature
sequences consisting of three temperatures, corresponding to a
PT exchange rate of 0.5. For the lattice sizes L = 8,12, we used
ten runs, each one consisting of 1000 realizations, and for the
thermal process, we used the times (te = 7N ; tm = 20N ). For
sizes L = 16,20,24, we used eight runs, each one consisting

of 1000 realizations with times (te = 5N ; tm = 15N ). For the
size L = 28, we used eight runs of 500 realizations with times
(te = 3N ; tm = 8N ). For sizes L = 32,36,40, we used five
runs, each one consisting of 300 realizations with times (te =
2N ; tm = 5N ). Finally, for L = 44, we used eight runs, each
one consisting of 200 realizations with times (te = N ; tm =
2N ).

B. Finite-size scaling scheme

In the standard approach of FSS for a random system, a
large number of disorder realizations has to be used in the
summations in order to obtain good sample averages of the
basic thermodynamic quantities Z, which are the usual thermal
averages of a single disorder realization. From the disorder
averages [Z], we obtain their finite-size anomalies, denoted
here as [Z]∗. These finite-size anomalies will be used in our
FSS attempts following a quite common practice [63]. Their
temperature locations, denoted by T[Z]∗ , will be used in the
following in our FSS attempts. Thus, our paper concerns the
critical exponents, describing the disorder-averaged behavior,
and we do not attempt a FSS analysis based on sample
dependent pseudocritical temperatures. The latter is a more
demanding alternative approach [64–66], which considers
the individual sample dependent maxima (anomalies) and the
corresponding sample dependent pseudocritical temperatures.
Note that, for disordered systems, one could make, in principle,
a clear distinction between typical and averaged exponents
[65,66].

From the MC data, several pseudocritical temperatures may
be estimated, corresponding to finite-size anomalies, and these
are expected to follow a power-law shift behavior T[Z]∗ = Tc +
bZL−1/ν . The traditionally used specific heat and magnetic
susceptibility peaks as well as the peaks corresponding to the
following logarithmic derivatives of the powers n = 1,2,4 of
the order parameter with respect to the inverse temperature
K = 1/T [67]:

∂ ln〈Mn〉
∂K

= 〈MnH 〉
〈Mn〉 − 〈H 〉, (5)

and the peak corresponding to the absolute order-parameter
derivative,

∂〈|M|〉
∂K

= 〈|M|H 〉 − 〈|M|〉〈H 〉 (6)

will be located and will be used in our fitting attempts.
The behavior of the maxima of the logarithmic derivatives

of the powers n = 1,2,4 of the order parameter with respect
to the inverse temperature, which, as is well known, scales as
∼L1/ν with the system size [67], is seen to provide a smooth
root for the estimation of the correlation length exponent
ν. Once the exponent ν is well estimated, the behavior
of the values of the peaks corresponding to the absolute
order-parameter derivative, which scale as ∼L(1−β)/ν with the
system size [67], gives one route for the estimation of the
magnetic exponent ratio β/ν.

The above described FSS scheme will be applied in
Sec. III B for the anisotropic case of pz = 0; pxy = 0.176
using lattice sizes in the range of L ∈ {8–44}. For the
estimation of the critical temperature, we will mainly use a
simultaneous fitting approach of the several pseudocritical
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temperatures mentioned above. Furthermore, from the MC
data for the disorder-averaged magnetization, it is possible
to also follow an optimum collapse method, which provides
simultaneous estimates for the critical exponents β/ν, 1/ν, as
well as the critical temperature Tc. Such an optimum collapse
method, using the downhill simplex algorithm, has recently
been published [68]. This application will be carried out in
Sec. III B using the scaling hypothesis,

[〈|M|〉] = M(T ,L) = L−β/νf [(T − Tc)L1/ν], (7)

and the disorder-averaged magnetization data. The above
mentioned collapse method will also be used for the location
of two phase diagram points in the next subsection.

