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In this work, we study the critical behavior of second-order points, specifically the Lifshitz point (LP)
of a three-dimensional Ising model with axial competing interactions [the axial-next-nearest-neighbor Ising
(ANNNI) model], using time-dependent Monte Carlo simulations. We use a recently developed technique that
helps us localize the critical temperature corresponding to the best power law for magnetization decay over
time: 〈M〉m0=1 ∼ t−β/νz, which is expected of simulations starting from initially ordered states. We obtain
original results for the dynamic critical exponent z, evaluated from the behavior of the ratio F2(t) = 〈M2〉m0=0/

〈M〉2
m0=1 ∼ t3/z, along the critical line up to the LP. We explore all the critical exponents of the LP in detail,

including the dynamic critical exponent θ that characterizes the initial slip of magnetization and the global
persistence exponent θg associated with the probability P (t) that magnetization keeps its signal up to time
t . Our estimates for the dynamic critical exponents at the Lifshitz point are z = 2.34(2) and θg = 0.336(4),
values that are very different from those of the three-dimensional Ising model (the ANNNI model without
the next-nearest-neighbor interactions at the z axis, i.e., J2 = 0), i.e., z ≈ 2.07 and θg ≈ 0.38. We also present
estimates for the static critical exponents β and ν, obtained from extended time-dependent scaling relations. Our
results for static exponents are in good agreement with previous works.
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I. INTRODUCTION

A. Modulated systems and the Lifshitz point

In condensed matter physics there are several models
presenting spatial modulated structures of some local property
such as the position of the particles, the magnetization, and the
charge density [1]. Such modulation can be commensurate or
incommensurate in relation to the underlying lattice. A phase
is called commensurate if the ratio between the period of the
modulation and the period of the lattice is a rational number.
Otherwise, the phase is called incommensurate. The basic
mechanism leading to modulation is the competition between
interactions favoring distinct orderings [2]. For example, the
modulated structures observed in rare-earth metals [3] were
interpreted as a consequence of the competition generated
by the spatially oscillatory Ruderman-Kittel-Yasuya-Yosida
interaction [4–6]. In order to explain the spatial modulation
found in erbium, Elliott introduced an Ising model [7], later
named the axial-next-nearest-neighbor Ising (ANNNI) model
[8]. It is one of the simplest models able to exhibit a rich phase
diagram containing a complex region of spatially modulated
phases [9–11]. The model is defined by the Hamiltonian

H = −
∑
x,y,z

[J0(σx+1,y,z + σx,y+1,z) + J1σx,y,z+1

+ J2σx,y,z+2]σx,y,z, (1)
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where σx,y,z = ±1 is an Ising spin variable at the site (x,y,z)
of a simple cubic lattice, J0 is the nearest-neighbor interaction
in the xy plane, and J1and J2 are the nearest- and next-nearest-
neighbor interactions in the z direction.Here J1 and J2 compete
and may have opposite or the same sign. However, when J1

and J2 have opposite signs, the competition between them may
give rise to the modulated phases.

The mean-field phase diagram of the model displaying
the main commensurate phases in the plane of the reduced
temperature kT /J1 against the competition parameter −J2/J1,
shown in Fig. 1, was obtained by Bak and von Boehm [12] and
is divided into three major regions: the modulated region M

and the paramagnetic P and ferromagnetic F phases. In this
diagram, as well as throughout the paper, we set J0 = J1. The
paramagnetic phase is separated from the ferromagnetic phase
and the modulated region by critical lines P -F and P -M ,
respectively. In contrast, a first-order transition F -M takes
place between the ferromagnetic phase and the modulated
region. The critical line P -M belongs to the universality class
of the XY model, whereas the critical line P -F presents an
Ising-like critical behavior [13]. The transition lines P -F ,
P -M , and F -M meet at the Lifshitz point (LP), introduced
theoretically by Hornreich et al. [14]. The location of the LP in
the phase diagram of the ANNNI model was obtained initially
from a high-temperature series technique [15]. However, the
precise location of the LP is difficult to obtain because,
close to it, one meets the challenging task of dealing with
modulated phases of very large periods. Thus, subsequent
attempts to locate the LP were made. Single spin-flip Monte
Carlo simulations were performed along the P -F critical line
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FIG. 1. Mean-field phase diagram of the ANNNI model, dis-
playing the ferromagnetic phase, the paramagnetic phase, and the
modulated region. The critical lines P -F and P -M meet the first-order
phase transition line F -M at the Lifshitz point (LP) (see the text).

