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In the study of stochastic resonance, it is often mentioned that nonlinearity can enhance a weak signal embedded
in noise. In order to give a systematic proof of the signal enhancement in nonlinear systems, we derive an optimal
nonlinearity that maximizes a signal-to-noise ratio (SNR). The obtained optimal nonlinearity yields the maximum
unbiased signal estimation performance, which is known in the context of information theory. It is found that a
linear system is optimal for a Gaussian noise, but for a non-Gaussian noise, there exist nonlinear systems that
can achieve an SNR higher than that obtained from linear systems. This analysis refers to a system subjected to
an additive non-Gaussian noise with a small signal input.
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I. INTRODUCTION

Since the discovery of stochastic resonance (SR) [1–4],
positive applications of noise-mediated phenomena have been
tentatively explored, especially in the field of signal processing
[5–7]. Although a three-decade-long exploration of SR-based
signal processing has found its potential applicability in a
variety of systems, such as superconducting quantum inter-
ference devices (SQUIDs) [8,9] and sensory neurons [10–13],
there still remains an open question on the performance
of SR-based signal processing. In the occurrence of SR, a
stable state of a nonlinear system is modulated by a small
perturbation (weak input signal). The response of the system
is naively obtained from linear response theory. In a more
detailed analysis, the response of the system is affected by
a nonperturbative effect, which is the cooperation of noise
and nonlinearity. However, such a response in the presence of
white Gaussian noise has been shown to be smaller than those
of linear systems [14,15]. In contrast, a number of studies
report that SR driven by non-Gaussian noise achieves a signal
processing performance higher than those obtained by linear
systems [16–27]. Then, the natural question is, which type of
nonlinearity is optimal for a given type of noise to maximize
the signal processing performance? As the consequence of
the answer to this question, we give a systematic proof of
the existence of nonlinearities that exhibit signal processing
performance higher than a linear system in the presence of
non-Gaussian noise.

In this paper, we derive the optimal nonlinearity to maxi-
mize the signal-to-noise ratio (SNR), which is often used as an
indicator of signal processing performance. The improvement
of SNR is one of the traditional subjects in filtering theory. We
consider arbitrarily long time series of general types of additive
noise, which may have temporal correlations. Hence, the
obtained nonlinearity is regarded to be optimal over all filters.
Conventionally well-known filters such as adaptive [28,29]
and Kalman [30,31] filters satisfyingly work for a strong
signal compared with noise intensity. However, the signal
processing performances of these filters are deteriorated by
strong noises. The improvement of the SNR for a weak signal
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is, thus, an important and challenging problem. In this paper,
we consider such a weak signal input. Moreover, we assume
that the probability density of the noise is known. All filters
exploit the knowledge on noise statistics. For example, one
of the main components of adaptive filters is the estimator
for the noise characteristics. Kalman filters require the noise
model. For this reason, we investigate the optimal nonlinearity
for given noise statistics. Our approach establishes the basis
of the exploitation of a broad class of noise types by using
nonlinearities.

Surprisingly, the obtained nonlinearity yields the natural
unbiased estimator for the input signal that achieves the highest
estimation accuracy bounded by the Cramér-Rao inequality
[32,33]. This estimation is a simple linear process, while the
usual estimation as a postprocessing in the framework of in-
formation theory requires a highly nonlinear analysis [34–37].
Therefore, the optimization of nonlinearity of the system as
preprocessing yields simple postprocessing calculations to
obtain the estimated input signal with high accuracy.

In this paper, we consider a weak input signal. The
conventional techniques such as linear filtering work well
for a strong input signal. In contrast, the improvement of the
SNR for a weak input signal is an important and challenging
problem in various fields, not only in the field of traditional
signal processing but also in fields such as particle physics [38],
gravitational wave search [39], and medical science [40].
Moreover, we assume that the probability density of the noise
is known. It is often mentioned that adaptive filters exhibit
high signal processing performance when the noise statistics
is unknown. However, adaptive filters exploit the temporal
correlations of the received signals. This means that even
adaptive filters exploit the portion of noise statistics. In general,
an adaptive filter is regarded to estimate the probability density
of the noise [28,29]. For this reason, we investigate the optimal
nonlinearity for given noise statistics. Our approach establishes
the basis of the exploitation of a broad class of noise types by
using nonlinearities.

