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Phase diagram and thermodynamic properties of H2
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A statistical mechanical-based theory is used to develop the equation of state for the molecular fluid of H2.
We incorporate in this equation the long-range correlations through the double Yukawa potential, dimerization
of the H2 molecule by treating the fluid as a hard convex body fluid, and first-order quantum correction which
is important at low temperatures. We use this to calculate the liquid-vapor equilibrium of H2, including the
temperature and pressure dependence of compressibility factor, entropy, specific heat, compressibility, and sound
velocity.
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I. INTRODUCTION

The temperature- and pressure-dependent properties of
fluid molecular hydrogen (H2) are of considerable significance.
H2 is increasingly considered in fuel cell technology vis a vis it
is one of the most abundant species of the interstellar space. It
is widely perceived as an environmentally clean and renewable
energy source. Studies [1,2] indicate that H2 becomes metallic
at sufficiently high pressures, between 100 and 600 GPa.
A detailed investigation of the equation of state (EOS) and
the thermodynamics properties is essential to understand the
behavior of H2.

In this work, we have used statistical mechanical perturba-
tion theory to set up the EOS of H2. The short-range repulsive
potential is treated here as the unperturbed hard sphere
reference system. On the other hand, the long-range attractive
correlations are included via the double Yukawa potential as
a first-order perturbation correction. The dimerization of the
H2 molecule is treated as a hard convex body fluid (HCB)
for which an EOS can be derived based on scaled particle
theory [3,4]. The quantum correction is included through
Wigner-Kirkwood expansion [5,6]. Taking into account the
various contributions, we have been able to suggest an
improved version of EOS to study the compressibility factor
Z, excess entropy, specific heat, isothermal and adiabatic
compressibilities, and speed of sound of fluid H2 as functions
of temperature and pressure.

This work is divided as follows: Useful formulations
for the EOS are formulated in Sec. II. The liquid-vapor
equilibrium curves for H2 are given in Sec. III. Section IV
provides the computed results of the compression factor and
isochoric density as functions of temperature. We include
in Sec. V thermophysical properties, where entropy, specific
heat, compressibility, and thermal expansion are presented as
functions of T and p. The impact of T and p on the velocity
of sound is presented in Sec. VI, followed by a summary and
conclusion in Sec. VII.

II. EQUATION OF STATE FOR H2 FLUID

The complexities of the intermolecular interactions and the
dimerization of the H2 molecule pose a considerable hindrance
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to obtaining theoretical expressions for the EOS. We utilize
here a realistic EOS developed for nonspherical hard body
fluids:

βP

ρ
= ρ

∂

∂ρ

F

NkT
. (1)

β = (kT )−1, P stands for pressure, ρ is the density, k is
Boltzmann constant, and F is the Helmholtz free energy.
Central to the theoretical evaluation of F is the inclusion of
H2 dimerization. The dimerization has been treated here in the
form of a HCB for which a realistic EOS for hard nonspherical
molecules exists [3]. The basic idea is to modify the free energy
of a hard sphere fluid Fhs with a geometrical shape factor a (the
nonsphericity parameter) coming from the scaling theory [4].

An important limitation of the HCB EOS is that it does not
include energetic effects arising due to long-range correlations
and the quantum corrections for small-mass particles, partic-
ularly at low temperatures. The long-range attractive interac-
tions among the constituent species has been included here via
the double Yukawa (DY) potential, which acts as a perturbation
on the reference systems of hard spheres. The advantage of
using the DY potential is that it allows the variational integral
equations of the energies to be derived analytically in terms of
the Laplace transform of the radial distribution function. The
quantum correction is included via the first-order correction in
the Wigner-Kirkwood expansion [5,6].

