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Coarsening dynamics of nonequilibrium chiral Ising models
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We investigate a nonequilibrium coarsening dynamics of a one-dimensional Ising spin system with chirality.
Only spins at domain boundaries are updated so that the model undergoes a coarsening to either of equivalent
absorbing states with all spins + or −. Chirality is imposed by assigning different transition rates to events
at down (+−) kinks and up (−+) kinks. The coarsening is characterized by power-law scalings of the kink
density ρ ∼ t−δ and the characteristic length scale ξ ∼ t1/z with time t . Surprisingly the scaling exponents
vary continuously with model parameters, which is not the case for systems without chirality. These results are
obtained from extensive Monte Carlo simulations and spectral analyses of the time evolution operator. Our study
uncovers the novel universality class of the coarsening dynamics with chirality.
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Coarsening takes place in various systems such as magnetic
systems, binary alloys, and social systems with opinion dy-
namics. When a system is quenched from a high-temperature
disordered phase to a low-temperature ordered phase, a typical
size of domains grows in time following a power law,

ξ ∼ t1/z, (1)

with dynamic exponent z. It is known that coarsening systems
are classified into a few universality classes depending on spa-
tial dimensionality, order parameter symmetry, conservation
in dynamics, and so on [1].

The Ising model is one of the best studied coarsening
systems. It is symmetric under the global spin inversion
(Z2 symmetry) and has a scalar order parameter. Under the
single-spin-flip Glauber dynamics [2] that does not conserve
the order parameter, the coarsening dynamics is characterized
by z = 2. On the other hand, the dynamic exponent is given
by z = 3 under the spin-exchange Kawasaki dynamics [3]
conserving the order parameter. Systems with nonscalar order
parameter constitute distinct universality classes [1].

A coarsening process is rather simple in systems with
discrete symmetry and nonconserving dynamics in one dimen-
sion. Consider a one-dimensional (1D) Ising spin chain with
the Glauber dynamics at zero temperature, or equivalently the
voter model [4]. In this model, only spins at domain boundaries
can flip so that domain walls diffuse and annihilate in pairs. The
diffusive nature suggests that the dynamic exponent is given
by z = 2 and that the domain wall density decays algebraically
as

ρ ∼ t−δ, (2)

with an exponent δ = 1/2. These scaling laws are verified by
the exact solution [2,5,6].

The power-law scaling with z = 2 and δ = 1/2 seems to
be robust in one dimension. The q-state Potts model with
the zero-temperature Glauber dynamics exhibits the same
scaling behavior [5,7–9]. It is also observed in nonequilibrium
systems. Consider the voter model with an additional exchange
process of neighboring spins [10]. It is equivalent to the
branching annihilating random walk (BAW) model [11,12],

where domain walls diffuse, annihilate in pairs, and branch
two offsprings. Despite the branching, the model displays
the coarsening with the same exponents [12,13]. The voter
model with a kinetic constraint also displays the same scaling
behavior with a logarithmic correction [14].

Most studies on the coarsening have focused on the role
of order parameter symmetry [1]. On the other hand, some
dynamical systems are characterized by coupled symmetry and
little is known about the coarsening dynamics in such systems.
In this paper, we investigate the coarsening dynamics of a 1D
Ising spin system which is invariant under the simultaneous
inversion of spin and space. Remarkably, the model with the
coupled symmetry constitutes a novel universality class that is
characterized by continuously varying exponents.

Initial motivation of this work was to study a one-
dimensional version of the flocking model introduced by
Vicsek et al. [15] (Vicsek model, or VM for short). In the
VM, the motion of each particle i at position r i is described
by a velocity vector vi of a constant speed. Each time step,
the direction of vi is updated to the average direction of
particles within a fixed distance perturbed by a random noise.
The system coarsens into a flocking phase when the noise
strength is small [15,16]. Note that spatial isotropy is broken
spontaneously due to the motion of particles. Consequently,
the model is chiral, i.e., symmetric under the simultaneous
rotation/inversion of the velocity and the space.