III. RESULTS

A. Phase diagram

As mentioned in the Introduction, the global phase diagram
of the isotropic spin-glass model, defined by Eqs. (1) and
(2), separates the three distinctive phases, ferromagnetic,
paramagnetic, and glassy phases. This phase diagram is
reproduced here by the solid lines in Fig. 3 and the full
symbols used (squares, asterisk, and dot). The full squares
and the asterisk on the FP transition line (IM) are reproduced
from the Hasenbusch et al. [9] paper. The transition lines
meet in a multicritical point (M), denoted by the full dot,
[18–23] and located along the Nishimori line [24–27] with
coordinates TM = 1.6692(3) and pM = 0.231 80(4) [18–21].
The full square, point B, corresponds to the isotropic model at
p = 1

2 [11,13–15,41–53] and is placed at the temperature Tc =
1.109(10) [10]. The full square point A, separating, at T = 0,
the ferromagnetic and spin-glass states, corresponds to the
ground state calculations by Hartmann [54] [pA = 0.222(5)].
The location of this point indicates a reentrant FG transition
line. This was nicely verified by the finite-temperature paper

I

A

F
G

P

FIG. 3. Solid lines and full symbols: phase diagrams for the
isotropic Edwards-Anderson model and dashed lines and open sym-
bols: the present anisotropic model pz = 0,pxy . The phase diagram
lines separate the three phases: F: ferromagnetic; G: spin-glass; and
P: paramagnetic, which meet at dotted symbols: a multicritical point.

FIG. 4. Illustration of the magnetic susceptibility peaks for
several cases of pxy of the anisotropic model pz = 0 for L =
16. Vertical drop lines demonstrate the differences between the
dotted lines: L = 16 pseudocritical temperatures and the solid lines:
corresponding asymptotic results for the pure Ising model pxy = 0
and the anisotropic case pxy = 0.176.

of Ceccarelli et al. [8] since they estimated p(T = 0.5) =
0.2271(2) predicting the ferromagnetic-glassy transition line
to be slightly reentrant. These results are in accordance with the
Nishimori expectations [25,26] that this line cannot be forward
and are also reflected in renormalization-group calculations
[7,55,56].

Now, we give an approximate sketch of the global phase
diagram of the anisotropic case (dashed lines and open symbols
in Fig. 3). First, we consider its FP transition line (IMani), and
in Fig. 4, we present the numerical evidence for this line.
The open triangle FP transition points, shown in Fig. 3, cor-
respond to the cases of pz = 0; pxy = 0.6,0.8,0.1,0.2,0.25
and are obtained from the location of the peaks of the
magnetic susceptibility for lattice size L = 16, illustrated in
Fig. 4. In this figure, vertical drop lines have been used to
demonstrate the difference between the present small-size
(L = 16) pseudocritical temperatures and the corresponding
asymptotic results for the pure Ising model (pxy = 0.0) and
the anisotropic case of pz = 0; pxy = 0.176. The asymptotic
result for the pure Ising mode is Tc = 4.511 5232(16) [28–33]
and is denoted by the full square on the phase diagram. The
asymptotic result for the case of pz = 0; pxy = 0.176 is Tc =
3.2938(9) (next subsection) and is denoted by the open asterisk
on the phase diagram. Despite the small-size susceptibility
approach followed here, the illustrated differences are small.
The approximate sketch of the FP line is a reasonable
approximation as results of the small temperature shifts in
the magnetic susceptibilities of the systems.

Close to the Ising point, denoted by I in Fig. 3, the two
FP lines (isotropic and anisotropic) appear to obey a smooth
linear behavior. This linearity [Tc(p) = Tc(0) − bp] has been
discussed and has been explained for the isotropic case by
Hasenbusch et al. [9], and the corresponding slope (bi) has
been estimated. Their asymptotic estimates for the points p =
0.0,0.6,0.1, lead to an estimate on the order of bi ≈ 2.2Tc ≈
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9.9 [9]. Following the present L = 16 susceptibility approach,
we have estimated, for the same points, bi ≈ 10.1 only 2%
shifted from the above asymptotic value. This serves as an
additional test of the present small-size approximation of the
FP line. The estimate of the slope for the anisotropic case
(ba), using the cases pxy = 0.0,0.6,0.1, is ba ≈ 6.7. Thus,
within the L = 16 approximation, the ratio of the slopes is
approximately bi/ba ≈ 1.5. This comparison illustrates that
the FP transition of the anisotropic system takes place at the
same temperature with the isotropic model when pxy ≈ 1.5p.
In the phase diagrams of Fig. 3, the open asterisk on the FP line
of the anisotropic model denotes the case of pz = 0; pxy =
0.176, and the full asterisk denotes the case of p∗ = 0.117
of the isotropic model studied by Hasenbusch et al. [9]. The
horizontal drop lines from the phase diagrams indicate that
these two asterisks are about at the same temperature. The
vertical drop lines point to their respective probabilities, which
approximately satisfy the relation pxy = 1.5p. Since pz = 0,
under these conditions, the two systems roughly have the same
ratio of ferromagnetic to antiferromagnetic interactions. This
observation also indicates a physically plausible explanation
for the approximate relation between the FP lines presented
in Fig. 3. As shown by Hasenbusch et al. [9], the full asterisk
p∗ = 0.117(3) case is an improved model in which the leading
scaling corrections vanish.