towards the LP [16,17], thus avoiding the modulated region.
Despite the successful results obtained from these works, it
was only recently that the Lifshitz point was located with
high precision [18] by means of a new variation of the cluster
Wolf algorithm [19]. Concerning the critical properties of
the LP, it was shown that this multicritical point belongs to
neither the universality class of the XY model nor the one
of the Ising model [14]. This fact gave rise to much interest
in the study of the particular critical behavior of a LP. Thus
the critical properties of the LP found in the phase diagram of
the ANNNI model were widely studied by several approaches
[20,21], including ε expansions [14], a high-temperature series
technique [21], and Monte Carlo (MC) simulations [17].
Experimentally, the most complete results concerning the LP
were obtained for the magnetic compound MnP, which exhibits
a LP belonging to the universality class of the LP present in
the ANNNI model [22–24]. Here it is important to mention
that although this model has been widely explored by methods
from equilibrium statistical mechanics, there are no results
for the three-dimensional (3D) ANNNI model obtained by an
approach that deals with MC simulations performed far from
equilibrium [25] that will be employed in this paper. However,
we remark that several works in the literature have previously
used a dynamical approach to study the Lifshitz points. For
example, the critical dynamics of relaxation of the model
near the Lifshitz point has been studied by the ε expansion
and the exponent z was numerically estimated for uniaxial
and biaxial cases [26]. Alternatively, in Ref. [27] the growth
of an order parameter is studied when a system at Lifshitz
point is quenched from the homogeneous disordered state to
the ordered state where correlation and structure factors after
quench in this system are analyzed via renormalization-group
method. Numerical estimates of exponent z are supplied in this
same reference. Studies about the dynamics of the ANNNI
model were developed, though in two-dimensional versions of
the model, but such works do not explore critical properties.
For example, in Refs. [28,29] the kinetics of domain growth
of the one- and two-dimensional anisotropic ANNNI models
was explored via Monte Carlo methods using Glauber and

heat-bath multispin dynamics, respectively. In the following
section we briefly present the nonequilibrium approach to be
used in our analysis.

B. Nonequilibrium critical dynamics

The study of critical properties originated from statis-
tical fluctuations of spin systems became possible in the
nonequilibrium stage after the seminal ideas of Janssen,
Schaub, and Schmittmann [30] and Huse [31]. By quenching
systems from high temperatures to the critical one, they have
shown that universality and scaling behavior appear even in
the early stages of time evolution via renormalization-group
techniques and numerical calculations, respectively. Hence,
by using short-time dynamics, one can often circumvent the
well-known problem of the critical slowing down that plagues
investigations of the long-time regime.

Here we briefly review finite-size scaling in the dynamics
relaxation of spin systems. We present our alternative deriva-
tion of some power laws in the short-time dynamics context.
Readers,who want a more complete review of this topic may
want to read Refs. [32,33].

This topic is based on time-dependent simulations and con-
stitutes an important issue in the context of phase transitions
and critical phenomena. Such methods can be applied not only
to estimate the critical parameters in spin systems, but also
to calculate the critical exponents (static and dynamic ones)
through different scaling relations by setting different initial
conditions.

The dynamic scaling relation obtained by Janssen et al. for
the kth moment of the magnetization is written as

〈Mk〉(t,τ,L,m0) = b−kβ/ν〈Mk〉(b−zt,b1/ντ,b−1L,bx0m0), (2)

where the arguments are the time t ; the reduced temperature
τ = (T − Tc)/Tc, with Tc being the critical one, the lattice
linear size L; and the initial magnetization m0. Here the
operator 〈· · · 〉 denotes an average over different configurations
due to different possible time evolutions from each initial
configuration compatible with a given m0.

On the right-hand side of Eq. (3) is an arbitrary spatial
rescaling factor b and an anomalous dimension x0 related
to m0. The exponents β and ν are the equilibrium critical
exponents associated with the order parameter and the corre-
lation length, respectively. The exponent z is the dynamic one,
which characterizes the time correlations in equilibrium. After
choosing b−1L = 1, T = Tc(τ = 0), and k = 1 we obtain
〈M〉(t,L,m0) = L−β/ν〈M〉(L−zt,Lx0m0).

Setting u = tL−z and w = Lx0m0, we have 〈M〉(u,w) =
〈M〉(L−zt,Lx0m0). The derivative with respect to L is

∂〈M〉
∂L

= (−β/ν)L−β/ν−1〈M〉(u,w)

+L−β/ν

[
∂〈M〉
∂u

∂u

∂L
+ ∂〈M〉

∂w

∂w

∂L

]
,

where we have explicitly ∂u/∂L = −ztL−z−1 and ∂w/∂L =
x0m0L

x0−1. In the limit L → ∞, ∂L〈M〉 → 0, we have
x0w

∂〈M〉
∂w

− zu
∂〈M〉
∂u

− β/ν〈M〉 = 0. The separability of the
variables u and w in 〈M〉(u,w) = M1(u)M2(w) leads to
x0wM ′

2/M2 = β/ν + zuM ′
1/M2, where the prime means the

derivative with respect to the argument. Since the left-hand
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side of this equation depends only on w and the right-hand
side depends only on u, they must be equal to a constant
c. Thus M1(u) = u(c/z)−β/(νz) and M2(w) = wc/x0 , resulting
in 〈M〉 (u,w) = m

c/x0
0 Lβ/νt (c−β/ν)/z. Returning to the original

variables, we have 〈M〉(t,L,m0) = m
c/x0
0 t (c−β/ν)/z.