In a 1D chain, the velocity of a self-propelled particle is
restricted to be one of +1 or −1, once the speed of each particle
remains constant just like the VM. Particles are assumed to
see only along the direction it moves and the range of sight is
limited to be 1. This one-dimensional system may be realized
by the motion of myopic ants along a pheromone trail [17,18].
If a right-moving ant meets a left-moving one, both ants either
align to the same direction or just pass each other.

This model can be represented by an Ising spin system
{σ = (σ1, . . . ,σN )} with velocity σi = ±1 in a 1D lattice of
N sites under periodic boundary conditions. Here we assume
that the density of particles is 1, but the generalization to
systems with smaller density is straightforward. In terms of
the Ising spins, the VM-like interaction in one dimension can
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be represented by the following update rule:

+− u−→ −+, −+ ū−→ +−,
(3)

+− v/2−→
{++,

−−,
−+ v̄/2−→

{++,

−−,

where parameters over the arrows denote the transition rates
of corresponding events. For theoretical reason, we also
introduced the interaction of a local configuration −+. Without
losing generality, we will set u + v = 1 and ū + v̄ � 1.

Our model is characterized by the chirality: The transition
rates for events associated with down kinks (+− pairs) and
up kinks (−+ pairs) are different. This chirality breaks the Z2

symmetry, but leaves system invariant under the simultaneous
inversion of spin and space, σi → −σ−i . Emphasizing the
role of the chirality, the model will be referred to as the
nonequilibrium chiral Ising model (NCIM). The chirality is
irrelevant for equilibrium Ising systems [19]. However, it turns
out to result in an interesting feature in nonequilibrium cases.

The NCIM reduces to the voter model when v = v̄ and
u = ū = 0, and the asymmetric simple exclusion process
(ASEP) [4] when v = v̄ = 0. A mixture of them was studied
in Refs. [20,21] and was found to display complicated scaling
behaviors. When u = ū and v = v̄ (Z2 symmetric case without
chirality), the model becomes equivalent to the BAW model
[12]. It is solvable exactly [13] and the kink density decays
with δ = 1/2 for all u < 1. Note that the NCIM is different
from the so-called directed Ising model in which kinks are
biased to a preferred direction [22,23].

First, we study the maximum chirality case with ū = v̄ = 0.
For convenience, we refer to this case as the maximum chirality
model (MCM).

The system is prepared in an antiferromagnetic state (· · · +
− + − · · ·) initially. Then, we measure the total kink density
and average it over NS samples to obtain ρ(t) for t � 107.
Figure 1(a) shows the numerical data. The system sizes are
N � 221 and the number of runs is NS = 5000 for all u. The
system sizes are large enough that the relaxation time scales
are much larger than the simulation time. Hence, the data are
free from a finite size effect. Just like the BAW model, we
observed ρ(t) decays in a power-law fashion ρ(t) ∼ t−δ for
all u < 1. Interestingly, the scaling exponent δ seems to vary
with u.
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FIG. 1. Plots of ρ(t) in (a) and ξ (t) in (b). Dashed curves are for
u = 0.0 while solid curves are for u = 0.1,0.2, . . . ,0.9 from bottom
to top.
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FIG. 2. Plots of effective exponents δeff for (a) u = 0, (b) 0.3,
(c) 0.6, and (d) 0.9.

In order to estimate the scaling exponent δ precisely, we
investigate the behavior of an effective exponent defined as

δeff(t) = − log[ρ(t)/ρ(t/b)]/ log b, (4)

with a constant b = 10. A power-law scaling implies that
the effective exponent is constant and equal to the scaling
exponent. However, due to a correction-to-scaling behavior
such as, e.g., ρ(t) � t−δ(a + ct−ζ ) with a leading correction-
to-scaling exponent ζ , it behaves as δeff(t) � δ + a1t

−ζ in the
long time limit. So when we draw δeff against t−ζ with a correct
value of ζ , δeff(t) should approach to δ with a finite slope as
t → ∞.