The open triangle point Aani, illustrated in the correspond-
ing phase diagram, was obtained by ground state calculations
on lattices with L = 6,8,10 where the data collapse method
[68] was applied. Using a suitable PT protocol, we calculated
the ground state ferromagnetic order parameter M = [〈|M|〉]
for various values of pxy . We used samples consisting of
10 000 realizations for each case and lattice size. The collapse
of the data with the scaling hypothesis M = L−β/νf [(pxy −
pc)L1/ν] is illustrated in Fig. 5, and the critical parameters are
shown in the panel. According to this approximation, Aani

is located at pAani = 0.332(12), very close to pxy = 1.5p,
where p = pA = 0.222(5) [54] is the point separating, in
the isotropic case, the ferromagnetic and spin-glass states
at T = 0. Hence, it appears that, again, as for the FP lines,
the FG transitions of the isotropic and anisotropic systems

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

 1.6

-0.4 -0.3 -0.2 -0.1 0  0.1  0.2  0.3  0.4

M
 L

β 
/ ν

(pxy-pC) L1 / ν

pC=0.332(12)
1/ν=0.96(4)
β/ν=0.304(16)

L=6
8

  10

FIG. 5. Estimation via the collapse method of the phase diagram
point Aani, separating, for the anisotropic model (pz = 0), the
ferromagnetic and spin-glass states at T = 0.

FIG. 6. Illustration of two methods for the estimation of the
phase diagram point Bani. The inset illustrates a linear extrapolation
of Binder’s fourth-order cumulant crossing points of the spin-glass
overlap order parameter. The main panel illustrates the collapse
attempts for these Binder fourth-order cumulants.

approximately take place at T = 0 when the two systems
approximately have the same ratio of ferromagnetic to antifer-
romagnetic interactions. It appears that the relation pxy = 1.5p

gives a reasonable approximation for the FP as well as the FG
transition lines and their crossing point. Thus, the multicritical
point for the anisotropic case, shown as an open circle in Fig. 3,
has been placed in the phase diagram by merely assuming that
the two multicritical points are approximately at the same
temperature and ratio of ferromagnetic to antiferromagnetic
interactions. Using the known estimates for the isotropic
multicritical point and the relation pxy = 1.5p, we assert
that TMani = 1.669, . . . , pMani = 0.3477, . . .. One should, of
course, realize that this approximation is not expected to be
accurate for the digits shown, and a separate detailed study is
required for a better estimation.

We finally turn to the phase diagram point Bani (open
triangle), corresponding to the case of pz = 0, pxy = 1

2 , which
appears to coincide with the isotopic phase diagram point B.
In Fig. 6, we present the numerical evidence from our Monte
Carlo data to locate this point. For a convenient range of
temperatures, we generated data for the Binder’s fourth-order
cumulant [U = 1 − 1

3 ( [〈q4〉]
[〈q2〉]2 )] where 〈· · ·〉 and [· · ·] denote

thermal and disorder averages, respectively, and q denotes the
spin-glass overlap order parameter (q = 1