On the one hand, choosing c = x0 and calculating θ =
(x0 − β/ν)/z, at criticality (τ = 0) we obtain

〈M〉m0 ∼ m0t
θ , (3)

corresponding to a regime under small initial magnetization.
This can be observed by a finite-time scaling b = t1/z

in Eq. (2), at critical temperature τ = 0, which leads to
〈M〉 (t,m0) = t−β/(νz)〈M〉(1,tx0/zm0). Defining x = tx0/zm0,
an expansion of the averaged magnetization around x =
0 results in 〈M〉(1,x) = 〈M〉(1,0) + ∂x〈M〉|x=0 x + O(x2).
By construction 〈M〉(1,0) = 0, since x = tx0/zm0 	 1 and
∂x〈M〉|x=0 is a constant, discarding the quadratic terms we
obtain the expected power-law behavior 〈M〉m0 ∼ m0t

θ . This
anomalous behavior of initial magnetization is valid only for
a characteristic time scale tmax ∼ m

−z/x0
0 .

On the other hand, the choice c = 0 corresponds to the case
in which the system does not depend on the initial trace and
m0 = 1 leads to a simple power law

〈M〉m0=1 ∼ t−β/νz, (4)

which similarly corresponds to decay of magnetization for
t > tmax. The evaluation of critical exponents θ and β/νz

via Monte Carlo simulations concerns taking averages over
different runs. In the second case, simpler simulations are
considered because the system starts from the ferromagnetic
(ordered) initial state. However, the first one is somewhat
difficult to deal with since it demands working with prepared
initial states with a precise value of m0 (sharp preparation)
besides the delicate limit m0 → 0.

An alternative way to determine this exponent was proposed
in Ref. [34], where it was shown that the time correlation
function of the order parameter also follows a power-law scale
form at the short-time regime, i.e.,

Q(t) = 〈M(0)M(t)〉 ∼ t θ . (5)

The main advantage in the use of Eq. (5) is that one
does not need to fix precisely the initial order parameter
m0. The only requirement is that 〈m0〉 = 0, where 〈(· · · )〉
stands for the average of the quantity (· · · ) over different
initial configurations. Now let us look at the second moment
of magnetization. Since the spin-spin correlation 〈σiσj 〉 is
negligible for m0 = 0, we have that for a fixed t ,

〈M2〉m0=0 = 1

L2d

Ld∑
i=1

〈
σ 2

i

〉 + 1

L2d

Ld∑
i

〈σiσj 〉 ≈ L−d

and by considering the scaling relation (with b = t1/z) for
the second moment of magnetization, we have, according to
Eq. (2),

〈M2〉m0=0(t,L) ≈ t−2β/νz〈M2〉m0=0(1,bL)

= t−2β/νz(bL)−d ∼ t (d−2β/ν)/z, (6)

where d is the system dimension.

Using Monte Carlo simulations, many authors have ob-
tained the dynamic exponents θ and z, the static ones β

and ν, and other specific exponents for several models: the
Baxter-Wu model [35], the two-, three-, and four-state Potts
models [36,37], the Ising model with multispin interactions
[38], the Ising model with competing interactions [39], models
with no defined Hamiltonian (cellular automata) [40], models
with a tricritical point [41], the Heisenberg model [42], protein
folding [43], and so on. The sequence to determine the static
exponents from short-time dynamics is as follow: We first
determine z, then perform Monte Carlo simulations that mix
initial conditions [36], and finally consider the power law for
the cumulant

F2(t) = 〈M2〉m0=0

〈M〉2
m0=1

∼ td/z. (7)

This ratio has proven to be useful for the calculation of the
exponent z for several spin models governed by Boltzmann-
Gibbs statistical mechanics, but its application also includes
models with spin flip based on generalized statistics [44]. In
this technique, graphs of ln F2 against ln t lay on the same
straight line for different lattice sizes, without any rescaling
in time, yielding more precise estimates for z. Although it
seems clear from Eq. (7), it is worth stressing here that two
independent runs are necessary in order to calculate the ratio
F2: In one of them m0 = 0, while in the other one m0 = 1.

Equations (5), (3), and (7) solve the problem in determining
the dynamic critical exponents θ and z. However, the ability
of short-time Monte Carlo simulations goes beyond the
evaluation of dynamic critical exponents in the sense that this
technique also allows us to obtain the static critical exponents,
which will be discussed in the following.

Starting from m0 = 1, we have the expected power law
described by Eq. (4); thus considering ln M(t,τ ), we must
expect

∂ ln M(t,τ )

∂τ

∣∣∣∣
τ=0

∼ t1/νz, (8)

which is obtained by differentiating the quantity ln M(t,τ )
in relation to reduced temperature τ = (T − Tc)/Tc. When
dealing with Monte Carlo simulations, the partial derivative is
approximated in first order by the difference

∂ ln M(t,τ )

∂τ

∣∣∣∣
τ=0

≈ 1

2ε
ln

[
M(t,Tc + ε)

M(t,Tc − ε)

]
, (9)

where ε 	 1. It is clear from Eq. (9) that two independent
simulations are necessary to obtain the exponent 1/νz: One
of them evolves at temperature Tc + ε, whereas the other one
evolves at Tc − ε.