Including these contributions, the Helmholtz free energy
that results will consist of (i) the ideal term (Fid), (ii) modified
hard sphere energy for molecular fluids (FHCB), (iii) the first-
order contribution due to attractive forces (Ft), and (iv) the
quantum energy correction (FQ). The total Helmholtz free
energy per molecule for H2 fluid can then be expressed as

F = Fid + FHCB + Ft + FQ, (2)

with

βFid = 3

2
ln

(
h2NA

2πMH2kT

)
+ ln ρ − 1, (3)

FHCB = aFSS, (4)

βFt = βρ

2

∫ ∞

σ

u(r)g(r)4πr2V dr, (5)

βFQ = β2h̄2NAρ

24π2MH2

∫ ∞

σ

∇2u(r)g(r)4πr2V dr. (6)
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Here, MH2 = 2.015 9 g/mol is the molecular weight. Since the
H2 molecule is slightly nonspherical, a suitable nonsphericity
parameter a and effective volume V can be introduced to
account for the dimerization effect and improve the perfor-
mance of the equation of state. The scaling parameters a and
V appear in Eqs. (4)–(6), (21), (23), and (24) and are linked
via the HCB scaling theory [3,4] as

V = 1 +
(

3L − L3

2
− 3Hθ

)
. (7)

V is the volume factor for the average molecular volume. L,
H , and θ stand for

L = l

d
; H =

(
1 − L2

4

)2

; θ = sin−1

(
L

2

)
. (8)

l is the center-to-center distance of the molecule (the length of
the covalent bond), and d is the radius of the hydrogen atom.
There exist several measurements of bond lengths and atomic
radii of atomic molecules. The accuracy of the measurements
depends on the method of calculation [7–9]. In the present
work, we use the most accurate reported values of l =
0.7461 Å and d = 1.2 Å [10,11], which give satisfactory triple
point parameters of liquid H2. The nonsphericity parameter is
defined as

a = 1

3π

V ′
efV

′′
ef

Vef
, (9)

where Vef = πd3V /6, and the symbols ′ and ′′ are the first and
second derivatives of the effective molecular volume Vef with
respect to d.

The usual soft sphere energy which is modified in Eq. (4)
through the nonsphericity parameter a incorporated through
the scaling theory [12,13], i.e.,

βFSS = (a1 + 3a2 − 1) ln(1 − η)

+ (6 + 2a1 + 6a2)η − (3 + 3a1 + 9a2)η2 + 2a2η
3

2(1 − η)2

− η

2
[1 + 2η + η3], (10)

with η = πρσ 3/6 (packing fraction, σ is the hard sphere
diameter). The first two terms of Eq. (10) are the usual hard
sphere excess free energy given by Baus and Colot [12] with
a1 = a2 = 2

3 . The last term is the softening term given by
Ross [13].

Central to the computation of the term Ft in Eq. (5) is
the pairwise potential u(r), which is assumed to consist of
soft repulsion uss(r) (normally the soft sphere potential) and a
long-range attraction ut(r),

u(r) = uss(r) + ut(r). (11)

uss is treated as the unperturbed reference system of 1/r12

potential. Ross [13] performed computer simulation on fluids
interacting via repulsive 1/r12 potential and obtained a
correction term to the free energy of hard-sphere fluids. This
softening term appears in Eq. (10). The second term of Eq. (11),
ut, acts as a perturbation. The long-range attractive forces are

included through the DY potential (ut ≡ uDY),

uDY(r) = Eε0
σ0

r

{
exp

[
−λ1

(
r

σ0
− 1

)]

− exp

[
−λ2

(
r

σ0
− 1

)] }
, (12)

where ε0 is the potential depth, and σ0 is the value at which
uDY(r) = 0. E, λ1, and λ2 are the fitting potential parameters.
The advantage of using the DY potential is that the relevant
Helmholtz free energy can be found analytically, therefore
providing an analytical expression for the EOS. We have
used the Silvera-Goldman [14] potential for H2 to obtain the
DY parameters. The exponential-6 potential is found to be
satisfactory over a wide range of temperatures and pressures.
The resulting values for the DY potential are

σ0 = 3.013 Å;
ε0

k
= 31.757 K; E = 3.5116;

(13)
λ1 = 9.1341; λ2 = 3.6153.