Figure 2 presents the behavior of the effective exponents for
u = 0, 0.3, 0.6, and 0.9. The correction-to-scaling exponent
ζ are roughly estimated from a fitting of δeff(t) to the from
δ + a1t

−ζ with three fitting parameters δ, a1, and ζ . This
procedure can be error prone and the accuracy of the estimated
ζ may be questionable. For example, the fitting yields slightly
different numerical values of ζ depending on the fitting
interval. This contributes to a systematic error in δ. However,
such a systematic error is smaller than a statistical error in
δeff(t) in the large t region in all values of u. From the
correction-to-scaling analysis, we can estimate the scaling
exponent δ precisely and reliably. At other values of u,
we also performed the same analysis. Table I summarizes
thus-obtained numerical results of δ for various u’s and Fig. 3
illustrates δ against u. The error bars in Table I account for the
statistical uncertainty.

The intriguing feature of the MCM is that the exponent δ

varies continuously with u beyond the error bars. Furthermore,
as u approaches 1, δ seems to show a nontrivial power-law
behavior. Indeed, if we fit δ for the region u � 0.6 using δ ≈
a2(1 − u)χ , with two fitting parameters a2 and χ , we found
that it fits the data quite well with a2 ≈ 0.5 and χ ≈ 0.62 ±
0.03; see Fig. 3. This singular behavior of δ at u = 1 may be
attributed to a crossover from the mean-field voter dynamics
to the MCM.

When u is very close to 1 but not exactly 1, the voter
dynamics which occurs with rate v = 1 − u happens after
many attempts of the ASEP dynamics. Since the stationary
state of the ASEP is totally uncorrelated [4], the voter dynamics
can happen only after all spins are distributed almost randomly.
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TABLE I. Numerical values of δ and z of the MCM for various
values of u. For z, we present the results from the seed simulations
[z (seed)] and from the eigenspectrum analysis [z (spectrum)]. The
numbers in parentheses indicate errors of the last digits.

u δ z (seed) z (spectrum)

0 0.5000(1) 1.998(8) 2.0000(6)
0.1 0.4678(2) 1.877(9) 1.8789(5)
0.2 0.4346(3) 1.769(4) 1.7683(6)
0.3 0.4001(2) 1.667(2) 1.6666(6)
0.4 0.3639(5) 1.570(6) 1.5716(8)
0.5 0.3254(5) 1.483(4) 1.4818(7)
0.6 0.2837(4) 1.397(4) 1.3958(4)
0.7 0.2376(8) 1.313(6) 1.3117(8)
0.8 0.1850(8) 1.228(3) 1.227(2)
0.9 0.1195(3) 1.139(6) 1.136(5)

Hence, if we rescale the time as τ = (1 − u)t and take a limit
u → 1 with τ kept finite, the MCM should be the same as a
mean-field voter model on a complete graph. Since coarsening
does not occur on a complete graph of infinite size, δ should
be zero in the above-mentioned limit. Thus, there should be a
crossover from the mean-field voter dynamics to the 1D MCM
at u = 1.

We have also performed independent Monte Carlo sim-
ulations starting with a single down kink, called a seed,
in the middle of an infinite lattice (· · · + + + − − − · · ·),
which are generally referred to as seed simulations. We have
measured the particle spreading distance ξ (t) to obtain the
dynamic exponent z. When u �= 0, the seed branches other
kinks spreading through the space. The spreading distance
ξ (t) is given by the distance between the rightmost kink and
the leftmost kink. When u = 0, the seed diffuses only. So, ξ (t)
is taken as the distance of the seed from the starting position.