Therefore, with ẑ estimated from Eq. (7) we obtain the

estimated ν̂ according to ̂(νz)−1, obtained from Eq. (8), by
calculating the product

ν̂ = [̂z · ̂(νz)−1]−1,

where the uncertainty in ν̂ is calculated through uncertainty

of z (σz) and the uncertainty of ̂(νz)−1 (σ(νz)−1 ), previously
obtained by statistics over ns different seeds, is calculated
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according to the error propagation equation

σν =
√√√√ σ 2

z

ẑ4 ̂(νz)−1
2 +

σ 2
(νz)−1

ẑ2 ̂(νz)−1
4 .

Finally, in order to obtain an estimate β̂, we first estimate
̂β/νz obtained from the magnetization decay (4) and after we
perform the product

β̂ = ̂(β/νz) · [̂(νz)−1]−1

and the propagated error is directly calculated as a function of
the respective uncertainties

σβ =

√√√√√ σ 2
(β/νz)

̂(νz)−1
2 +

̂(β/νz)
2
σ 2

(νz)−1

̂(νz)−1
4 .

Here it is important to mention that the ratio β/ν should have
been previously calculated by the evaluated ̂β/νz from Eq. (4)
and ẑ from Eq. (7) such that

β̂/ν = ̂(β/νz) · ẑ. (10)

Not only can quantities related to the moments of the
magnetization explain the nonequilibrium aspects of phase
transitions and critical phenomena, but also those related to
the first-passage-time probabilities and variations of this topic
(see, e.g., Refs. [45,46]). By considering this approach, under
the same nonequilibrium conditions, a new exponent was
initially proposed by Ref. [45]: the global persistence exponent
θg . It is related to the probability P (t) that the global order
parameter has not changed sign up to time t after a quench to
Tc, according to expected power-law behavior

P (t) ∼ t−θg . (11)

As argued by Majumdar et al. [45], if the dynamics of the
global order parameter is described by a Markovian process,
θg is not a new independent exponent and it can be related to
other critical exponents

θgz = ωz − d + 1 − η/2, (12)

where ω is the autocorrelation exponent in the expected
power law [47] A(t,t ′ = 0)m0=0 = (1/Ld )〈∑i σi(t)σi(0)〉 ∼
t−ω, where σi(t) is the value of the spin variable si at the site i of
a d-dimensional system of linear size L, assuming, at instant t ,
that z is the dynamic critical exponent defined as τ ∼ ξz, where
τ and ξ are time and spatial correlation lengths, respectively.
However, the time evolution of the order parameter is in
general a non-Markovian process and θg turns out to be a
new independent critical exponent describing the evolving of
the stochastic dynamic process toward equilibrium.

In order to evaluate the persistence probability P (t), we first
define ρ(t) as the fraction of runs for which the magnetization
changes its sign for the first time at the instant t . Our probability
P (t) is numerically calculated from the cumulative distribution
function of such ρ(t). Thus P (t) describes the probability that
magnetization does not cross the origin up to time t ,

P (t) = 1 −
t∑

t ′=1

ρ(t ′). (13)

We start our simulations with a random initial condition,
where 〈m0〉 = 0. Here it is important to mention that such
a concept is very versatile and it has been applied to
characterize several applications such as tricritical points [48],
besides interdisciplinary applications such as the analysis
of bankruptcies of players in public goods games [49] and
econophysics [50]. Thus it can also be interesting to study, for
example, Lifshitz points in spin models.

The goal of this paper is to expand our knowledge of the
ANNNI model by studying the ferromagnetic-paramagnetic
phase transition with particular attention given to the Lifshitz
point. The layout of this paper is as follows. In Sec. II
we give more details about numerical simulations that will
be performed at the Lifshitz point. Moreover, we describe
a simple method recently developed by da Silva et al. in
Ref. [44] that refines the critical parameters based on the best
determination coefficient in the linear fit ln〈M〉 versus ln t . In
this same section we present the first part of our results, where
we explicitly show the refinement of critical temperatures of
the second-order (ferromagnetic-paramagnetic) line up to the
Lifshitz point. In Sec. III we present our estimates for the
critical exponents and in this case we separate our results
into two branches. In Sec. III A we evaluate critical exponents
(only z and β/ν) for each temperature estimated along the
critical line previously estimated by the refinement process. In
these first calculations, the aim is only the monitoring of the
behavior of these two exponents (one dynamic and the other
static) to show the pronounced difference between Ising-like
points and the Lifshitz point. In Sec. III B we present the
complete results and studies for both dynamic (θ , θg , and z) and
static (β and ν) critical exponents, specifically for the Lifshitz
point, comparing the latter with results obtained in previous
experimental and theoretical works. Finally, in Sec. IV we
summarize and briefly discuss the main results of this paper.

II. MONTE CARLO SIMULATIONS

Monte Carlo simulations were performed on simple rect-
angular lattices with linear dimensions Lx , Ly , and Lz and
periodic boundary conditions. The spin states were updated
by using the one-spin-flip heat-bath algorithm, which was
used as the basis for the result obtained by Henkel and
Pleimling [18] for the location of the LP: (−J2/J1 = 0.270 ±
0.004; kBT /J1 = 3.7475 ± 0.005).