The optimized hard sphere diameter σ of the repulsive soft
sphere potential is obtained by choosing σ to have temperature
dependence, via the well known Gibbs-Bogolubov [15,16]
prescription requiring that F � FSS + Ft + FQ, namely,(

∂F

∂σ

)
ρ,T

= 0. (14)

σ is the basic ingredient for the computation of the radial
distribution function g(r); hence, Eq. (14) provides a suitable
link between structure and the pairwise interactions. For
the perturbation free energy we used the most improved
expressions for g(r) due to Henderson et al. [17,18]. It
is based on three ingredients: (i) the analytical solution of
the OZ equation within mean spherical approximation of the
direct correlation function C(r), which is considered more
accurate than the Percus-Yevick (PY) approximation; (ii) the
inverse temperature expansion of g(r) up to the fifth term; and
(iii) satisfying the thermodynamic consistency conditions
between the energy and compressibility equations of state,
leading to analytical expressions to the five expansion coeffi-
cients of g(r). The resulting expression of g(r) is in excellent
agreement with Monte Carlo simulation results as reported in
Ref. [19].

Substituting u(r) from Eq. (12), the integrations of Eqs. (5)
and (6) can be performed analytically, yielding

βFt = V E

2σ ∗ [eλ1G(λ1) − eλ2G(λ2)], (15)

βFQ = AQV E

24σ ∗

(
ε0

kT

)[
λ2

1e
λ1G(λ1) − λ2

2e
λ2G(λ2)

]
, (16)

where G(λi) (i = 1, 2) is related to the Laplace transform of
rg(r) as

G(λi) = 24η

(
ε0

kT

) ∫ ∞

1
xg(x)e−λxdx, (17)

with

x = r

σ
, λi = λiσ

∗, σ ∗ = σ

σ0
, AQ = h̄2NA

ε0σ
2
0 MH2

= 0.0835.

(18)

012122-2



PHASE DIAGRAM AND THERMODYNAMIC PROPERTIES OF . . . PHYSICAL REVIEW E 87, 012122 (2013)

Detailed expressions for G(λ) can be found in a simple form
in Refs. [19,20]. Having defined the various parts of the
Helmholtz energy F , Eq. (2) can then be readily used to obtain
the EOS.

III. LIQUID-VAPOR EQUILIBRIUM OF H2

The computation of liquid-vapor (L-V) equilibrium is a
testing ground of the theoretical formalism as it encounters
the transition from a short-range order of the liquid phase to a
high-temperature disorder of the vapor phase. The difference
between liquid and vapor densities (ρl − ρv) is zero at the
critical temperature T = Tc and nonzero for T < Tc. The
isotherm has a point of inflection and, therefore, the isothermal
compressibility κT diverges at T = Tc. In the neighborhood of
criticality, the implication is that the tendency of separation
entails long-range fluctuations and the radial distribution
function g(r) must become so long-ranged that

∫
[g(r) − 1]d3�r

diverges as T → Tc.
At a given temperature, the coexisting bulk densities of

liquid (l) and vapor (v) phases are obtained by solving the
simultaneous equations

Pl(ρl,T ) = Pv(ρl,T ), (19)

μl(ρl,T ) = μv(ρl,T ), (20)

where Pi and μi (=Fi + Pi/ρi) are pressures and chemical
potentials for phase i. Pi and Fi have been respectively
obtained from Eqs. (1) and (2). The resulting L-V coexistence
curves are plotted in Fig. 1. These are compared with the
Monte Carlo results [21]. The impact of various corrections
(like dimerization and quantum corrections) to the Helmholtz
free energy considered here are shown in the phase diagram.
The dimerization and quantum energies improve the results to
yield closer agreement with the simulation results.

On the other hand, the near vicinity of the critical point
can only be treated correctly by the renormalization group
methods, which gives a nearly flat curve at this region exactly

FIG. 1. Liquid-vapor coexistence lines for H2. Dashed curves
are coexistence lines without dimerization [the bond length L = 0.0
and the nonsphericity parameter a = 1.0, Eqs. (7)−(9)] and without
quantum effects, dotted-dashed curves include dimerization effects
only (with L = 0.622 and a = 1.154), solid curves include both
dimerization and quantum effects, and open circles are computer
simulation results [21].

as the empirical curve. All theoretical models based on the
mean approximation give a parabolic coexistence curve in
the critical region. Our calculations, based on the inverse
temperature expansion of g(r) (see Refs. [17–19]), which is
in general a mean field approach, give a parabolic coexistence
curve. Remarkably, the quantum correction to the free energy
FQ [Eq. (16)] improves the coexistence curve, even at the near
vicinity of the critical point.