N

∑N
i=1 sα

i s
β

i , where
si denotes the spin of site i and α and β represent two replicas
of the same disorder realization). The data are collected by a
PT protocol using samples consisting of 10 000 realizations
for lattice sizes L = 6, 8, and 2000 for L = 10. Using these
data, the estimation of Bani can be attempted by two methods.
The inset of Fig. 6 illustrates a linear extrapolation of the
crossing points of Binder’s fourth-order cumulants. The fit is
performed in 1/L′ with L′ = { (L6+L8)

2 , (L6+L10)
2 , (L8+L10)

2 } and
gives the estimate TBani = 1.07(4). Furthermore, in the main
panel of Fig. 6, we illustrate the quality of the data collapse for
Binder’s fourth-order cumulants, and we give the estimated
optimal critical parameters. The critical temperature estimate
TBani = 1.111(25) is very close to the corresponding estimate of
the isotropic case TB = 1.109(10) [10]. Our finding appears to
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be an interesting and physically appealing prediction, a proof
that TB = TBani may help in better understanding the general
universality question. In closing this discussion, we point out
that the introduction of anisotropy changes the phase diagram
and may also change the symmetry of the multicritical points
as discussed by Güven et al. [7]. In general, the multicritical
points, such as in the present model case (pz = 0; pxy � 1

2 ),
do not necessarily obey Nishimori conditions, and one cannot
exclude the possibility of a ferromagnetic-glassy transition line
being forward.

B. Estimation of critical behavior

In this subsection, we present a detailed FSS analysis for the
case of pz = 0; pxy = 0.176 and provide sufficient evidence
that the present anisotropic model belongs to the universality
class of RIM. We will follow the FSS scheme described
in Sec. II B using the MC data obtained for lattice sizes in
the range of L ∈ {8–44} according to the detailed simulation
conditions summarized at the end of Sec. II A.

We start by analyzing the finite-size anomalies of the
sample average of the logarithmic derivatives of the powers
(n = 1,2,4) of the order parameter with respect to the inverse
temperature. In Fig. 7, we illustrate the peaks of the n = 4
logarithmic derivatives for the larger lattice sizes L ∈ {20–44}.
The shape of these peaks is smooth, reflecting the quality of the
MC data. Assuming that these finite-size anomalies ([Z]∗) of
the disorder averages [Z], where Z is the thermal average given
by Eq. (5), scale as ∼L1/ν with the system size [67], in Figs. 8
and 9, we estimate this exponent. A very good scaling behavior
is already observed by using the whole size range of our Monte
Carlo data L = [8–44]. The simultaneous fitting attempt to the
expected power-law behavior, illustrated in Fig. 8, gives the
estimate shown in the panel: 1/ν = 1.468(6).

By varying the Lmin in these simultaneous fitting attempts,
we obtain a sequence of effective exponents, depending on the
minimum size used (Lmin = [8–24]). The behavior of these
effective exponents is shown in Fig. 9. The smooth, almost
linear, behavior of these effective exponents enables us to

FIG. 7. Illustration of the peaks of the n = 4 logarithmic deriva-
tives of the order parameter, using the MC data for sizes L = 20–44.

FIG. 8. FSS behavior of the peaks of the logarithmic derivatives
of the powers n = 1,2,4 of the order parameter with respect to the
inverse temperature. The estimate for the exponent 1/ν = 1.468(6)
(shown in the panel) is obtained by applying a simultaneous fitting
attempt to a simple power law in the whole size range of L = 8–44.

confinedly estimate 1/ν = 1.463(3). The error range of this
estimation is also indicated in Fig. 9 by the dotted lines and
is compared with the corresponding three-dimensional (3D)
pure Ising model for which an extremely accurate estimation
is available [28]. The present estimate for the correlation length
exponent ν = 0.6835(25) compares well with the estimate
ν = 0.683(3) of Hasenbusch et al. [9] for the corresponding
isotropic ±J Ising model at the ferromagnetic-paramagnetic
transition line and is in excellent agreement with the estimate
ν = 0.6837(53) of the extensive numerical investigations of
Ballesteros et al. [35] for the site-diluted Ising model.

FIG. 9. Illustration of the behavior of the effective exponents
(1/ν)eff . The solid line drawn in the panel together with the
dotted lines indicate the critical exponent range for the present
model. The linear behavior illustrated gives the accurate estimation
1/ν = 1.463(3). For comparison, the analogous narrow range of
1/ν = 1.587(1) [28] for the pure 3D Ising model is shown in the
upper part of the panel.