For the ANNNI model the order parameter corresponds to
time-dependent magnetization, defined as an average over all
Lx × Ly × Lz spins and over the different Ns runs:

〈M〉(t) = 1

nsL3

ns∑
i=1

∑
x,y,z

σ (i)
x,y,z(t), (14)

where the index i = 1, . . . ,Ns denotes the corresponding run
of a simulation. The ordered state is ferromagnetic, with all
(or most of) the spins pointing either up or down. As discussed
in the preceding section, the lattice’s initial condition depends
on the scaling relation considered: 〈m0〉 = 0 [Eq. (5)], m0 = 0
[numerator of Eq. (7)], m0 = 1 [Eqs. (4) and (9)], and m0

fixed, but with random configurations considering a sharp
preparation [Eq. (3)].
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Here we address time-dependent MC simulations in the
context of the so-called short-time dynamics. Before evalua-
tion of some critical exponents and the complete study of the
Lifshitz point (Sec. III), in this section we apply the refinement
method to estimate the critical parameters of several points
along the second-order line including the Lifshitz point itself.

The algorithm to estimate the critical temperature is divided
into two stages: (i) a coarse-grained location and (ii) fine-
scale refinement. In stage (i), since the magnetization must
behave as a power law 〈M〉 ∼ t−β/νz, by fixing a specific α

value we conjecture that changing J1/kBTc from J1/kBT (max)
c

up to J1/kBT (min)
c , the corresponding best J1/kBT (best)

c is
the one that leads to the best linear behavior of ln〈M〉
versus ln t . We have considered ns = 400 realizations, with
initial magnetization m0 = 1. For each α = −J2/J1 changing
from 0 up to 0.27, with displacement �α = 0.03 between
the values, where J0 = J1 for all of our calculations, we
changed J1/kBTc from J1/kBT (max)

c = 0.266 844 56 . . . up to
J1/kBT (min)

c = 0.221 654 13 . . .. These extreme values were
extracted from the literature since they correspond to the
best-known estimates for the 3D Ising model (α = 0, which
corresponds to kBTc/J = 4.511 533 335 1 . . .) and the LP
(α = 0.27, which corresponds to kBTc/J = 3.7475 . . .), re-
spectively. Just as a safeguard, we enlarge this interval by
performing J1/kBT (max ,0)

c = 0.28 and J1/kBT (min ,0)
c = 0.21.

Thus, for each input α value, by using �(0)(J1/kBTc) =
0.002, we span our temperatures over a range described by
parametrization J1/kBTc = J1/kBT (min)

c + j�(0)(J1/kBTc),
j = 0, . . . ,32, so for each temperature, a linear fit is performed
and we calculate the determination coefficient of the fit as

r =
∑NMC

t=1 (ln〈M〉 − a − b ln t)2∑NMC
t=1 [ln 〈M〉 − ln〈M〉(t)]2

, (15)

with ln〈M〉 = (1/NMC)
∑NMC

t=1 ln〈M〉(t), where NMC is the
number of Monte Carlo sweeps. In our experiments we have
used NMC = 150 MC steps, discarding the initial 30 MC steps
for more robust estimates. Hence r = 1 means an exact fit and
so the closer r is to the unity, the better the fit. Here a and b

are the linear coefficient and the slope in the linear fit ln〈M〉
versus ln t , respectively. From b one estimates the exponent
βν/z.

After one finishes this part of our refinement method (i),
we proceed to the second part of refinement, the fine-scale
stage (ii). Starting from the critical temperature kBT (1)

c (q)/J1

obtained in the first stage, we use the process considering
a more refined displacement, i.e., �(1)(J1/kBTc) = 1 × 10−4.
Thus, by using J1/kBT (min ,1)

c = J1/kBT (1)
c − �(0)(J1/kBTc)

and J1/kBT (max ,1)
c = J1/kBT (1)

c + �(0)(J1/kBTc), we con-
sider a new parametrization J1/kBTc = J1/kBT (min ,1)

c +
�(1)(J1/kBTc)j , with j = 0, . . . ,41. Hence we determine
a new best temperature kBT (2)

c /J1 corresponding to the
maximum value of r .

Figure 2 shows the determination coefficient r as a function
of temperature for two extremal cases α = 0.03 and 0.27.
The top plots correspond to the coarse-grained regime [the
first refinement (i)] of the process �(J1/kBT ) = 2 × 10−3,
while the bottom plots correspond to the fine-scale regime
[the second refinement (ii)] �(J1/kBT ) = 1 × 10−4. The

FIG. 2. Determination coefficient r as function of temperature
for two cases α = 0.03 and 0.27. The top plots correspond to
coarse-grained regime (i) of the process �(J1/kBT ) = 2 × 10−3,
while the bottom plots correspond to fine-scale regime (ii) of the
process �(J1/kBT ) = 1 × 10−4.

estimated temperatures after two refinement states for all
studied α values can be seen in Table I.