II. MODEL AND DEFINITION OF SNR

Generally, a signal processing device subjected to an
additive noise is described by a system in a discrete time form
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as

xi = Fi(s + z), (1)

where xi represents the output at time i, and the vectors s and
z denote the time sequences of the input signal and noise of
length N , respectively. The noise z is assumed to be additive,
but not necessarily Gaussian or white. The output x is assumed
to be given as a function of the input signal s added to the noise
z. The function Fi may depend on all components of the input
sequence s + z owing to the effect of memory and delay in
the system. This is often the case in a filtering process. We are
interested in the optimization of the function F, which denotes
the nonlinearity of our signal processing device, to maximize
the SNR of the output x defined below.

In a weak-signal regime, the output xi is described in the
framework of linear response theory as

xi = 〈Fi(z)〉 + 〈∂jFi〉sj + ξi + O
(
s2
i

)
, (2)

where 〈∂jFi〉 ≡ 〈∂Fi(z)/∂zj 〉 denotes the linear coefficient for
the input, and ξi ≡ Fi(z) − 〈Fi(z)〉 is the random part of the
output. The Einstein summation convention aibi ≡ ∑N

i=1 aibi

is used in this paper. 〈·〉 denotes the average over the noise, i.e.,
〈·〉 ≡ ∫ ·ρ(z)d z, with the probability density of the input noise
ρ(z). Note that the response coefficient and the noise part are
independent of the input signal in the linear response regime.

Considering the linear combination of {xi}, X = wixi , the
SNR for X is given as

R = wiwj 〈∂kFi〉〈∂lFj 〉sksl

Vijwiwj
, (3)

where Vij ≡ 〈ξiξj 〉 − 〈ξi〉〈ξj 〉. The above SNR is maximized
with respect to the weight wk by solving ∂R/∂wk = 0. The
result reads the SNR as

R = 〈∂kFi〉V ij 〈∂lFj 〉sksl , (4)

where we used the notation of the inverse matrix CijCjk = δi
k ,

with δi
j denoting Kronecker δ. This SNR is a natural extension

of the conventional SNR defined by Fourier power spectrum
in the presence of white noise. In this paper, we maximize this
SNR with respect to the nonlinearity F.

III. OPTIMAL NONLINEARITY

A. General case

Owing to the linear response theory, the SNR Eq. (4) yields
the optimal nonlinearity regardless of the waveform of the
input signal. The optimal nonlinearity is determined only by
the probability density of the input noise ρ(z) when the input
signal is sufficiently weak.

The optimal nonlinearity F∗ is determined by the functional
derivative of the SNR δR/δF(z) = 0 as

F ∗
i (z) = Ai − Bik∂

k ln ρ(z), (5)

where A is an arbitrary real constant vector and B is an
arbitrary real regular matrix. This choice of the nonlinearity
F∗ yields the SNR as

R∗ = I ij (0)sisj ,
(6)

I ij (s) =
∫

μ( y|s)
∂ ln μ( y|s)

∂si

∂ ln μ( y|s)

∂sj

d y,

where I(s) is the Fisher information matrix, and μ( y|s) =
ρ( y − s) = ρ(z) is the conditional probability density of the
input y = s + z with the condition where the input signal is s.
Note that this SNR is independent of the arbitrary constants A
and B. The constant A corresponds to the offset of the output
A = 〈F(z)〉, and B determines the scale of the output. These
constants play the role of gauge and are irrelevant to the SNR.

The optimal nonlinearity F∗ given in Eq. (5) claims that
a linear system exhibits the highest SNR only when the input
noise obeys a Gaussian distribution. In contrast, if the input
noise is non-Gaussian, the optimal input-output characteristic
F∗ is nonlinear. Thus, Eq. (5) confirms the existence of
nonlinear systems with the SNR higher than that of linear
systems in the presence of non-Gaussian noise that has been
reported in the literature. Note that the term “Gaussian” here
includes Ornstein-Uhlenbeck-like temporal correlations, since
ρ(z) represents the path probability of noise.

B. Homogeneous white noise

The joint probability of the homogeneous white noise z is
given as ρ(z) = ∏N

i=1 ρ0(zi). Substituting this probability into
Eq. (5) and choosing the gauge as Ai = α and Bij = βδij , the
optimal nonlinearity is expressed as

F ∗
i (z) = α − β∂i ln ρ0(zi) (7)

for all 1 � i � N . In this case, the Fisher information matrix
is diagonalized. Correspondingly, the SNR in this case is given
simply by the scalar Fisher information as

R∗ = I(0)Ps, I(s) =
∫

μ0(y|s)

[
∂ ln μ0(y|s)

∂s

]2

dy, (8)

where Ps = ∑N
i=1 s2

i is the input signal power and μ0(y|s) =
ρ0(y − s) = ρ0(z) is the probability density of the input y =
s + z when the input signal is s. Note that R∗/Ps is independent
of the waveform of the weak input signal s, since all of the
eigenvectors for the Fisher information matrix degenerate in
this case.