012132-6



CRITICAL BEHAVIOR OF THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 87, 012132 (2013)

FIG. 10. (Color online) Illustration of the sample-averaged sus-
ceptibility peaks, using the MC data for sizes L = 20–44.

Next, we proceed to calculate the critical exponent ratio γ /ν

from the peaks of the sample-averaged susceptibility ([χ ]∗).
Again, in Fig. 10, we illustrate the quality of our MC data by
presenting the peaks of the sample-averaged susceptibility. We
assume that these finite-size anomalies obey a simple power
law: [χ ]∗ = bLγ/ν and, again, follow the practice of observing
the behavior of effective exponents by varying the Lmin of the
fitting range. In Fig. 11, we illustrate the effective exponent,
obtained by applying the above power law for Lmin = 8. The
resulting sequence of effective exponents ( Lmin = [8–24]) is
illustrated in Fig. 12. As seen from this figure, the illustrated
linear fit gives the estimate γ /ν = 1.9614(28), which is
consistent with that of Ballesteros et al. [35], γ /ν = 1.963(5),
and those of Hasenbusch et al. [36], 1.964(1), for the

FIG. 11. (Color online) FSS behavior of the peaks of the magnetic
susceptibility. The estimate for the exponent γ /ν = 1.966(4) (shown
in the panel) is obtained by fitting a simple power law in the entire
size range of L = 8–44.

FIG. 12. For the behavior of the effective exponents γ /ν, the
solid line, drawn through the points, is a linear fit. Solid and
dotted lines indicate the corresponding critical exponent range γ /ν =
1.9614(28).

site-diluted 3D Ising model and 1.964(2) [9] for the isotropic
±J Ising model at the ferromagnetic-paramagnetic transition
line. The observed variation in the estimates in Fig. 12 shows
that, for the anisotropic case, leading scaling corrections may
not vanish.

We now attempt the estimation of the exponent ratio β/ν via
the scaling behavior of the peaks, corresponding to the absolute
order-parameter derivative, which is expected to scale as
[∂〈|M|〉/∂K]∗ = bL(1−β)/ν . As before, in Fig. 13, we illustrate
the smooth behavior of the peaks of the absolute order-
parameter derivative. Figure 14 shows the effective exponent
obtained by fitting the above mentioned power law to the
entire size range of L = [8–44]. The corresponding effective
exponent estimates are illustrated in Fig. 15. The linear fit,
illustrated in this figure, gives (1 − β)/ν = 0.9572(54), which,
by using our estimate 1/ν = 1.463(3), produces, for β/ν, the

FIG. 13. (Color online) Illustration of the peaks of the absolute
order-parameter derivative, using the MC data for L = 20–44.
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FIG. 14. (Color online) FSS behavior of the peaks of the
derivatives of the absolute order parameter with respect to the inverse
temperature. The estimate for the exponent (1 − β)/ν = 0.988(21)
(shown in the panel) is obtained by fitting a simple power law in the
whole size range of L = 8–44.

range 0.5058(84). This value is somewhat smaller than the
value β/ν = 0.518, expected from hyperscaling and accepting
an estimate for γ /ν on the order of the above mentioned
literature estimates (say, for instance, γ /ν = 1.964). The
situation is improved by attempting the linear fit in Fig. 15
only at the last three points. The linear fit in these three points
(Lmin = 16,20,24) gives (1 − β)/ν = 0.948(3) producing, as
above, β/ν = 0.515(6). Note also that the second-order
polynomial fit, also shown in Fig. 15 and applied to all five
points, gives an estimate (1 − β)/ν = 0.943(6) now producing

FIG. 15. Illustration of the behavior of the effective exponents
(1 − β)/ν. The solid and the dashed lines, drawn through the points,
indicate linear and second-order polynomial fits. The critical exponent
range for the latter fit is indicated by the solid and dotted lines at
(1 − β)/ν = 0.943(6).

