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We define a measure of redundant information based on projections in the space of probability distributions.
Redundant information between random variables is information that is shared between those variables. But,
in contrast to mutual information, redundant information denotes information that is shared about the outcome
of a third variable. Formalizing this concept, and being able to measure it, is required for the non-negative
decomposition of mutual information into redundant and synergistic information. Previous attempts to formalize
redundant or synergistic information struggle to capture some desired properties. We introduce a new formalism
for redundant information and prove that it satisfies all the properties necessary outlined in earlier work, as well as
an additional criterion that we propose to be necessary to capture redundancy. We also demonstrate the behavior
of this new measure for several examples, compare it to previous measures, and apply it to the decomposition of
transfer entropy.
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I. INTRODUCTION

In this paper we present a new formalism for redundant
information; measuring for three (finite) random variables,
X, Y , and Z, how much information the random variable X

contains about Z that is also contained in Y . Information, in this
paper, is based on Shannon entropy [1], which formalizes how
much information one variable contains about another, where
mutual information is the established formalism to quantify
this (see Ref. [2] for a detailed account).

A naive extension of mutual information to information
shared among multiple variables faces several problems. Since
mutual information only measures the amount of information
one variable contains about another, it is unclear if two
variables, X and Y , which both contain information about
Z, actually contain the “same” information. Alternatively, we
could ask how much additional information (e.g., reduction in
entropy) about Z would we get from X if we already knew
Y ? This can be formalized as conditional mutual information
I (Z; X|Y ) = I (Z; X,Y ) − I (Z; Y ). Thus, one might think that
I (Z; X) − I (Z; X|Y ), also called interaction information [3],
is a candidate for a measure of redundant information, but
the problem here is that it also captures the synergy between
X and Y in the same measurement: in some cases, e.g.,
for binary variables, with Z being the outcome of an XOR

combination of X and Y , each variable by itself contains
no information about Z, but both taken together do contain
information, which would be detected by the conditional
mutual information. But we want redundant information only
to be present if this information about Z is present in
each variable on its own. Redundant as well as synergistic
information is information about the output variable contained
in both variables; redundant information on the one hand is
directly available in each input variable, whereas synergistic
information is only available in the joint variable of the inputs.
As we saw, interaction information cannot distinguish between
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redundant information and synergistic information, and is
therefore ill suited for this purpose.

In general, we want a redundant information formalism that
quantifies how much Shannon information about the outcome
of a multivariate mechanism a variable provides on its own
that is also provided by all other variables as well.

II. RELATED WORK

Studies of synergies and redundancies have received at-
tention in several areas including computational neuroscience
[4–7] and genetic regulatory networks [8,9]. However, there
seems to be no agreement how to best measure redundancy and
synergy. A detailed overview of the requirements for a measure
of synergy and redundancy, as well as a comprehensive
overview of possible candidate measures can be found in
Ref. [10].

Generalizations of mutual information have been proposed
as measures of redundant information in the literature: One of
them is total correlation also called multi-information which
measures all dependencies among the individual variables
[11]. Another generalization is called interaction information
(as used in the introductory example in Sec. I), measuring the
information that is shared among the variables of the system,
but not shared by any subset of the variables [3]. However,
both measures do not explain the structure of multivariate
information in terms of atomic information quantities shared
between variables. The former only quantifies the depen-
dencies, where the latter has the problem of possibly being
negative. Therefore, interaction information cannot distinguish
between a system of independent variables and a system where
redundancies and synergies between variables compensate
each other. Thus, it also fails to capture the precise structure
of multivariate mutual information [10,12].

Other measures, like interaction complexity [13] give a
good insight into the structure of interactions among random
variables, however interactions and redundancy, though re-
lated, are not the same, as interaction complexity does not
fulfill the criteria stated in Ref. [14]. Moreover, measures
of information flow [15,16] which are able to measure the
overall amount of causal information flow, still struggle with
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over-determination (i.e., the measurement of redundant causal
information flow), which is closely related to the problem of
identifying redundant information.

A new approach addressing these problems was introduced
by Williams and Beer [12]. It introduces a non-negative
decomposition of multivariate mutual information terms
I (Z; X1, . . . ,Xk). The decomposition captures all redundan-
cies and synergies between all possible subsets of the variables
X1, . . . ,Xk with respect to another random variable Z. Thus,
the decomposition is able to reveal the atomic structure of the
information that is shared by the variables X1, . . . ,Xk and Z.

Williams and Beer’s decomposition can be applied to other
information-theoretic measures like transfer entropy as well.
This allows to get further insight into the information transfer
between processes by distinguishing state-independent infor-
mation transfer from state dependent information transfer [17].

The information decomposition relies on a measure of
redundancy [12]. Redundancy quantities then become the
“building blocks” of the construction. Information in the
sense of Shannon’s information theory, as used here, always
denotes a measure of information that one variable contains
about another. The notion of redundancy then translates
to information-theoretic terms as the information that two
variables share about another variable.

We will argue that the redundancy measure proposed by
Williams and Beer, while exhibiting a number of essential
properties needed to formalize redundancy, is not capturing
the concept of redundancy in a fully satisfactory way. These
problems have been noted by Griffith [10], who recently pro-
posed [18] a synergy or redundancy measure based on intrinsic
conditional information [19], which shares similarities with an
information bottleneck [20].

We propose a different measure for the bivariate case which
addresses our concerns and we compare it to the existing
measures [12,18]. The measure is based on a geometric
argument and we will show that it fulfills all axioms required by
Williams for a redundancy measure [14]. We also demonstrate
that the non-negativity of the information decomposition is
still guaranteed when using our measure. Furthermore, we
will argue in favor of an additional axiom that any measure of
redundancy has to fulfill.

A. Minimal information as a measure of redundancy

As mentioned above, the term redundancy has been
used in several contexts denoting different quantities. Here,
we specifically consider information about another random
variable that is shared among several random variables and we
mean the same “piece” of information. A candidate measure
for this quantity is called minimal information and denoted by
Imin [12].

Given a set of finite random variables XV = {X1, . . . ,Xn},
the index set V = {1, . . . ,n}, and a finite random variable
Z with values from X1 × · · · × Xn and Z , respectively, we
denote the mutual information [2] between Z and XV as
follows:

I (Z; XV ) := I (Z; X1, . . . ,Xn). (1)

Following Ref. [12], we now define the (non-negative) specific
information [21], the increase in likelihood (or reduction in

surprise) of the outcome of a specific event, where A ⊆ V , by

Isp(Z = z; A) :=
∑
xA

p(xA|z)

[
log

1

p(z)
− log

1

p(z|xA)

]

= DKL(p(xA|z) || p(xA)), (2)

where DKL(· || ·) is the usual Kullback-Leibler divergence [2]
and the equality results from applying Bayes’s rule. This is then
used by Williams and Beer to define the minimal information
a set of random variables contains about the outcome as

Imin(Z; A1, . . . ,Ak) :=
∑

z

p(z) min
i

Isp(Z = z; Ai). (3)

This measure is obviously non-negative and, in fact, positive if
all variables XAi

with respect to the index sets Ai contain some
information about a specific outcome (for outcomes having
probabilities which do not vanish).

For the bivariate case, we will change the notation slightly
and use the random variables directly instead of the index set
notation, so instead of Imin(Z; A1,A2), where A1 and A2 are
index sets of some collection of random variables, we will
directly write Imin(Z; X,Y ).