Since our final refinement has a precision of
�(J1/kBTc) = �(βc) = 10−4, which means �(Tc) =
�(βc)T 2

c /[1 + �(βc)Tc], we have a precision with three digits
for temperature. Therefore, we show our results for critical
temperatures with three significant elements (second column
in Table I). It is important to mention that our estimates
corroborate results from the literature: For example, for α = 0
we have as the 3D Ising estimate kBTc/J1 = 4.513, which
yields excellent agreement with estimates via equilibrium
Monte Carlo simulations [51]. For α = 0.27 we have
kBTc/J1 = 3.748 as the best estimate for the LP’s critical
temperature, which also agrees with the estimate obtained by
Henkel and Pleimling [18]: kBT /J1 = 3.7475 ± 0.0050.

Here it is important to mention that in order to check the
robustness of our method, we performed the same refinement
process inverting the input, i.e., we set kBT /J1 = 3.7475 and
we refine the value α. For the sake of simplicity, here we

TABLE I. Critical values obtained by refinement procedure
after two stages (coarse grained and fine scale). Here the values
obtained for α = 0 and 0.27 correspond to our estimates of the
critical temperatures of the 3D Ising model and the Lifshitz point,
respectively.

α = −J2/J1 kBTc/J1 r

0.00 4.513 0.99993
0.03 4.434 0.99982
0.06 4.364 0.99990
0.09 4.289 0.99990
0.12 4.213 0.99993
0.15 4.126 0.99991
0.18 4.039 0.99988
0.21 3.956 0.99991
0.24 3.852 0.99989
0.27 3.748 0.99992
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FIG. 3. Inverted refinement process: determination coefficient r

as a function of α, which changes from 0.26 up to 0.28 by setting
kBT /J1 = 3.475. Only one refinement process with �α = 0.001 was
used. We obtain as the best estimate α = 0.269, which shows that the
method works in both ways.

perform only one refinement in a shorter interval spanning
α values from 0.26 to 0.28 with �α = 0.001, which can be
seen in Fig. 3. We find α = 0.269 as the best estimate, which
corroborates the expected value for kBT /J1 = 3.7475: α =
0.270(4).

Thus, once we have shown that our time-dependent simula-
tions are calibrated and they corroborate the critical parameters
of the main estimates of the literature, in the following
section our focus is to calculate the critical exponents via
time-dependent Monte Carlo simulations of the LP. First we
present some exponents (z and β/ν) to monitor their behavior
along the second-order transition. Then we show a detailed
study for the Lifshitz point by calculating all (static and
dynamic) critical exponents obtaining error bars by performing
repetitions of simulations under different seeds. We also study
some differences between rectangular and cubic lattices.

III. RESULTS

In this work we perform short-time Monte Carlo simula-
tions in simple rectangular lattices of size Lx × Ly × Lz and
not only for Lx = Ly = Lz = L. Thus, at each instant t of the
simulation, the value of any measured quantity is given by its
average over ns runs according to Eq. (14), which denotes an
average over different repetitions (trajectories with different
sequences of pseudorandom numbers).

In order to obtain error bars in our simulations for the
LP, we use nb = 5 sets of nsruns corresponding to different
seeds for the random numbers generator. For our calculations
we first use cubic lattices 80 × 80 × 80 to evaluate only two
exponents z and β/ν along the second-order line by performing
MC simulations using as input the critical parameters obtained
in the preceding section. We monitor the behavior of these two
exponents directly obtained as a function of kBTc/J1.

For the Lifshitz point we use three different lattices
80 × 80 × 80, 80 × 80 × 10, and 120 × 120 × 10 to study the
possible distortions under rectangular regions. For each lattice
size, the number of runs used in the simulations to obtain
the exponents given in Eqs. (4), (6), (8), (5), (3), and (11)
are shown in Table II.

TABLE II. Number of runs used in simulations for different size
lattices.

No. of runs 80 × 80 × 80 80 × 80 × 10 120 × 120 × 10

β/νz [Eq. (4)] 400 3200 1400
(d − 2β

ν
)/z [Eq. (6)] 4000 3.2 × 104 1.4 × 104

1/νz [Eq. (8)] 2000 1.6 × 104 7000
θ [Eq. (3)] 14000 14000 14000
θ [Eq. (5)] 28000 28000 28000
θg [Eq. (11)] 14000 14000 14000

Due to the axial anisotropy present in the ANNNI model,
the critical behavior in the neighborhood of the LP is governed
by two correlation lengths ξz and ξxy with different critical
exponents (νz = 1

2νxy) [14]. Therefore, at the LP, in the case
of the simple cubic lattice, the resulting critical exponent ν

may be either the exponent νz(νxy) or a combination of these
exponents. Therefore, in order to calculate the static critical

FIG. 4. (Color online) Time evolution of (a) 〈M(t)〉m0=1,
(b) 〈M2(t)〉m0=0, and (c) F2(t) for all critical temperatures previously
estimated (corresponding to the different α values).
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TABLE III. Monitoring of critical exponent z and the ratio of
exponents β/ν along the second-order line previously estimated by
time-dependent MC simulations.