In order to verify our results, we investigate the SNR for the
optimal nonlinearity in the presence of homogeneous white
non-Gaussian noise. As a simple example, we use a noise
obeying a mixed Gaussian distribution ρ0(z) = p+ exp[−(z −
z+)2/2σ 2

+]/
√

2πσ 2+ + p− exp[−(z − z2
−)/2σ 2

−]/
√

2πσ 2− with
p+ + p− = 1. The SNR for the optimal nonlinearity is plotted
as a function of σ+ in Fig. 1. The parameters are set to be p+ =
0.7, z+ = 0.1, z− = −0.1, σ− = 1.0 fixed, and σ+ varies. The
gauge is fixed as α = 0 and β = 1. For comparison, the SNRs
for a linear system Fi(z) = zi and a simple threshold system
Fi(z) = sgn(zi − θ ), which is a typical system investigated in
the study on SR phenomena, are displayed. The threshold is
set to be θ = 0.5.

In the simulation, the signal part of the output is evaluated
by subtracting the offset 〈Fi(z)〉 = α from the sample average
of the output

∑N
i=1 Fi(s + z)/N , according to the signal

estimation algorithm proposed in Sec. IV. Similarly, the noise
intensity of the output is evaluated by subtracting the estimated
signal part of the output Sest = ∑N

i=1 Fi(s + z)/N − α from
the obtained output data as

∑N
i=1[Fi(s + z) − Sest]2/N . The

simulation results displayed in Fig. 1 are obtained for the signal
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FIG. 1. (Color online) SNRs obtained from numerical simula-
tions for the optimal nonlinearity (circles), a linear system (squares),
and a simple threshold system (cross marks) in the presence of white
mixed Gaussian noise. The solid line is the theoretically predicted
SNR for the optimal nonlinearity.

si = V for i � N/2, si = −V for i > N/2, with V = 0.1 and
N = 1000.

As seen in Fig. 1, the optimal nonlinearity exhibits a
higher SNR than other systems. It is found that the SNR
for the optimal nonlinearity decreases with the increase of
σ+ in the small σ+ region, but slightly increases in the
region of large σ+. In contrast, the linear system shows
a monotonically decreasing SNR with the increase of σ+.
In the above parameter settings, the optimal nonlinearity is
approximated by a linear function as F ∗(z) ≈ z/σ 2 when
σ+ ≈ σ− = σ . The tangent appearance of the SNRs for the
optimal nonlinearity and a linear system around σ+ = 1.0
is due to this reason. Furthermore, it is found that a simple
threshold system exhibits a higher SNR than that of a linear
system in the large σ+ region. Such an improvement of the
SNR by using a nonlinear system cannot be expected in the
presence of a Gaussian noise. This effect is due purely to the
non-Gaussian property of the input noise.

C. Homogeneous Markovian noise

Consider the input noise generated from homogeneous
Markovian process. If the initial condition is chosen as
the stationary density for the Markovian process, the
joint probability density of the noise is given as ρ(z) =
[
∏N−1

i=1 T (zi+1|zi)]ρst(z1), where T (zi+1|zi) denotes the tran-
sition probability and ρst is the stationary density of the noise.
For simplicity, we choose the gauge as Ai = α and Bij = βδij .
In this case, the optimal nonlinearity F ∗

i (z) depends only on
zi−1, zi , and zi+1. Correspondingly, the Fisher information
matrix becomes tridiagonal. Owing to the homogeneity and
stationarity of the Markovian process, the Fisher information
matrix is given as I ij = γ0δ

ij + γ1(δi,j−1 + δi,j+1), where

γ0 =
∫

ρ(z)[∂1 ln ρ(z)]2d z,
(9)

γ1 =
∫

ρ(z)[∂1 ln ρ(z)][∂2 ln ρ(z)]d z.

As seen in Eq. (6), the eigenvalue for the matrix I gives
the SNR for the input signal whose waveform is the corre-
sponding eigenvector. The eigenvalue is exactly obtained as
γ0 + 2γ1 cos[kπ/(N + 1)] for the corresponding eigenvector
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FIG. 2. SNRs obtained from numerical simulations for the opti-
mal nonlinearity (solid line) and the input channel (dotted line) in the
presence of noise generated from Markovian process. The parameter
φ corresponds to the noise intensity.

s
(k)
i = sin[ikπ/(N + 1)], where k = 1, . . . ,N . Therefore, the

upper bound of the SNR is given as R � γ0 + 2|γ1| in the
presence of homogeneous Markovian noise.