B. Redundancy axioms

In Refs. [14], Williams states three axioms any redun-
dancy measure has to fulfill. For any redundancy measure
I∩(Z; A1, . . . ,Ak) the following must hold:

Symmetry: I∩ is symmetric with respect to the Ai’s.
Self-redundancy: I∩(Z; A) = I (Z; XA).
Monotonicity:

I∩(Z; A1, . . . ,Ak−1,Ak) � I∩(Z; A1, . . . ,Ak−1)

with equality if Ak−1 ⊆ Ak .
These axioms follow the intuition that redundancy with

regard to a variable is symmetric and adopt a similar
notion to which entropy is self-information, i.e., H (X) =
I (X; X), namely that mutual information is self-redundancy,
i.e., I (Z; XA) = I∩(Z; A). The last axiom is also intuitive,
considering that redundancy denotes information about Z that
is contained in every variable XAi

, each additional variable is
a further constraint, so the redundancy can only be reduced.
The only exception is where the additional variable is a joint
variable of an already considered variable and an arbitrary
other random variable, in this case the redundancy stays
constant.

From these axioms follows the non-negativity of the
redundancy measure, and that it is bounded above by the
mutual information between Z and each source. To prove this,
note that Ai are subsets of V that could be empty, and, for
consistency, I∩(Z; ∅) = 0 by definition. It is easy to check that
all three axioms are fulfilled by the measure Imin [14].

C. Why minimal information is not capturing redundancy

This measure contradicts a basic intuition about redun-
dancy. Let us consider the case with two binary input variables
X,Y (i.e.,X = Y = {0,1}) that are independent and uniformly
distributed and where Z = (X,Y ) is an unaltered copy of both
variables, i.e., the underlying distribution of Z is the joint
distribution of X and Y . Now we expect that there should be
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no redundancy between X and Y with regard to Z because
we know that X and Y are independent, so the information
contained about Z in X and Y , respectively, is clearly not the
same. However, we have Imin(Z; X,Y ) = 1bit.

This happens because for each outcome of X or Y we
observe a reduction of entropy regarding an outcome z (i.e.,
the specific information between X and z as well Y and z is
positive). However, we ignore that even though X and Y give
the same amount of information about an outcome z, they tell
something different about the change of the distribution p(z)
after an observation in X or Y has been made. In this particular
example X gives information about the first component of
Z while Y gives information about the second component
of Z. This example is used to demonstrate the effect with
full impact, although this can also occur in more practical
situations. Whenever there is a process that has independent
subcomponents over time and these components contain some
information about their future states, the measure Imin will see
this information as redundancy between the components.

More precisely, the a posteriori distributions of Z, p(z|x)
and p(z|y), when either X or Y have been observed, give a
different kind of information (have different content), even
though they give the same amount of information. The core
idea, therefore, is to separate the contributions of X and Y

by adopting a geometric view in the space of probability
distributions over Z.

III. A NEW MEASURE OF REDUNDANT INFORMATION

To define a new (bivariate) redundancy measure we will
take a geometric view on informational quantities. Information
geometry is a powerful tool to investigate the information-
theoretic question in the context of Riemannian manifolds
[22,23]. Geometric arguments and algorithms have profound
application to information theory and statistics [24] and have
been successfully employed to construct information-theoretic
multivariate interaction measures [13]. Information geometry
deals with statistical manifolds of probability distributions
equipped with the Fisher metric [23]. The Kullback-Leibler
divergence is now a divergence function on the statistical
manifold and, thus, certain helpful properties and theorems,
such as the Pythagorean theorem, can be used. Here, we will
introduce concepts of information geometry only as needed as
most arguments can be done on an ad hoc basis.

A. Additional axiom

Before we start with the construction of the measure, we
want to address the shortcoming identified above. For this
purpose, we propose to add an additional axiom to the axioms
from Sec. II B. We call it the identity property, as it states
how redundancy should behave with respect to a joint random
variable of identical copies of the two source variables. It
requires that for any redundancy measure I∩,

I∩
((

XA1 ,XA2

)
; A1,A2

) = I
(
XA1 ; XA2

)
. (4)

The idea behind this additional axiom is, that if the (bivariate)
mechanism we are considering is just copying the input, the
redundancy must be exactly the mutual information between
the variables. Given a multivariate redundancy measure the

monotonicity automatically states that the multivariate redun-
dancy is then bounded above by the minimum of pairwise
mutual information terms.

B. Construction of a redundant information measure

The redundancy measure we will construct is based on
the notion of projected information which we will introduce
shortly. We will begin with the definition of a bivariate
redundancy measure Ired, i.e., we will measure the redundancy
between two sources X and Y with respect to Z denoted by
Ired(Z; X,Y ).

1. Preliminaries

In what follows, let �(Z) denote the space of all probability
distributions over Z. An information projection is now de-
fined as the minimization of the Kullback-Leibler divergence
between a probability distribution in p ∈ �(Z) and a subset
B ⊂ �(Z),

πB(p) := arg min
r∈B

DKL (p || r) . (5)

The Kullback-Leibler divergence is not symmetric, therefore
it is possible to define a dual projection πB

∗(p) where the
parameters of DKL (· || ·) are reversed (in Ref. [25], πB(p) is
called reverse information projection and πB

∗(p) information
projection). Here we will exclusively use the projection πB(p).

For B ⊆ �(Z), we denote the convex closure of B in �(Z)
by

Ccl(B) = {λp + (1 − λ)q| p,q ∈ B,λ ∈ [0,1]}. (6)

As �(Z) is convex we have Ccl(B) ⊆ �(Z). Observing an
event x in X or y in Y leads to a distribution over Z, p(Z|x) ∈
�(Z) and p(Z|y) ∈ �(Z), respectively. Let

〈X〉Z := {p(Z|x) : x ∈ X } (7)

denote the set of all conditional distributions of Z for the
different events of X. Because the marginal distributions over
Z are a convex combination of the conditional distributions,
namely

p(z) =
∑

x

p(z|x)p(x), (8)

we have that the space of distributions over X, i.e., �(X), is
embedded by

Ccl(〈X〉Z) = Ccl({p(Z|x) : x ∈ X }) (9)

in �(Z), i.e., Ccl(〈X〉Z) ⊆ �(Z). Assuming that the mecha-
nism p(Z|x) is known for all x, the convex closure of 〈X〉Z in
�(Z) now contains all marginals p(Z) that could be the actual
marginal of Z if we do not know the underlying distribution
of X. Conversely, for each p(Z) ∈ Ccl(〈X〉Z) there is a way to
represent p(Z) as a convex combination of the distributions
p(Z|x) [because Ccl(〈X〉Z) is a convex closure of a finite set
of points], the coefficients of the convex combination are then
the probabilities p(x).

For example, the problem of finding the channel capacity
between two random variables X and Z, with X as input and
Z as output, can now be translated to find the point p(Z) in
the convex closure Ccl(〈X〉Z) that maximizes its Kullback-
Leibler divergence from all extremal points p(Z|x) of the
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convex closure [weighted by the respective probabilities p(x)],
i.e., that maximizes

I (X; Z) =
∑

x

p(x)DKL(p(Z|x) || p(Z)). (10)

2. Projective information

Using information projections we can now project the
conditionals of one variable onto the convex closure of the
other. We denote this projection by

p(x↘Y )(Z) := πCcl(〈Y 〉Z )(p(Z|x)). (11)

The projection is not guaranteed to be unique (for uniqueness,
the set we are projecting onto would need to be log-convex
and not convex [25]); however, this does not matter for our
purposes as we will see in the next lemma. Now, we define the
projected information of X onto Y with respect to Z as

Iπ
Z (X ↘ Y ) :=

∑
z,x

p(z,x) log
p(x↘Y )(z)

p(z)
. (12)

The rationale behind this construction is that the projected
information quantifies the amount of information that two
variables share with each other, here X and Z, that can be
expressed in terms of the information Y shared with Z (we are
projecting onto Y ). This is illustrated for binary input variable
in Fig. 1.