α = −J2/J1 z β/ν

0.00 2.068 0.5118
0.03 2.069 0.4465
0.06 2.061 0.4807
0.09 2.076 0.4777
0.12 2.086 0.4746
0.15 2.137 0.4478
0.18 2.172 0.4334
0.21 2.197 0.4676
0.24 2.290 0.4082
0.27 2.338 0.3867

exponent ν for the Lifshitz point, we also consider not only
cubic lattices in our study, but also rectangular lattices.

A. Monitoring the critical exponents of the ANNNI model

Using as input the critical parameters previously estimated
in Sec. II, we have calculated the exponent z from the time
dependence of the ratio F2 [Eq. (7)] for cubic lattices with
L = 80. Since z was calculated, the time evolution from the
ordered state [Eq. (4)] that was used to compose F2 is taken also
to obtain an estimate of β/νz and since we have an estimate
of z by Eq. (10) we obtain an estimate of β/ν.

Performing MC simulations up to 150 MC steps and
discarding the initial 30 MC steps for more robust estimates,
we estimate these exponents for all α values corresponding
to the critical temperatures that were previously obtained in
Sec. II, considering the limits: 3D Ising like (α = 0) up to the
Lifshitz point (α = 0.27). We set our simulations exactly at
the temperatures obtained by our refinement procedure. The
time evolution of the magnetization 〈M(t)〉m0=1, of its second
moment 〈M2(t)〉m0=0, and of F2(t) can be seen in Fig. 4.

The estimates of z and β/ν are summarized in Table III.
We can observe that z is universal when J2 is small, i.e.,
the interaction among second neighbors in the z direction
is not pronounced and z ≈ 2.06, which is expected for the
universality class of the 3D Ising model.

However, in the neighborhood of the Lifshitz point, the
exponent z has a sensitive increase in relation to the Ising-like
behavior. The ratio of exponents β/ν changes in an interval
[0.38,0.52], but not monotonically, as occurs with z. In the
following section we study all the details of the Lifshitz point,
taking into consideration error bars obtained by considering
simulations with different seeds since we observed a notorious
difference between this point (α = 0.27) and the authentic 3D
Ising model (α = 0.0).

B. Lifshitz point

In this section we finally present a detailed study of critical
exponents of the Lifshitz point. Initially we considered cubic
lattices Lx = Ly = Lz = 80. Here it is important to stress

FIG. 5. (a) A log-log plot of Q(t) against t for the lattice size 80 × 80 × 80 for the Lifshitz point using α = 0.27 and kBTc/J1 = 3.7475.
(b)–(f) correspond to the same plot for (b) 〈M(t)〉m0=0.04, (c) 〈M(t)〉m0=1, (d) 〈M2(t)〉m0=0, (e) D(t), and (f) F2(t).
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FIG. 6. (Color online) A log-log plot of 〈M(t)〉 against t obtained
from the simulations performed for the lattice size 20 × 20 × Lz,
where Lz > 20 and m0 = 1(ordered initial state).

that we used α = 0.27 and kBTc/J1 = 3.7475 (the estimate
obtained by Henkel and Pleimling [18]) to perform the
simulations.

From Monte Carlo simulations we obtained the exponents
for the Lifshitz point defined by Eqs. (7) [which uses Eqs. (4)
and (6)], (8), (3), and (5). The log-log curves for the Lifshitz
point for these quantities considering the error bars obtained
by five different seeds are shown in Fig. 5. For Eq. (3) we show
(for the sake of simplicity) only the evolution for m0 = 0.04.

We have obtained the critical exponents β = 0.226(2),
ν = 0.60(1), z = 2.34(2), θ = 0.17(2) [from Eq. (5)], and
θ = 0.163(3) [Eq. (3)]. For this last case the results were
obtained by performing simulations with three different initial
magnetizations m0 = 0.02, 0.04, and 0.08. By obtaining the
exponent for each value with error bars obtained by five
seeds, we considered a linear fit to obtain an extrapolation
m0 → 0, which corresponds to the linear coefficient in the fit θ
versus m0.

To verify whether the ferromagnetic ordering is affected
by increasing the linear dimension Lz, we perform extra MC
simulations for the temporal evolution of magnetization from
the ordered initial state m0 = 1, considering the following
rectangular lattices: 20 × 20 × 200, 20 × 20 × 700, and 20 ×
20 × 1000. Here we are only interested in the qualitative

FIG. 7. (Color online) A log-log plot of 〈M(t)〉 against t obtained
from the simulations performed for the lattice sizes 50 × 50 × 10
and 50 × 10 × 50, starting from the initial condition m0 = 1(ordered
initial state). The order parameter decays faster for the lattice with
smaller xy planes.

FIG. 8. Time evolution of global persistence for α = 0 (3D Ising
model) (with kBT /J1 = 4.513) and α = 0.27 (Lifshitz point) (with
kBT /J1 = 3.7475).

plots of 〈M(t)〉 versus t . We used in all cases just ns =
400runs. In Fig. 6 we find identical log-log plots for the
different rectangular lattices analyzed, which corroborates that
ferromagnetic ordering does not depend on linear dimension
Lz, despite the increase of the total number of spins on the
lattice.