IV. TEMPERATURE AND PRESSURE DEPENDENCE OF
THE COMPRESSIBILITY FACTOR AND DENSITY

The relation for compressibility factor Z(=βp/ρ =
η∂βF/∂η) can be obtained from Eqs. (1) and (2) as

Z = 1 + a(ZSS − 1) + Zt + ZQ, (21)

with

ZSS = 1 + η + η2 − a1η
3 − a2η

4

(1 − η)3
− η

2
[1 + 4η + 4η3],

(22)

Zt = V Eη

2σ ∗ [eλ1G′(λ1) − eλ2G′(λ2)], (23)

ZQ = AQV Eη

24σ ∗

(
ε0

kT

)[
λ2

1e
λ1G′(λ1) − λ2

2e
λ2G(λ2)

]
, (24)

where

G′ =
(

∂G(λi)

∂η

)
T

. (25)

The first term of Eq. (21), Z = 1.0, represents the ideal gas
compressibility factor while in the second term, a(ZSS − 1),
the nonsphericity parameter a acts on the packing term of the
soft sphere compressibility factor, i.e., the excess above the
ideal gas value. Largo and Solana [4] considered a(ZHS − 1),
but since we are using a softening correction term to the EOS,
then ZHS can be replaced by ZSS.

The first term of Eq. (22) is the usual hard sphere
compressibility factor ZHS given by Baus and Colot [12], with
a1 = a2 = 2

3 . At low densities Z tends to its ideal value of 1.
For example, as ρ → 0, then Zt → 0, ZQ → 0, and ZHS → 1.

FIG. 2. Compression factor for H2 as a function of temperature
at different pressures.
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On the other hand, at very high densities, Z increases sharply
with decreasing T . Z > 1 indicates that repulsive forces are
dominant in the system, whereas Z < 1 can be related to the
dominance of the attractive forces.

The computed values of Z as function of T are plotted n
Fig. 2 for P = 0.85, 10.0, and 20.0 MPa. At T � 150 K,
Z becomes flat towards its ideal value and the impact of
T and P is quite small. However, the impact of pressure
and temperature on Z is quite significant for T < 100 K. In
the range of pressure 20.0 MPa, Z increases sharply as T

FIG. 3. Comparison of the variation of H2 density with temper-
ature at (a) p = 0.85 MPa, (b) p = 10 MPa, and (c) p = 20 MPa.
Here, the solid curves are results of this work and open circles are
computer simulations [21].

decreases. At lower pressures, say at 0.85 MPa, Z decreases
with temperature and has values significantly lower than the
ideal value.

The computed values of the density of H2 as a function of T

for different pressures p = 0.85, 10, and 20 MPa are plotted
in Fig. 3. These are compared with the available computer
simulation results [21]. The agreement of the computed values
with simulation results is very much encouraging. The impact
of the quantum correction term [Eq. (24)] is very much evident
in the low-temperature range. At p = 0.85 MPa [Fig. 3(a)], the
quantum correction becomes effective at T � 40 K, shifting
to T � 140 K at p = 10 MPa [Fig. 3(b)] and T � 200 K at
p = 20 MPa [Fig. 3(c)]. The steep fall of the density is quite
dramatic in the low-temperature region at p = 0.85 MPa. As
expected, the density increases with increasing pressure at any
given temperature.