Lemma 1. Projected information Iπ
Z (X ↘ Y ) is well-

defined, finite, and non-negative.
Proof. First, note that projected information can be written

as the difference of two Kullback-Leibler divergences,

Iπ
Z (X ↘ Y ) =

∑
x

p(x)[DKL(p(z|x) || p(z))

−DKL(p(z|x) || p(x↘Y )(z))].

Therefore, if the projection is not unique, projected
information only takes the KL divergence into account, which
is the same for all possible solutions of the minimization
problem in Eq. (5). Now we have DKL(p(z|x) || p(x↘Y )(z)) �
DKL(p(z|x) || p(z)) for all x ∈ X because of p(z) ∈ Ccl(〈Y 〉Z)
and the definition of p(x↘Y )(z) as the distance minimizing

p(1 Y )(z)

p(0 Y )(z)

p(z|y = 0)

p(z|y = 1)

p(z|x = 0)

p(z|x = 1)

p(z)

FIG. 1. Construction of projective information for binary input
variables.

distribution to p(Z|x) in Ccl(〈Y 〉Z). Hence, Iπ
Z (X ↘ Y ) � 0.

Furthermore, I (X; Z) = ∑
x p(x)DKL(p(z|x) || p(z)) < ∞.

�

3. Definition of bivariate redundancy

The (bivariate) redundancy measure is now simply defined
as the minimum of both projected information terms

Ired(Z; X,Y ) := min
{
Iπ
Z (X ↘ Y ),I π

Z (Y ↘ X)
}
. (13)

At this point we can take the minimum over both values be-
cause we already corrected for the change of the distributions in
different directions by projecting the conditionals. This differs
from the approach taken by Williams and Beer [12], where
the minimization does not consider that events in different
source variables may change the distribution of the outcome
in different directions in the geometrical space of distributions.
Moreover, we define self-redundancy explicitly as

Ired(Z; X) := Ired(Z; X,X), (14)

= Iπ
Z (X ↘ X). (15)

4. The proposed measure is a bivariate redundancy measure

To show that this is actually a redundancy measure, we
have to show that it fulfills the four axioms (symmetry,
self-redundancy, monotonicity, and identity). Symmetry is
obviously fulfilled, and self-redundancy is also very quick to
prove

Ired(Z; X) = Iπ
Z (X ↘ X) , (16)

=
∑
z,x

p(z,x) log
p(x↘X)(z)

p(z)
, (17)

=
∑
z,x

p(z,x) log
p(z|x)

p(z)
, (18)

= I (Z; X). (19)

The inequality part of the monotonicity axiom is directly given
by the following proposition (proof in Appendix):

Proposition 1. Ired(Z; X,Y ) � I (Z; X).
To show equality holds if Y = (X,W ), where W is an

arbitrary finite random variable, we also need the following
proposition (proof in Appendix):

Proposition 2. Ired(Z; X,Y ) � Ired(Z; X,(Y,W )).
Proposition 1 states that Ired(Z; X,Y ) � I (Z; X) and, thus,

for Y = (X,W ) also Ired(Z; X,(X,W )) � I (Z; X), the propo-
sition above now also proves that the inequality in the other
direction also holds

I (X; X) = Ired(Z; X), (20)

= Ired(Z; X,X), (21)

� Ired(Z; X,(X,W )). (22)

Hence, the equality case of the monotonicity holds.
Now it is only left to show that the measure also fulfills our

new identity property, namely

Ired((X,Y ); X,Y ) = I (X; Y ). (23)
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For this we need the following lemma (proof in
Appendix):

Lemma 2. If Z = (X,Y ) and (x ′,y ′) denote an event of Z

then p(y ′↘X)(x ′,y ′) = p(x ′↘Y )(x ′,y ′) = p(x ′|y ′)p(y ′|x ′).
Hence, we can conclude our proof with the following

proposition:
Proposition 3. Iπ

X,Y (X ↘ Y ) = Iπ
X,Y (Y ↘ X) = I (X; Y ).

Proof. Without loss of generality,

Iπ
X,Y (X ↘ Y ) (24)

=
∑

x ′,y ′,x

p(x ′,y ′,x) log
p(x↘Y )(x ′,y ′)

p(x ′,y ′)
, (25)

= H (X,Y ) +
∑
x ′,y ′

p(x ′,y ′) log p(x ′↘Y )(x
′,y ′)

= H (X,Y ) +
∑
x,y

p(x,y) log[p(x|y)p(y|x)]

= H (X,Y ) − H (X|Y ) − H (Y |X), (26)

= I (X; Y ). (27)

�
Thus, Ired is a good candidate for measuring redundancy

(in terms of redundancy with respect to some target variable).

IV. COMPARISONS

Now that we have constructed a bivariate redundancy
measure, we will present a few examples of redundancy
calculations.

A. Relation to minimal information

There are some cases where Ired and Imin coincide and we
will have a look at some of these cases later in Sec. IV C. In
general, there is a tendency of Imin to overestimate redundancy
and in our examples it seems that Imin is an upper bound for
Ired in most cases. There are a few exceptions, but it is not
yet clear for which cases these exceptions appear or whether
they are due to numerical instabilities. The overestimation of
redundancy by Imin becomes predominant if the dimension of
Z is increased (see Fig. 2). The explanation for this is that
the higher the dimension of the space becomes, the larger the
error becomes, which results from not taking directionality
into account.

B. Decomposition of mutual information

In Ref. [12] Williams and Beer introduce partial informa-
tion atoms (PI atoms) as a way to decompose multivariate
mutual information into non-negative terms. These terms

0.2 0.4
0

0.2

0.4

Imin

I r
e
d

|Z| = 2

0.2 0.4
0

0.2

0.4

Imin

I r
e
d

|Z| = 4

0.1 0.2 0.3
0

0.1

0.2

0.3

Imin

I r
e
d

|Z| = 6

0.1 0.2 0.3
0

0.1

0.2

0.3

Imin

I r
e
d

|Z| = 8

5 · 10−2 0.1 0.15
0

5 · 10−2

0.1

0.15

Imin

I r
e
d

|Z| = 20

5 · 10−2 0.1
0

5 · 10−2

0.1

Imin

I r
e
d

|Z| = 40

FIG. 2. Comparison of Imin and Ired for randomly drawn distributions p(x,y,z) with |X | = |Y| = 3 fixed sized sets, plotted for different sizes
of Z . The change of |Z| also changes the dimension of the simplex in which the distributions p(Z) are contained. Note that as the dimension
of Z goes up, Imin gets larger in comparison to Ired. The distributions were drawn using a uniform distribution on a random subsimplex of
�(X,Y,Z). The subsimplex was selected in each draw randomly with the probability of p(x,y,z) = 0 being 0.5 for each triple (x,y,z).
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can be defined for any multivariate redundancy measure and
denote redundant and synergistic contributions among several
variables of a set of random variables R towards another
random variable Z. They are denoted by �R(Z; α), where
α is a set of subsets of the base set of random variables R.
As this construction is possibly with any redundancy measure,
we will use �R(Z; α) to denote the PI atoms based on Imin

as a redundancy measure, thereby staying consistent in the
notation with that in Ref. [12]. The primed version �′

R(Z; α),
on the other hand, will denote the decomposition using the
redundancy measure Ired introduced here.