Since the order parameter is the magnetization and the xy

interactions are ferromagnetic, the ordering occurs mainly
due to these interactions. In contrast, there are competing
interactions along the z axis, which cannot sustain the
ferromagnetic ordering of the system. This fact is illustrated
in Fig. 7, where the magnetizations 〈M(t)〉 obtained from
simulations for lattices 50 × 50 × 10 and 50 × 10 × 50 are
shown. In Fig. 7 we clearly see that the order parameter decays
faster for the lattice with a smaller xy plane (50 × 10 × 50).

Therefore, we conclude that the best results will be obtained
from lattices with bigger xy planes, irrespective of the value
Lz. However, we must stress here that these conclusions are
valid in the short-time regime. In contrast, via equilibrium MC
simulations, which were performed in a simple cubic lattice
(24 × 24 × 24), Kaski and Selke [17] obtained the critical
exponent ν = 0.51(4) corresponding to a combination of the
exponents νz and νxy due to anisotropy present in the LP.
In order to obtain the critical exponent νz = 0.33(3) shown
in Table IV, which shows exponents for our comparison
extracted from the literature obtained for different methods,
these authors divided the lattice into subcells 24 × 24 × L. By

TABLE IV. Static critical exponents β, νz, and νxy = 2νz at the
LP extracted from the literature.

Exponent First-order εa Second-order εb Monte Carlo MnPc

0.19(2)d
β 1/4 0.220 0.238(5)e

νz 5/16 0.348 0.33(3) 0.30(2)
νxy 5/8 0.696 0.66d 0.60(4)

aReference [14].
bReference [54].
cReference [55].
dReference [17].
eReference [18].
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TABLE V. Static and dynamic critical exponents β, z, νxy , θ , and
θg obtained in the present work for different lattice sizes.

Exponent 80 × 80 × 80 80 × 80 × 10 120 × 120 × 10

β 0.226(2) 0.227(1) 0.229(2)
z 2.34(2) 2.296(2) 2.30(1)
νxy 0.60(1) 0.615(3) 0.618(4)
θ 0.17(2) [Eq. (5)] 0.16(2) [Eq. (5)] 0.16(2) [Eq. (5)]

0.163(3) [Eq. (3)] 0.180(6) [Eq. (3)] 0.184(1) [Eq. (3)]
θg 0.336(4) 0.330(5) 0.336(6)

using this procedure, Kaski and Selke [17] were able to capture
the spacial correlations ξz and from the slope of Binder’s
cumulant [52,53] they estimated the value of νz, which is also
shown in Table IV.

In the following we show the results obtained in this work
for the lattice sizes 80 × 80 × 10 and 120 × 120 × 10. We es-
timated the critical exponents β = 0.227(1), z = 2.296(3), and
ν = 0.615(3) for the 80 × 80 × 10 lattice and β = 0.229(2),
z = 2.30(1), and ν = 0.618(4) for the 120 × 120 × 10 lattice.

Finally, we also study the global persistence for the Lifshitz
point. For a simple comparison, we also performed simulations
for α = 0 (which corresponds to the three-dimensional Ising
model). The same procedure used in the previous simulations
(five seeds to obtain error bars) was replicated here as
well. Figure 8 shows the different time evolutions of global
persistence P (t) for the two different points.

For lattices 80 × 80 × 80 we obtain θg = 0.336(4) for the
Lifshitz point. This value is smaller than the θg = 0.384(6)
found for the 3D Ising model. This value for the Lifshitz point
seems to be corroborated for rectangular lattices (compatible
with error bars) where we observed only small changes for
rectangular lattices 80 × 80 × 10 and 120 × 120 × 10 (see the
last row in Table V).

Table V summarizes the results of the static and dynamic
critical exponents obtained in this work. These results are in
very good agreement with the critical exponents obtained in
previous works, shown in Table IV.

IV. SUMMARY AND DISCUSSION

In this work we estimated the dynamic critical exponents
θ , θg , and z at the Lifshitz point of the ANNNI model by
means of time-dependent Monte Carlo simulations. We have
also obtained the static and critical exponents β and ν by
exploiting scaling relations, valid in the short-time regime
(out of equilibrium), involving the order parameter and its
second moment. Our estimates (see Table V) are in very good
agreement with previous experimental and theoretical works
(see Table IV).

Moreover, we applied a refinement procedure to estimate
several parameters for the critical points along the second-
order transition line from the 3D Ising point −J2/J1 = 0
up to the Lifshitz point −J2/J1 = 0.27 and followed the
behavior of some exponents along this line. We observed that
z is universal when J2 is small, i.e., the interaction among
second neighbors in the z direction is not pronounced, resulting
in z ≈ 2.06, which is expected for the universality class of
the 3D Ising. However, in the neighborhood of the Lifshitz
point, the exponent z has a sensitive increase resulting in
z ≈ 2.34. Finally, we also observe power-law behavior for
the global persistence P (t) (the probability that the sign of
the magnetization does not change until the time t starting
from random configurations with small magnetization). We
find θg = 0.336(4) (α = 0.27) for the LP, which is smaller
than the 3D Ising estimate (α = 0) of θg = 0.384(6), see for
example [45].
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