V. THERMOPHYSICAL PROPERTIES

A. Entropy and specific heat

The formalism of Sec. II allows us to compute the
temperature dependence of the Helmholtz free energy, which,
in turn, yields entropy (S) and the specific heats (CP and CV ).
With the Gibbs free energy G = F + P/ρ, we have,

S = −
(

∂G

∂T

)
P

= −
[
∂(Fid + FHCB + Ft + FQ)

∂T

]
P

+ P

ρ2

(
∂ρ

∂T

)
P

, (26)

CP = T

(
∂S

∂T

)
P

= −T

(
∂2G

∂T 2

)
P

, (27)

CV = T

(
∂S

∂T

)
ρ

= −T

(
∂2F

∂T 2

)
V

. (28)

It may be noted that F ’s and P ’s are functions of σ , which in
our scheme is T dependent [see Eq. (14)]. Hence, F ’s and P ’s
contribute to entropy and specific heat.

The effect of temperature and pressure on the excess
entropy, relative to the ideal gas entropy Sid, Sxs (=S − Sid)
is shown in Fig. 4. Sxs provides a quantitative measure of the
system structural ordering. It may be viewed as an effective

FIG. 4. Variation of excess entropy Sxs with temperature at
different pressures.
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FIG. 5. Plots of (a) CP and (b) CV for H2 as functions of temperature at different pressures.

thermodynamic function to assess stability, particularly at
extreme T and p. It is often argued that Sxs is a better
thermodynamic function to map the ordering in the system
than the structure factor. Sxs for H2 is found to be quite sensitive
at low temperatures and at high pressures. Sxs falls rapidly with
T � 100 K at higher pressures. At higher temperatures it tends
to zero, i.e., towards ideal entropy. As expected, Sxs decreases
with increasing p at any given temperature.

Computed values of CP and CV as functions of temperature
for different pressures P = 0.85, 10, and 20 MPa are plotted
in Fig. 5. CP [Fig. 5(a)] exhibits anomalous behavior at these
pressures for lower temperatures, T � 100 K. CP increases
with T , showing a maximum, and then starts decreasing.
The maxima get sharpened at low pressure, P = 0.85 MPa.
Such a characteristic behavior of CP has also been observed
in undercooled [22–24] liquid metals. The inflection in CP

might be a signature of the configurational transformation
and possibly could be viewed as structural freezing, which is
dictated by P and T . The temperature at which CP is maximum
in undercooled liquid metals is often interpreted [25] as glass
transition temperature. Contrary to CP , CV [Fig. 5(b)] does
not exhibit a similar behavior. CV is found to increase sharply
in the low-temperature region.

One of the sensitive quantities that tests the limitations of
the formalism presented in this work is specific heat ration

FIG. 6. The ratio γ = CP /CV vs temperature at different
pressures.

γ = (CP /CV ), which plays a vital role in thermophysical
characterization. It appears in many fluid equations during
a simple compression and expansion process, the equation of
speed of sound, and all equations of isentropic flows and shock
waves. The computed values of γ for different P and T are
plotted in Fig. 6. As expected, γ fluctuates considerably in
the low-temperature range due to anomalies in CP . At high
temperature, γ remains invariant and tends to a constant value
γ = 1.67. It may be noted that for an ideal gas model, γ

varies from 1.33 (polyatomic system) to 1.67 (monatomic
system). Our formalism, however, gives γ = 1.67 in the ideal
gas conditions. The reason for this is that when treating for
H2 dimerization, the H2 molecule is replaced by an effective
spherical, monatomic particle.

The thermodynamic definition of the adiabatic parameter
is γ = (χT /χS), the ratio of isothermal to adiabatic com-
pressibilities. Therefore, the dramatic fluctuations of γ at low
temperatures may also be attributed to the divergence of the
isothermal compressibility in approaching the phase transition
region.