In the bivariate case, this leads to the decomposition of
mutual information I (Z; X,Y ) into four partial information
atoms. Here we have R = {X,Y }. Now, following Ref. [12],
there are four atomic terms,

(i) �′
R(Z; {X}{Y }) := Ired(Z; X,Y ), which is the redun-

dant information contained in X and Y about Z,
(ii) �′

R(Z; {X}) := I (Z; X) − Ired(Z; X,Y ) and �′
R(Z;

{Y }) := I (Z; Y ) − Ired(Z; X,Y ) are the unique information
about Z, which is only contained in X or Y respectively,

(iii) and �′
R(Z; {X,Y }) := I (Z; X,Y ) − I (Z; X) − I (Z;

Y ) + Ired(Z; X,Y ), synergistic information, the information
about Z that is only available if X and Y are both known.

The sum of these terms is exactly the mutual information
between Z and all sources, i.e.,

I (Z; X,Y ) = �′
R(Z; {X}{Y }) + �′

R(Z; {X})
+�′

R(Z; {Y }) + �′
R(Z; {X,Y }), (28)

as well as

I (Z; X) = �′
R(Z; {X}{Y }) + �′

R(Z; {X}) (29)

and for Y , respectively. Still following Ref. [12], but having
replaced Imin by Ired, we get �′

R(Z; {X}{Y }) = Ired(Z; X,Y )
and �′

R(Z; {X}) = I (Z; X) − Ired(Z; X,Y ). Finally, for the
synergistic term,

�′
R(Z; {X,Y }) = I (Z; X,Y ) − I (Z; X) − I (Z; Y )

+ Ired(Z; X,Y ), (30)

= I (Z; X,Y ) − �′
R(Z; {X}) − �′

R(Z; {Y })
−�′

R(Z; {X}{Y }). (31)

Now this decomposition is not non-negative by default and
this needs to be shown for the specific redundancy measure
used. It is shown by Williams in Ref. [14] for the decom-
position using Imin. Here, we will show it for the bivariate
case with Ired as redundancy measure. First, Ired(Z; X,Y )
is non-negative, as shown earlier; furthermore, it follows
from the self-redundancy and monotonicity axioms of the
redundancy measure that Ired(Z; X,Y ) � I (X; Z) and with the
same argument Ired(Z; X,Y ) � I (Y ; Z), which immediately
implies that the unique information terms are non-negative.
The following lemma now gives the non-negativity of the
synergistic term (proof in Appendix).

Lemma 3. I (Z; X,Y ) − I (Z; X) − I (Z; Y ) + Iπ
Z (X ↘ Y )

� 0.
Given the non-negativity of the decomposition, we can

visualize it using a PI diagram as seen in Fig. 3. The whole
circle represents the mutual information I (Z; X,Y ) and the

{X}{Y }

{X, Y }

{X} {Y }

FIG. 3. PI diagram for the decomposition of the mutual informa-
tion between Z and X,Y into PI atoms. {X,Y } denotes the synergistic,
{X},{Y } the unique, and {X}{Y } the redundant part of the mutual
information.

shaded regions represent redundant (solid), unique (diagonal
stripes), and synergistic (dots) information.

C. Examples

We will now go through some examples for the bivariate
measure, in particular those discussed in Ref. [10], which are
a good selection of test cases for the desired properties of a
redundancy or synergy measure.

1. Copying—From redundancy to uniqueness

Our first example is a very simple mechanism which simply
copies the binary input variables X and Y into Z, i.e., Z =
(X,Y ). However, we also add a control paremeter λ ∈ [0,1]
which determines how correlated X and Y are as follows:
Let W be a uniformly distributed binary random variable,
p(x|w) = λ 1

2 + (1 − λ)δxw and p(y|w) = λ 1
2 + (1 − λ)δyw.

The underlying model is the Bayesian network as depicted
in Fig. 4. For λ = 1 we have that X and Y are independent,
as the Bayesian network describes the complete model, and
we recover the example “UNQ (Unique Information)” from
Ref. [10]. On the other extreme λ = 0 we have that X and Y are
identical copies of W and, therefore, Z is equivalent to W from
an information-theoretic point of view. This is also reflected
in the decomposition as in this case I (Z; X,Y ) = I (W ; X,Y )
and Ired(Z; X,Y ) = Ired(W ; X,Y ), so we can see that this is the
example “RDN (Redundant Information)” from Ref. [10]. By
varying λ we can vary the entropy of the outcome Z and at

W

X

Y

Z

λ

λ
1

0

0 0

0

0

1 1

FIG. 4. Copy example. Complete redundancy and complete
uniqueness using Ired. Bayesian model on the left and PI diagrams for
λ = 0 (left, RDN) and λ = 1 (right, UNQ).
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I(Z; X, Y ) Ired(Z; X, Y ) Imin(Z; X, Y )

FIG. 5. Comparison of total mutual information I (Z; X,Y )
(dotted gray line), our redundancy measure Ired (solid line) and
Imin (dashed line) for varying values of λ, where λ controls the
correllation between X and Y . Imin measures a constant amount of
redundancy and, therefore, does not distinguish between redundancy
and uniqueness with varying λ as desired, whereas Ired does.

the same time exchange unique information for redundancy.
Figure 4 illustrates the decomposition at both extremal values
of λ and it can be seen that the resulting values of Ired coincide
with the proposed values in Ref. [10]. The effect of changing
λ is shown in Fig. 5.

2. XOR

The XOR gate (⊕) is a classical example for the appearance
of synergy in the sense of the whole being more than the
sum of the individuals. We expect to only observe synergistic
information, as the result is only known if both inputs are
available, and the uncertainty given one input is the same
as giving no input at all. Here, the inputs are uniformly
distributed independent binary random variables X,Y and
the output is Z = X ⊕ Y . In fact, in this case we have
Ired(Z; X,Y ) = Imin(Z; X,Y ) = 0 resulting in the purely syn-
ergistic decomposition as illustrated in Fig. 6. The redundancy
measure vanishes here because p(z) = p(z|x) = p(x↘Y )(z), as
well as p(z) = p(z|y) = p(y↘X)(z), i.e., the information about
the outcome of Z is zero even if one input is known. This would
change if correlation between X and Y is introduced. Note that
Ired defines the redundancy; other terms are all derived by the
decomposition.

0

1

0 0

X

XOR Z

Y

FIG. 6. XOR example. A purely synergistic mechanism, PI
diagram on the left and circuit diagram on the right.

0.311

0.5

0 0

X

AND Z

Y

FIG. 7. AND example. The total mutual information is
I (Z; X,Y ) = 0.811 278, PI diagram on the left and circuit diagram
on the right.

3. AND: Mechanisms at work

We now come to the AND gate, Z = X ∧ Y . This turns out
to be an interesting case, because it demonstrates the subtle
difference between redundant information that is due to the
“ignorance” of the mechanism with respect to the source
and redundancy that is already apparent in the sources. In
Refs. [10,18] it is argued that vanishing mutual information
between the sources X and Y themselves implies vanishing
redundant information.1 This feature is also shared by the
synergy measure introduced in Ref. [18]. However, here
we would like to embrace a different view on redundant
information: Even if the sources are independent, there can
be a correlation in the change of the distribution over Z given
observations in X and Y , respectively. Observing one input
does not give any information about the other input, but part of
the information gain about the distribution of the output can be
the same as one gets from the other input alone. In particular, in
the case of the AND gate, observing a 0 in either input leads to
p(z = 0) = 1. As a result of calculating the redundancy for this
example we get Ired(Z; X,Y ) = Imin(Z; X,Y ) = 0.311 278,
so this is another example where minimal and redundant
information coincide. Figure 7 illustrates the decomposition
of the total mutual information for this example.