The numerical data are presented in Fig. 1(b). The number
of samples for the data are NS = 106 at u � 0.3, NS = 105 at
u = 0.4,0.5,0.6, NS = 104 at u = 0.7,0.8, and NS = 103 at
u = 0.9. We find that the spreading length scaling follows the
power-law scaling ξ (t) ∼ t1/z with the exponent z varying with
u. In order to obtain the precise estimate of z, we followed the
similar effective exponent analysis as done for δ. The effective
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FIG. 4. Plots of effective exponents zeff for (a) u = 0, (b) 0.3,
(c) 0.6, and (d) 0.9.

exponent for the dynamic exponent is defined as

zeff(t) = {log[ξ (t)/ξ (t/b)]/ log b}−1 , (5)

with b = 10. Due to a correction-to-scaling behavior, zeff(t)
approaches the asymptotic scaling exponent value with a
power-law correction as zeff(t) = z + a′t−ζ ′

with constants a′
and ζ ′. Figure 4 presents the correction-to-scaling analysis
result for the dynamic exponent at u = 0, 0.3, 0.6, and 0.9. As
in the previous case, the statistical uncertainty dominates the
systematic error in z. The result is summarized in Table I.

We substantiate the Monte Carlo results by studying the
spectrum of the time evolution operator of the MCM. In
general, a master equation can be mapped to an imaginary time
Schrödinger equation with Hamiltonian H whose eigenvalues
contain most of the relevant information of the system. For
instance, the directed percolation system has been studied
successfully with the eigenspectrum analysis [24–26].

For the MCM, the Hamiltonian takes the form,

H = 1

4

N∑
i=1

(
1 + σ̂ z

i

)(
1 − σ̂ z

i+1

) − u

N∑
i=1

σ̂−
i σ̂+

i+1

− (1 − u)

4

N∑
i=1

{
σ̂−

i

(
1 − σ̂ z

i+1

) + (
1 + σ̂ z

i

)
σ̂+

i+1

}
, (6)

where σ̂i is the Pauli spin operator acting on a spin at site
i. We label eigenvalues of H as En with n = 1, . . . ,2N and
call En the energy of the nth level. Since H is not Hermitian,
En may have a complex value. The eigenvalues are sorted in
the ascending order of Re[En], the real part of En. There are
two trivial levels with E1 = E2 = 0 corresponding to the two
absorbing states with all spins having the same sign. Other
low-lying energy levels with n > 2 define the relaxation time
as τn = 1/(Re[En]).

We have diagonalized numerically the Hamiltonian up
to N = 20 to obtain the longest relaxation time τ3. Since
τ3 ∼ Nz, the dynamic exponent z is estimated by extrapo-
lating an effective exponent zeff(N ) ≡ ln[τ3(N )/τ3(N − 2)]/
ln[N/(N − 2)]. The effective exponents are plotted in Fig. 5.
The effective exponents are extrapolated using the Bulirsch-
Stoer (BST) algorithm with an assumption of a power-
law correction as zeff(N ) = z + aN−ω + · · · [27,28]. The
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FIG. 5. (Color online) Effective exponents for the dynamic
exponent z obtained from the spectrum analysis and their extrapolated
estimates. Lines are guides to the eyes.

correction-to-scaling exponent ω is not known a priori.
Hence, we apply the BST algorithm with several values of
ω = 0.5,1.0, . . . ,3.0. The numerical values for z are obtained
as the average of them. Error bars are estimated as the
maximum deviation between them. They are plotted in Fig. 5
and summarized in Table I. Both results for z from the spectrum
analysis and from the seed simulation are in perfect agreement
with each other and vary continuously with u.

We have shown that the coarsening dynamics of the MCM
is characterized by continuously varying critical exponents.
Note that chirality lies both in the ASEP events (u �= ū) and
the voter-model events (v �= v̄). In order to investigate which
one is the essential ingredient, we studied two more cases: One
is the case with u = ū and v �= v̄ = 0 which will be called
the symmetric exclusion and chiral voter (SECV) model and
the other is the case with u �= ū = 0 and v = v̄ to be called
the chiral exclusion and symmetric voter (CESV) model. The
CESV model is a particular limiting case of the model studied
in Refs. [20,21]. Remind that v is always set to 1 − u.