FIG. 16. Behavior of the effective pseudocritical temperatures
obtained by applying a simultaneous fit on the shift behavior T[Z]∗ =
Tc + bZL−1/ν and fixing the exponents to the accurate estimate 1/ν =
1.463. The solid and dotted lines indicate the critical temperature
range Tc = 3.2931(12), obtained by the illustrated linear fit.

β/ν = 0.520(9). These last values are in good accordance with
hyperscaling and the literature estimate of γ /ν.

The critical temperature will now be estimated by a simul-
taneous fitting approach, using several pseudocritical tempera-
tures of the sample average of the quantities measured [58,69]
as outlined earlier. The simultaneous fitting is attempted for the
expected power-law shift behavior T[Z]∗ = Tc + bZL−1/ν for
the six pseudocritical temperatures mentioned in the previous
section.

We approach this estimation by simultaneous fittings in
which we are fixing the exponent 1/ν to the apparently
accurate estimate 1/ν = 1.463. Following our earlier practice
of using different fitting ranges by varying the Lmin of the
fitting range, we obtain a sequence of estimates illustrated in
Fig. 16. The linear fit shown in the panel gives an estimate of
Tc = 3.2931(12), illustrated with solid and dotted lines in this
figure, whereas, restricting the fit only to the last three points,
corresponding to Lmin = 16,20,24, gives a higher estimate
Tc = 3.2945(18). We note here that a completely free fit,
without fixing any parameter and following the above practice,
gives Tc = 3.2934(8) from the linear fit to the five points
Lmin = 8,12,16,20,24 and Tc = 3.2940(16) from the linear
fit to the three points Lmin = 16,20,24. Thus, we suggest that
Tc = 3.2938(9), which satisfies all the previous estimates.

Finally, we present the alternative estimation of critical
behavior by studying the expected scaling law Eq. (7)
for the order-parameter data, here, the disorder-averaged
magnetization data. Using the earlier mentioned collapse
method, we rescale the y axis to MLβ/ν and the x to
(T − Tc)L1/ν , and we attempt to observe the optimum collapse
of the magnetization curves taken from different lattice sizes
(L = [12–44]). We apply the downhill simplex algorithm as
developed and implemented in Ref. [68] for the estimation
of critical properties and their error bounds. As shown in the
panel of Fig. 17, the optimum collapse gives β/ν = 0.516(7).
This value is in good agreement with the expected value. The
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FIG. 17. Illustration of magnetization data collapse for lattice
sizes of L = 12–44. The collapse method is applied to the whole
range shown and gives the values Tc = 3.2928(7), 1/ν = 1.466(12),
and β/ν = 0.516(7).

resulting estimates for the exponent 1/ν = 1.466(12) and the
estimate for the critical temperature Tc = 3.2928(7) are in fair
agreement with our previous findings. However, the estimate
β/ν = 0.516(7) appears to be very satisfactory.

IV. CONCLUSIONS

The present paper clearly pointed out that the ±J three-
dimensional Ising model, with spatially uniaxial anisotropic
bond randomness, gives rise to a second-order phase transition

belonging in the same universality class as the 3D random Ising
model. The implemented anisotropy appears as an irrelevant
parameter for the ferromagnetic-paramagnetic transition line.
We found the reliable estimates β/ν = 0.516(7) by using the
collapse method of Ref. [68] and ν = 0.6835(25) from the
smooth behavior of the logarithmic derivatives of the order
parameter. We have also presented a conjectured global phase
diagram, providing interesting predictions.

Currently, we are carrying out further numerical simu-
lations. From these, it seems that, here, the implemented
anisotropy (pz = 0; J z = J xy) is also an irrelevant parameter
for the two other transition lines of the phase diagram. The
reader can observe signs of this universality for the case of the
ferromagnetic spin-glass transition by comparing the critical
exponents in the panel of Fig. 5 with those of Ceccarelli
et al. [8]. Furthermore, the critical exponent 1/ν in the panel of
Fig. 6 seems to agree with the estimates given by Katzgraber
et al. [11] for the spin-glass paramagnetic transition. Finally,
we are considering the more general case (J z 	= J xy). We hope
that we will soon provide further confirmation of the discussed
predictions in this paper and will observe and will verify the
interesting features of the global phase diagrams brought out
by the paper of Güven et al. [7].
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