We denote redundant information that is only due to the
mechanism, as it is the case here, mechanistic redundancy.
Contrary to this, we call redundant information that already
appears in the inputs source redundancy. Redundancy in the
source must already manifest itself in the mutual information
between the inputs. We do not give a rigorous definition for
these terms, as it can be seen in the next example, there are
cases where it is not clear how to separate both. However, if
there is positive redundant information Ired > 0 but vanishing
mutual information between the sources, we will attribute all
redundant information to mechanistic redundancy.

4. Summing dice

Let us now consider an example where we throw two dice
(cubic dice, with numbered sides from 0 to 5), represented
by the random variables D1, D2 and sum their results. The
dice D1 and D2 are uniformly distributed and independent.
There are several ways to sum the results, we could simply
add the two results—this would lead to results ranging from
0 to 10 where 5 is the most probable result and 0 or 10
the least probable results—or we multiply the result of the

1“However, because X1 and X2 are independent, [· · · ], thus
necessitating there is zero redundant information [· · · ]” [10].
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FIG. 8. Plot of the redundant information Ired(R; D1,D2) depend-
ing on the correlation λ between the two dice D1 and D2. From top to
bottom the summation coefficient is α = 1, . . . ,6. It can be seen that
for independent dice λ = 1 the amount of redundancy depends on
the mechanism that is used to sum the results, whereas on the other
extreme, all redundancy comes from the correlation of the sources.

first die by 6 to get a uniform distribution of all numbers
ranging from 0 to 35. Indeed, we will also look at all
intermediate summations defined by R = αD1 + D2 where
α ∈ {1,2,3,4,5,6}. Our hypothesis was that for the direct
summation (α = 1) there is a positive amount of redundancy
between D1 and D2 with respect to R, because knowing the
roll of one die gives “overlapping” information (in the same
direction in the space of distributions) with the roll of the other
die about the final result. The redundancy should then decrease
if α is increased, up to the point where α = 6 and the sum of
both dice rolls is isomorphic to the joint variable of the two dice
rolls, i.e., 6D1 + D2 � (D1,D2). Indeed, this is reflected in the
redundancy Ired(R; D1,D2). In Fig. 8 we added an additional
parameter λ that controls how correlated the two dice are,
in the same way as λ was introduced in the copy example
in Sec. IV C1 to control the correlation between the input
variables. For λ = 1 they are independent and it can be seen
that the redundancy increases with decreasing α; on the other
extreme λ = 0 the dice are completely correlated. In this case
we can see that the redundancy is already existent in the source
[I (D1,D2) ≈ 2.58] shadows all redundancy otherwise induced
through the mechanism and, hence, there is no difference in
the redundancy value for all values of α.

5. Composition of mechanisms

The last three examples from Ref. [10] are compositions
of the previously presented examples. The first one, RDN XOR,
combines the redundant copy example (λ = 0) with an XOR

gate: (X,W ) and (Y,W ) are the uniformly distributed and
mutually independent inputs and Z = (W,X ⊕ Y ) is the
output. With our redundancy measure, this results in the
required composite of one bit of redundant and one bit of
synergistic information, the same as measured with Imin.

The second example, RDN UNQ XOR, combines an XOR gate
with the two extremal copy cases. The inputs are (X1,X2,W )
and (Y1,Y2,W ), all independent and uniformly distributed. The
output is Z = (X1 ⊕ Y1,(X2,Y2),W ). Here we get the intended
1 bit of information in every partial information term, i.e., 1 bit

TABLE I. Summary of the bivariate redundancy examples.
Results for the calculations of the examples using Ired and Imin, as
well as the expected value that results from considerations of the
desired properties of a redundancy measure, cf. Ref. [10].

Example Expected Ired Imin

Copy (λ = 0)/RDN 1 1 1
Copy (λ = 1)/UNQ 0 0 1
XOR 0 0 0
AND 0.311 0.311 0.311
RDN XOR 1 1 1
RDN UNQ XOR 1 1 2
XOR AND 0.5 0.5 0.5
Copy (λ < 1) I (X; Y ) I (X; Y ) 1

of redundant, 1 bit synergistic information, and 1 bit unique
information per input and a total 4 bits of mutual information.

The third example, XOR AND, combines an XOR gate with
an AND gate, i.e., Z = (X ∧ Y,X ⊕ Y ), again with X and Y

independent and uniformly distributed. This obviously leads to
a result that differs from that in Ref. [10], as the same effect of
mechanistic redundancy appears in the AND gate, as mentioned
in Sec. IV C3.

6. Summary

In summary, these examples show that Ired captures the
proposed concept of redundancy very well. Furthermore, the
resulting decomposition is in agreement with the desired
examples in Ref. [10], except for the case where what we call
mechanistic redundancy appears, which was not accounted
for in the comparison of current measures of synergy. Table I
summarizes the comparison of Imin and Ired.

D. Information transfer

In Ref. [17] the partial information decomposition is used to
introduce new measures of information transfer. The measures
are based on a decomposition of transfer entropy. Transfer
entropy, introduced by Schreiber [26], is defined for two
random processes Xt and Yt as

TY→X = I (Xt+1; Yt |Xt ). (32)

It measures the influence of the process Y at time t on the state
of the process X in the next time step. One can also take a
longer history instead of Yt and Xt into account. Conditional
mutual information is defined as

I (Xt+1; Yt |Xt ) = I (Xt+1; Yt ,Xt ) − I (Xt+1; Xt ). (33)

As the conditional entropy is the difference of two mutual
information terms, the PI decomposition can be used to
decompose each mutual information term. Hence, by the
disappearance of PI atoms, the transfer entropy can be decom-
posed into two non-negative components. The decomposition
is illustrated in Fig. 9. Let R = {Xt,Yt }; it then follows from
Eqs. (28) and (29) that

TY→X = �′
R(Xt+1; {Yt }) + �′

R(Xt+1; {Xt,Yt }). (34)

The first term denotes all information that uniquely comes
from Yt , called state-independent transfer entropy (SITE) by
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{Xt}{Yt}

{Xt, Yt}

{Xt} {Yt}

I(Xt+1; Yt, Xt)

FIG. 9. PI diagram for the decomposition of transfer entropy into
PI atoms. The colored areas denote the transfer entropy.

Williams and Beer [17]. The second term, on the other hand,
denotes information that comes from Yt but depends on the
state of Xt and, thus, is called state-dependent transfer entropy
(SDTE) in Ref. [17]. We now apply both measures Imin (with
corresponding PI atoms �R) and Ired (with corresponding
PI atoms �′

R) as the underlying redundancy measure for the
decomposition and compare the results.