The analyses of δeff for the SECV with u = 0.1, 0.2, 0.5,
and 0.8 are summarized in Fig. 6. It seems that δeff(t) for all
u approaches 1/2 with logarithmic corrections. Notice that if
there exists a logarithmic correction as

ρ(t) ∼ (ln t + C)κ/tδ, (7)

with a constant C, the effective exponent defined in Eq. (4)
should behave as δeff(t) ≈ δ − κ/ln t in the asymptotic regime.
Thus, if we plot δeff(t) as a function of 1/ ln t , the effective
exponent should intersect the y axis with slope −κ . This
phenomenon is quite pronounced for the cases of u = 0.5
and 0.8 and the slope seems to be around 0.5. Indeed, if
ρ(t)

√
t/(ln t)0.53 is plotted against t on a semilogarithmic scale

(see inset of Fig. 6 for the case of u = 0.8), a flat region is
observable in the long time limit for more than two log decades.
Although the accurate value of κ is hard to estimate, we can
conclude that there exists a systematic logarithmic correction
as shown in Eq. (7) with the leading scaling exponent δ = 1/2
unchanged in the SECV model.

A logarithmic correction in a 1D coarsening has been
reported in a different model [14] that corresponds to the voter
model with a weak kinetic constraint. In that model, the kink
density decays faster than 1/

√
t as 1/(

√
t ln t), but in our case
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it decays slower than 1/
√

t . Qualitatively, this slowing down
should be attributed to the presence of branching dynamics
which increases the number of kinks. However, a quantita-
tive analysis requires further investigation, which is beyond
the scope of this paper. For our purpose, it is enough to
conclude that the continuously varying exponents are not due
to the chiral voter dynamics.

The CESV model shows a more intriguing feature. We
present the effective exponent data for the density decay in
Fig. 7. For u = 0.2 [Fig. 7(a)], δeff seems to approach 0.5 with
negligible logarithmic correction. For u = 0.5 [Fig. 7(b)], we
cannot make a firm conclusion whether δ < 0.5 or δ = 0.5 due
to strong correction-to-scaling behavior. Quite interestingly,
when u > 0.5 [Figs. 7(c) and 7(d)], δ deviates from 0.5
significantly even under the assumption of a logarithmic
correction. So we conclude that the CESV has continuously
varying exponents with possible logarithmic corrections when
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u > 0.5. This study shows that the chirality in the spin ex-
change is responsible for the continuously varying exponents.
Nevertheless, it remains open why and when there appears a
logarithmic correction in the coarsening process.

To summarize, we have studied the one-dimensional coars-
ening dynamics of nonequilibrium Ising spin systems with
chirality. Although chirality is irrelevant in equilibrium Ising
systems, it turns out that the chirality can lead to continuously
varying scaling exponents in the nonequilibrium chiral Ising
model. In particular, it turns out that the chirality in spin
exchange plays a crucial role.

It is rare to observe continuously varying exponents from
systems without quenched disorder. The q-state Potts model
with zero-temperature Glauber dynamics was studied in
Refs. [8,9]. It was found that the critical exponent describing
the power-law decay of the persistent probability varies
continuously with q. Nevertheless, the coarsening dynamics is
still pure diffusive and characterized by z = 2 and δ = 1/2 at
all values of q. We notice that continuously varying exponents
were reported in a 1D sandpile model without dissipation [29]
and that there is actually a parallelism between this sandpile

model and the MCM. This connection will be discussed
elsewhere [30].

Some of Ising spin systems are exactly solvable in one
dimension [2,5,8,25], for equations governing the time evolu-
tion of correlation functions are closed. In the presence of the
chirality, however, the equations are not closed, which makes
the exact solution for the NCIM not available in general. Our
numerical finding of the universality class with continuously
varying exponents can be established more firmly if one finds
a minimal continuum equation obeying the proper symmetry
property. We leave it as a future work [30].
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99 (1999).
[27] R. Bulirsch and J. Stoer, Numer. Math. 6, 413 (1964).
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