B. Isothermal compressibility and thermal expansion

The computed values of the temperature and pressure
dependent density (see Sec. III) allow us to evaluate the

FIG. 7. The coefficient of volume expansion αV vs temperature
at different pressures.
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coefficient of volume expansion (αV ) and the isothermal
compressibility (χT ):

αV = − 1

ρ

(
∂ρ

∂T

)
P

, (29)

χT = 1

ρ

(
∂ρ

∂P

)
T

. (30)

αV and χT are important thermophysical functions for dense
fluids which evaluate its expansion and contractions under
various conditions of temperature and pressure. Most of the
systems exhibit positive αV , except liquid water between
0oC and 4oC, where the expansion coefficient is negative.
Many other substances [26] are also found to show negative
expansion coefficients. The computed values of αV for H2 as
a function of T (<400 K) and P (0.85, 10.0, and 20.0 MPa)
are shown in Fig. 7. The impact of T and P on αV in the lower
temperature range (T < 150 K) is very dramatic. αV increases
sharply as temperature decreases below 150 K. αV tends to
get maximum and then decreases. The maxima are sharper
at lower pressures, say, at 0.85 MPa, and become flatter at
higher pressures. However, at high temperatures, the effect of
pressure on αV is found to be minimal: αV varies little at high
T and P .

The computed values of isothermal compressibility χT are
plotted in Fig. 8(a) versus temperature for different pressures.
At lower pressure P = 0.85 MPa and lower temperature
T ≈ 50 K, χT is quite different than its value at other pressures
and temperatures. At temperatures �100 K, χT remains almost
constant.

Isentropic compressibility χS(=χT /γ ) has been computed
using our values of χT and γ . These are plotted for different P

and T in Fig. 8(b). χT at P = 0.85 MPa is quite high compared
to χS at 10 and 20 MPa. Unlike χT , χS does not exhibit a sharp
peak in the lower range of temperature.

VI. VELOCITY OF SOUND

Isentropic compressibility χS and the density can readily
be used to determine the velocity of sound in H2 as a function
of P and T ,

vl(T ,P ) = [ρ(P,T )χS(P,T )]−1/2. (31)

FIG. 9. The velocity of sound vl in H2 vs temperature at different
pressures.

The velocity of sound is of high importance as it is related to
different thermodynamic properties, such as surface tension
and dynamics of interfaces [27,28], heat capacity [29], boiling
and critical points [30], and the Gruneisen parameter [31].
Sound velocity for different substances and mixtures has also
been extensively tabulated [32].

The computed values of vl are plotted in Fig. 9. At a
given temperature, vl increases with increasing pressure. At
high P and T , vl increases almost linearly with increasing
temperature. vl changes drastically with P and T in the range
of temperature �100 K. It exhibits a minimum at a given
pressures and temperature.

VII. SUMMARY AND CONCLUSION

A realistic equation of state for H2 forms the basis to
investigate the phase stability, thermodynamic properties, and
connection to other thermophysical properties. The present
formalism includes the long-range attractive interaction among
the constituent species via the double Yukawa (DY) potential,
which acts as a perturbation on the reference hard sphere
system. The advantage of using the DY potentials is that it
allows the variational integral equations of the energies to
be determined analytically in terms of the Laplace transform
of the radial distribution function. The dimerization of the
H2 molecules is treated as a hard convex body fluid, and the
quantum effect, which is necessary for a light-particle system,

FIG. 8. Plots of (a) isothermal compressibility χT and (b) isentropic compressibility χS vs temperature at different pressures.
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is included via the first-order quantum correction to the free
energy in the Wigner-Kirkwood expression.

We utilized our formalism to compute the liquid-vapor
coexistence curve. The values are in good agreement with
the Monte Carlo simulation results. The results suggest that
the correction for dimerization and, especially, the quantum
effect to the Helmholtz free energy are very important. The
computed values of densities as functions of temperature for
different pressures are also found to be in good agreement with
computer simulation results. Again, the quantum correction
to the Helmholtz free energy is essential, particularly, in the
low-temperature region.

The impact of pressure and temperature on CP is distinctly
visible in the low-temperature region: CP rises anomalously
for T � 100 K and exhibits maxima at a given temperature.
This is interpreted as a signature of configurational transfor-
mation with structural freezing. Contrary to CP , the velocity
of sound is found to exhibit minima at certain temperatures
below 100 K. The compressibility increases with decreasing
pressure and remains almost invariant for T � 100 K.

The present formalism can be utilized to investigate
the thermodynamic properties of H2 near the liquid-vapor
coexistence curve, which we intend to pursue in a later
work.
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