We will consider two examples to show the difference of
the decomposition when using Ired instead of Imin. The first
one revisits an example from Ref. [17] where X and Y are two
binary, coupled Markov random processes. The process Y is
uniformly i.i.d. and xt+1 = yt if xt = 0; moreover,

p(xt+1 = yt |xt = 1) = 1 − d, (35)

p(xt+1 = 1 − yt |xt = 1) = d. (36)

So d ∈ [0,1] controls whether there is any dependence on
the previous state of X. If d vanishes X is simply a copy
of Y ; see Fig. 10 for a Bayesian network of the process. In
this case the redundancy between Yt and Xt with respect
to Xt+1 also vanishes as Xt contains no information about
Xt+1, but at the same time I (Xt+1; Xt,Yt ) = I (Xt+1; Yt ) so
the synergy also vanished and, thus, the example shows
only state-independent transfer entropy. Increasing d now
reduces the overall mutual information I (Xt+1; Xt,Yt ) but the
information that Yt contains about Xt+1 is decreasing at a faster
rate, while the redundancy stays constantly zero with varying
d. The state-independent transfer entropy �′

R(Xt+1; {Yt }) is in
this example equal to I (Xt+1; Yt ) and, thus, decreases while the
state-dependent transfer entropy (synergy) �′

R(Xt+1; {Xt,Yt }),
here the difference I (Xt+1; Xt,Yt ) − I (Xt+1; Yt ), increases

Xt

Xt+1

Yt

Yt+1

d

FIG. 10. Bayesian network of the first example process. If xt = 0,
then xt+1 is a copy of yt ; if xt = 1, then the bit of xt+1 is a flipped
copy yt . The probability that the bit is flipped in the copy is denoted
by d .
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SITE using Ired SDTE using Ired

SITE using Imin SDTE using Imin

FIG. 11. Decomposition of transfer entropy TY→X for the first
example process. The plot shows SITE (solid black line using Ired,
dashed black line using Imin) and SDTE (solid gray line using
Ired, dashed gray line using Imin) given d . It can be seen that both
decompositions coincide for this process.

with increasing d (compare with Fig. 11). This also explains
why the decompositions of transfer entropy using either
measure (Ired,Imin) coincide, the redundancy is constantly zero,
and the change of the PI atom is driven only by the change of
mutual information terms.

The second example, though constructed for this specific
purpose, is more intricate. First, it shows the difference
between the two measures, but it is also a good example of
the subtlety of redundancy in mechanisms. Let us consider the
following two processes (Xt,Yt ) and Zt where Zt are uniformly
i.i.d. random variables, Xt+1 is a copy of Xt , and

p(yt+1|yt ,zt ) = (1 − d)δyt yt+1 + dδzt yt+1 . (37)

The process Yt copies with probability d the value of Zt−1 and
with probability (1 − d) the value of Yt−1. We now measure the
transfer entropy TZ→(X,Y ); see Fig. 12 for a Bayesian network
of the process.

It can be seen in Fig. 13 that the two decompositions
coincide for d � 0.5. For d = 0 the two processes are
completely independent, which is reflected in the vanishing
overall transfer entropy in this case. On the other extreme,
using d = 1, the decomposition using Ired gives complete
state-independent transfer entropy while the decomposition
using Imin sees total state-dependent transfer entropy. In this
case, the decompositions disagree completely and we argue

Xt

Xt+1

Yt

Yt+1

Zt

Zt+1

(1 − d) d

FIG. 12. Bayesian network of the second example process. Xt

is a parallel and independent process; the only information transfer
between the processes is from Zt to Yt+1.
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FIG. 13. Decomposition of transfer entropy TZ→(X,Y ) for the
second example process. The plot shows SITE (solid black line using
Ired, dashed black line using Imin) and SDTE (solid gray line using
Ired, dashed gray line using Imin).

that our measure reflects the process much better. With d = 1
the process always copies Zt to Yt+1, which is completely
independent of (Xt,Yt ). Specifically, Imin mistakenly sees
redundancy between Xt and Zt in the evolution of one time
step. Following (29) and (31), this is then reflected in the
vanishing state-independent transfer entropy for all d (larger
redundancy means more synergy and less unique information,
given that the mutual information stays constant).

The fact that Imin measures more redundancy has the same
reason why Imin measures redundancy between independent
X and Y with respect to Z = (X,Y ); namely it compares
changes in different direction in the space of distributions. The
parallel and independent process Xt lets Imin see a dependency
between the two processes Xt and Zt that does not exist. If
we consider the transfer entropy TZ→Y from Zt to Yt only,
ignoring the process Xt completely, we can see in Fig. 14 that
the decomposition now coincides with the decomposition of
TZ→(X,Y ) using Ired (solid lines in Fig. 13).

Nonetheless, we have not yet explained the quite unusual
nondifferentiable shape of the state-independent transfer en-

0.2 0.4 0.6 0.8 1
0

0.5

1

d

b
it

s
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FIG. 14. Decomposition of transfer entropy TZ→Y for the second
example process. The plot shows SITE (dashed black line using Imin),
SDTE (dashed gray line using Imin).
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FIG. 15. The plot shows I (Yt+1; Zt ) (dotted gray line) and
Ired(Yt+1; Yt ,Zt ) (solid black line) for the second example
process.

tropy, which is positive only for d > 0.5. This is surprising
because up to d = 0.5 all transfer entropy is considered to be
state dependent, even though with probability d the state of
Yt+1 takes on the state of Zt . As the process Xt was only used
to demonstrate that using Imin for the decomposition measures
state dependencies in the transfer entropy that are not there, we
will now leave Xt aside and consider only the process (Yt ,Zt )
as described above.

To understand the shape of the graph of state-dependent
transfer entropy of this process, we need to have a look
at the mutual information I ((Yt+1); Zt ) (dotted gray line in
Fig. 15) and the redundancy Ired(Yt+1; Yt ,Zt ) (solid black line
in Fig. 15). From Eq. (29) it follows that the state-independent
transfer entropy (solid black line in Fig. 13 and dashed black
line in Fig. 14) is now the difference of these two terms
(compare with Fig. 9).

The increase of mutual information I (Yt+1; Zt ) is obvious
from the definition of the process. For d = 0 we have
independence between both processes and for d = 1 we have
Yt+1 = Zt . It is also clear that the redundant information
with respect to Yt+1 needs to be zero at the extremal points
d ∈ {0,1}, because at these points the value of Yt+1 depends
either on Yt (d = 0) or Zt (d = 1) and, therefore, either
I (Yt+1; Zt ) = 0 or I (Yt+1; Yt ) = 0, which both are upper
bounds for the redundancy.

On the other hand, for d = 0.5 the state of either process
at time t tells us something about the distribution of Yt+1 and
because the space of distributions of Yt+1 is one dimensional.
This must be information about a change in the same direction,
so there is positive redundancy. Observing one of the outcomes
necessarily contributes to some extent to the prediction of the
outcome of Yt+1. We can now show this more rigourously. We
have

p(yt+1|yt ) = d

2
δyt+1(1−yt ) +

(
1 − d

2

)
δyt+1yt

, (38)

p(yt+1|zt ) = 1 − d

2
δyt+1(1−zt ) + 1 + d

2
δyt+1zt

. (39)

as the conditional distributions given the current state of
either Yt or Zt . To calculate Ired(Yt+1; Yt ,Zt ) we need
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p(yt+1 = 0) = 1 p(yt+1 = 1) = 1

p(yt+1)p(yt+1|yt = 0) p(yt+1|yt = 1)

p(yt+1|zt = 0) p(yt+1|zt = 1)

p(zt=0 Yt) = p(yt=0 Zt)

p(zt=1 Yt) = p(yt=1 Zt)

p(yt+1 = 0) = 1 p(yt+1 = 1) = 1

p(yt+1)

p(yt+1|yt = 0) p(yt+1|yt = 1)

p(yt+1|zt = 0) p(yt+1|zt = 1)

p(zt=0 Yt) = p(yt=0 Zt)

p(zt=1 Yt) = p(yt=1 Zt)