In Fig. 2, the simulation results for Markovian noise are
shown. The optimal SNR for a weak signal si = V s

(N)
i per unit

input signal power R∗/Ps is compared with that at the input
channel, i.e., 〈z2

i 〉−1. The amplitude of the signal is chosen as
V = 0.1. In the simulation, the transition probability is given
as T (zi+1|zi) = exp(−|zi+1 − gzi |/φ)/2φ with g = 0.7. The
result displayed in Fig. 2 is the average over 100 independent
samples of the inputs and outputs of length N = 1000. It is
numerically checked that the SNR for the optimal nonlinearity
is approximated as γ0 + 2|γ1|.

IV. LINEAR ESTIMATION OF INPUT SIGNAL

As shown in the previous section, the SNR for the optimal
nonlinearity Eq. (6) is expressed in terms of the Fisher
information. The Fisher information connects the input signal
s, which is to be estimated, with the observed input with noise
y = s + z. In order to estimate the unknown input signal s,
the observed value of y and its conditional probability density
μ( y|s) are exploited. However, since y is a random variable,
the estimated input signal ŝ is also a random variable, and
the accuracy of the estimation is bounded by its covariance
matrix [Cov(ŝ)]ij ≡ 〈ŝi ŝj 〉 − 〈ŝi〉〈ŝj 〉. It is well known that the
Cramér-Rao inequality [32,33] gives the lower bound of the
covariance Cov(ŝ) of the unbiased estimator, i.e., 〈ŝ〉 = s, as

Cov(ŝ) � I−1(s), (10)

which means that vTCov(ŝ)v � vTI−1(s)v always holds for
an arbitrary real vector v. For a weak input signal |s| → 0, the
accuracy of the estimation of the input signal is then bounded
by the Fisher information matrix I(0).

Since the output x for the optimal nonlinearity is expressed
in the linear response regime as xi = F ∗

i (z) + sk∂
kF ∗

i (z) +
O(s2) = Ai + skIkl(0)Bli + ξi + O(s2), the natural unbiased
estimator for the input signal ŝ is given by the linear transfor-
mation of the output x as ŝi = (xk − Ak)BklIli . Accordingly,
the covariance of the estimated signal is written as

Cov(ŝ) = I−1(0). (11)

Therefore, the optimal nonlinearity F∗ achieves the lower
bound of the unbiased estimator for the input signal. In this
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sense, the optimal nonlinearity that maximizes the output SNR
is the optimal unbiased estimator for the input signal.

In the above framework, the probability density ρ(z) is
assumed to be known, and hence the optimal nonlinearity F∗

is also given. A, B, and I all are given. Then the optimal
unbiased estimator, which is given by the linear transformation
of the observed output x, is fixed. This simple estimator has
the advantage of easy calculations, as compared with other
signal estimation algorithms that require complicated analysis
[34–37].

V. CONCLUSIONS

We have derived the optimal nonlinearity to maximize the
SNR of the output. The optimal nonlinearity is determined only
by the probability density of the input noise. The concrete form
of the optimal nonlinearity F∗ given by Eq. (5) systematically
claims that a linear system is optimal only when the input noise
is Gaussian, and for a non-Gaussian noise, there exist nonlin-
ear systems that exhibit the SNR higher than that of a linear
system. Consequently, the existence of the nonlinearity exhibit-

ing an SNR higher than that of a linear system allows the occur-
rence of stochastic resonance that yields the signal processing
performance higher than a linear system in the presence of
non-Gaussian noise, as reported in the literature [16–27].

Furthermore, the optimal nonlinearity obtained from the
viewpoint of the maximization of the SNR has been found
to yield the minimum error in the unbiased signal estimation
process, and a simple estimation algorithm has been proposed.
In general, the maximization of the SNR does not yield
the optimal signal estimation nor the optimal information
transmission performance. In the linear response regime,
however, the signal is easily estimated using only the first
moment of the output. Then the maximization of the SNR
defined in terms of the first moment of the output coincides
with the optimal unbiased signal estimation.

Our results are due to the knowledge on the noise statistics.
In practical cases, the probability density of noise is often
unknown. In such a case, the hybrid use of our method and
the estimation for the noise statistics is required. This hybrid
use is regarded as the extension of the conventional adaptive
filters.
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