FIG. 16. Illustration of the conditional distributions of Yt+1 for the second example process in the two cases d � 0.5 (top) and d � 0.5
(bottom). Each line represents the one-dimensional simplex, i.e., the space of probability distributions over Yt+1 denoted by �(Yt+1), where
Yt+1 is a binary valued random variable. The black diamond represents the marginal distribution of p(yt+1) and the shaded diamonds the
conditionals given specific values of Yt and Zt . It can now be seen that the projections are always equal to the conditional distributions closer to
the marginal of Yt+1. In particular, the projections are the same, no matter in which direction the projection is done (from Yt to Zt or vice versa).

to calculate the projected information Iπ
Yt+1

(Zt ↘ Yt ) and
Iπ
Yt+1

(Yt ↘ Zt ) as the redundancy is the minimum of
both terms. Because the space of distributions �(Yt+1) is
one dimensional (it is simply the unit interval) we can
make a simple illustrative argument to compute p(zt=0↘Yt ),
p(zt=1↘Yt ), p(yt=0↘Zt ), and p(yt=1↘Zt ), which are the terms
that are needed to calculate projected information. From
the illustration in Fig. 16 it can be seen that for d �
0.5, p(zt=0↘Yt )(yt+1) = p(yt=0↘Zt )(yt+1) = p(yt+1|zt = 0) and
p(zt=1↘Yt )(yt+1) = p(yt=1↘Zt )(yt+1) = p(yt+1|zt = 1). If we
insert this into Eq. (12) we get that Iπ

Yt+1
(Zt ↘ Yt ) =

Iπ
Yt+1

(Yt ↘ Zt ) = I (Yt+1; Zt ) for d � 0.5. This explains why
we have no state-independent transfer entropy for d � 0.5,
as the SITE is the difference between the redundancy
Ired(Yt+1; Yt ,Zt ) and I (Yt+1; Zt ).

Conversely, for d � 0.5, we get Iπ
Yt+1

(Zt ↘ Yt ) =
Iπ
Yt+1

(Yt ↘ Zt ) = I (Yt+1; Yt ) for d � 0.5. As I (Yt+1; Zt ) and
I (Yt+1; Yt ) are perfectly symmetric, this then explains the
form of the redundant information as in Fig. 15 (green line).
Thus, even though Zt and Yt are completely independent, the
mechanism, which is a random read-out [with distribution
d,(1 − d)], creates redundancy with respect to Yt+1.

E. Open loop controllability

Ashby [27] proposed and Touchette and Lloyd [28] con-
firmed that there is a natural link between control theory and
information theory. As shown by Touchette and Lloyd [29], for
a process with initial state X and final state X′ and a controller
C, which are linked by the probability distribution p(x ′|x,c),
the conditional mutual information I (X′; C|X) (which is the
transfer entropy from the controller to the system) is a measure
of controllability. Williams and Beer show in Ref. [17] that the
decomposition of transfer entropy using Imin as a redundancy
measure has a close relation to the notion of open-loop
controllability. We will now show that this is still the case
if Ired is used to decompose transfer entropy.

Perfect controllability, as defined in Ref. [29], means that
for all initial states x ∈ X and final states x ′ ∈ X there exists
a control state c ∈ C such that p(x ′|x,c) = 1. The following
equivalence is then shown in Ref. [17]:

Lemma 4. A system is perfectly controllable if and only if
for any x ′ there exists a distribution p(c|x) such that p(x ′) = 1
for any distribution p(x).

It follows also that if a system is perfectly controllable, there
exists an x ′ such that p(x ′|x) = 1 for each x ∈ X ; see Ref. [17]
for a proof. Now, a system has perfect open-loop controllability
if and only if it has perfect controllability and I (X; C) = 0.
Moreover, in Ref. [17], it is shown that the following theorem
holds:

Theorem 1 (Williams and Beer). A system is perfectly open-
loop controllable if and only if it is perfectly controllable with
vanishing state-dependent transfer entropy (using Imin) from
C to X′.

We will now also show that this theorem still holds in the
case where the decomposition using our measure of redundant
information Ired is used. To prove the theorem we will use the
following lemma. It is shown in Ref. [17] that the condition of
the lemma is fulfilled for any perfect open-loop controller and,
thus, proves the direct part of the theorem (perfect open-loop
controllability implies perfect controllability with zero SDTE
using Ired as a redundancy measure).

Lemma 5. If p(x ′|x,c) = p(x ′|c) x ′ ∈ X ,∀x ∈ X ,c ∈ C,
then the STDE from C to X′ is zero.

Proof. From Eqs. (28)–(31) it follows that

�′(X′; {C,X}) � I (X′; X,C) − I (X′; X)

− I (X′; C) + �′(X′; {C},{X}).
Using the definition of the redundancy measure from Eq. (13)
we get

�′(X′; {C,X}) � I (X′; X,C) − I (X′; X)

− I (X′; C) + Iπ
X′ (X ↘ C) . (40)

The synergy is non-negative and now the right-hand side
can be reformulated as in Eq. (A10). But with p(x ′|x,c) =
p(x ′|c) ∀x,x ′ ∈ X ,c ∈ C the positive Kullback-Leibler diver-
gences in Eq. (A10) all vanish. Therefore, �′(X′; {C,X}) =
0. �

For the converse direction, perfect controllability and
vanishing STDE (from C to X′) imply perfect open-loop
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controllability, and we, first, need to prove the following
lemma:

Lemma 6. If a system is perfectly controllable with a
distribution p(c|x), then Ired(X′; X,C) = 0.

Proof. From Lemma 4 it follows that p(x ′) = 1 for
some x ′ ∈ X as well as p(x ′|x) = 1 for all x ∈ X and,
therefore, Ccl(〈X〉Z) in �(X′) is just {p(x ′)}, which implies
Iπ
X′ (C ↘ X) = 0. Thus, it follows that Ired(X′; X,C) = 0. �

Thus, for the converse direction, starting with perfect
controllability and vanishing STDE, we have the following
equality:

0 = �′(X′; {C,X}), (41)

= I (X′; X,C) − I (X′; X) − I (X′; C)

+ Ired(X′; X,C), (42)

= I (X′; X,C) − I (X′; X) − I (X′; C), (43)

=
∑
x,c,x ′

p(x ′,x,c) log
p(x ′|x,c)p(x ′)
p(x ′|c)p(x ′|x)

, (44)

as we also have p(x ′|x) = p(x ′) because of perfect controlla-
bility,

=
∑
x,c,x ′

p(x ′,x,c) log
p(x ′|x,c)

p(x ′|c)
. (45)

We also know that for every x ∈ X there exists x ′ ∈ X and
c ∈ C such that p(x ′|x,c) = 1. Thus, for any x ′ ∈ X there
exists a c ∈ C such that p(x ′|c) = 1. It is shown in Ref. [17]
that this is equivalent to open-loop controllability.

Hence, we have shown that Theorem 1 also holds if we
apply Ired as the underlying redundancy measure and the
relation between open-loop controllability and decomposition
of transfer entropy is transferable to our new measure.

V. DISCUSSION

The motivation for this paper was to overcome the short-
comings of current measures of redundancy and synergy. We
introduced a new measure for bivariate redundant information.
Redundant information between two random variables is
information that is shared between two variables. In contrast
to mutual information, redundant information denotes infor-
mation with respect to the outcome of a third variable. Our
measure is conceptually motivated by measuring similarities in
the direction of change in the outcome distribution, depending
on which input is observed. We proved that the construction
adheres to properties of redundancy as stated in the literature
and can be used for a non-negative decomposition of mutual
information. The measure is closely related to the concept of
minimal information as introduced in Ref. [12].

We demonstrated in several examples that Ired follows
several intuitions about redundancy. Furthermore, it is possible
to decompose transfer entropy as considered in Ref. [17]; in
particular, we showed that using minimal information instead
of redundant information to decompose transfer entropy can
lead to the detection of fake state-dependent transfer entropy.
We were able to prove that the results about open-loop
controllability from Ref. [17] are also applicable to the

decomposition using Ired. Thus, our measure is able to serve as
a replacement for the bivariate version of minimal information.

A particular insight of our definition is the emphasis of
mechanisms in the concept of redundant information, which
has been rather neglected in the literature so far. First, we
linked bivariate redundant information in the case of a copying
mechanism to the mutual information between the input
variables. We identify redundant information that already
appears in the inputs with source redundancy, contrary to
redundant information that is only due to the mechanism,
as demonstrated in the AND gate or the 50:50 readout. We
identify this kind of redundancy with mechanistic redundancy.
This is in contrast to the redundancy measure proposed in
Ref. [18], which does not capture mechanistic redundancy.
The separation of both kinds of redundancy is not explicit at
this point, and currently we do not yet propose a clear and
obvious separation of mechanistic and source contributions of
redundant information.

Future work will show whether it is possible to separate the
two concepts of mechanistic and source redundancy when they
appear simultaneously. Another limitation we currently have is
the restriction to a bivariate measure. In general, however, there
are applications where it is interesting to be able to compute re-
dundant information between more than two variables [12,30].
However, the geometric structure for this problem gets
significantly more complex, and it is, for example, not entirely
clear by what the identity property should be replaced in the
multivariate case. There are several ways to generalize mutual
information to a multivariate measure, none of which seems
to be fitting in this case. The construction of a multivariate
measure of redundant information, as well as a generalization
to continuous random variables is part of ongoing research.
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APPENDIX: SUPPLEMENTAL PROOFS

The supplemental proofs were left out of the main text
to increase readability. The proofs are mainly technical and
understanding of the proposed measure should not be less if
omitted.

Proposition 4. Ired(Z; X,Y ) � I (Z; X).
Proof. Using the expression of projected information as a

difference of Kullback-Leibler divergences, we get

Ired(Z; X,Y ) � Iπ
Z (X ↘ Y ) =

∑
x

p(x)[DKL(p(z|x) || p(z))

−DKL(p(z|x) || p(x↘Y )(z))], (A1)

= I (Z; X) −
∑

x

p(x)DKL(p(z|x)||p(x↘Y )(z)).

(A2)

Hence, it follows that Ired(Z; X,Y ) � I (Z; X) as the KL
divergence is non-negative [2]. �
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Proposition 5. Ired(Z; X,Y ) � Ired(Z; X,(Y,W )).
Proof. From Lemma 9 it follows directly that Iπ

Z (X ↘ Y ) �
Iπ
Z (X ↘ (Y,W )); furthermore, from Lemma 10, Iπ

Z (Y ↘
X) � Iπ

Z ((Y,W ) ↘ X), respectively. Hence, we conclude
Ired(Z; X,Y ) � Ired(Z; X,(Y,W )). �

Lemma 7. If Z = (X,Y ) and (x ′,y ′) denote an event of Z,
then p(y ′↘X)(x ′,y ′) = p(x ′↘Y )(x ′,y ′) = p(x ′|y ′)p(y ′|x ′).

Proof. Let r ∈ Ccl(〈X〉Z), which is of the form

r(x ′,y ′) =
∑

x

αxp(x ′,y ′|x) = αx ′p(y ′|x ′), (A3)

where αx � 0 and
∑

αx = 1. We also have

DKL(p(Z|y) || r), (A4)

=
∑
x ′,y ′

p(x ′,y ′|y) log
p(x ′,y ′|y)

αx ′p(y ′|x ′)
, (A5)

=
∑
x ′

p(x ′|y) log
p(x ′|y)

αx ′p(y|x ′)
. (A6)

A simple calculation shows that the point αx ′ = p(x ′|y)
fulfills the Karush-Kuhn-Tucker (KKT) conditions [31] for
the minimization of Eq. (A6) with respect to the vector
αx ′ and the simplex constraints. The KL divergence is
convex in the second parameter [2] and, thus, it follows
from the KKT conditions that αx ′ = p(x ′|y) is a global
solution for the constrained minimization of the KL divergence
DKL(p(Z|y) || r) parametrized by αx as in Eq. (A6) and, in
turn, r(x ′,y ′) = p(x ′|y)p(y|x ′). If we now set y ′ = y, then
we get p(y ′↘X)(x ′,y ′) = p(x ′|y ′)p(y ′|x ′) and p(x ′↘Y )(x ′,y ′) =
p(x ′|y ′)p(y ′|x ′), respectively. �

Lemma 8. I (Z; X,Y )−I (Z; X)−I (Z; Y ) + Iπ
Z (X ↘ Y ) �

0.
Proof. We can reformulate the left-hand side,

I (Z; X,Y ) − I (Z; X) − I (Z; Y ) + Iπ
Z (X ↘ Y ) (A7)

= I (Z; X,Y ) − I (Z; Y )

−
∑

x

p(x)DKL(p(z|x) || p(x↘Y )(z)), (A8)

=
∑
x,y

p(x,y)DKL(p(z|x,y) || p(z|y))

−
∑

x

p(x)DKL(p(z|x) || p(x↘Y )(z)), (A9)

=
∑

x

p(x)

[(∑
y

p(y|x)DKL(p(z|x,y) || p(z|y))

)

− DKL(p(z|x) || p(x↘Y )(z))

]
, (A10)

and now by the convexity of the Kullback-Leibler divergence,

�
∑

x

p(x)

[
DKL

(∑
y

p(y|x)p(z|x,y)

∥∥∥∥∥
∑

y

p(y|x)p(z|y)

)

− DKL(p(z|x) || p(x↘Y )(z))

]
(A11)

=
∑

x

p(x)[DKL(p(z|x) || r(z|x))

−DKL(p(z|x) || p(x↘Y )(z))], (A12)

where r(z|x) := ∑
y p(y|x)p(z|y) ∈ Ccl(〈Y 〉Z) and, thus,

DKL(p(z|x) || r(z|x)) − DKL(p(z|x) || p(x↘Y )(z))

� 0 for all x ∈ X . (A13)

�
Lemma 9. For all x ∈ X and random variables Y and W ,∑

p(z|x)[log p(x↘(Y,W ))(z) − log p(x↘Y )(z)] � 0. (A14)

Proof. Let x ∈ X , as Ccl(〈Y 〉Z) ⊆ Ccl(〈(Y,W )〉Z) [note that
p(z|y) = ∑

w p(w)p(z|y,w)]. We have, due to the definition
of the projection, that∑

p(z|x) log
p(z|x)

p(x↘(Y,W ))(z)
�

∑
p(z|x) log

p(z|x)

p(x↘Y )(z)
,

(A15)

⇐⇒
∑

p(z|x) log p(x↘(Y,W ))(z) �
∑

p(z|x) log p(x↘Y )(z).

(A16)

�
Lemma 10. For all (y,w) ∈ Y × W∑

p(z|y,w)[log p((y,w)↘X)(z) − log p(y↘X)(z)] � 0.

(A17)

Proof. By definition, we have that r = p((y,w)↘X) is mini-
mizing DKL(p(z|y,w)||r), therefore∑

p(z|y,w) log
p(z|y,w)

p((y,w)↘X)(z)

�
∑

p(z|y,w) log
p(z|y,w)

p(y↘X)(z)
, (A18)

⇐⇒
∑

p(z|y,w) log p((y,w)↘X)(z)

�
∑

p(z|y,w) log p(y↘X)(z). (A19)

�
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