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Singular probability distribution of shot-noise driven systems
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We study the stationary probability distribution of a system driven by shot noise. We find that both in the
overdamped and underdamped regime, the coordinate distribution displays power-law singularities in its central
part. For sufficiently low rate of noise pulses they correspond to distribution peaks. We find the positions of the
peaks and the corresponding exponents. In the underdamped regime the peak positions are given by a geometric
progression. The energy distribution in this case also displays multiple peaks with positions given by a geomet-
ric progression. Such structure is a signature of the shot-noise induced fluctuations. The analytical results are in
excellent agreement with numerical simulations.
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I. INTRODUCTION

Shot noise is an important source of fluctuations in
dynamical systems. The discreteness of the modulating force
which underlies such noise can be due, e.g., to the quantization
of the electromagnetic radiation that drives the system or the
discreteness of the electron charge or spin in the electric or spin
current in the system. The features of the system dynamics
provide means for identifying the noise statistics, which is
sensitive to the microscopic nature of the noise source. An
example of using the dynamics for detecting non-Gaussian
noise statistics is the recent theoretical and experimental work
on noise-induced switching between coexisting stable states
in Josephson junctions and mechanical resonators [1–9].

The strong effect of the noise discreteness is easy to see for
a strongly damped noise-driven system localized in a potential
well. If the noise pulses are all of the same sign, the noise
pushes the system only in one direction, and the stationary
probability distribution of the system is equal to zero on the
one side of its stable state. In the case of shot noise, the
distribution turns out to be singular near the stable state both
for the case of pulses with random exponentially distributed
amplitude [10–13] and pulses of constant amplitude [14].
Depending on the pulse rate relative to the system relaxation
rate, it either displays a power-law divergence or goes to zero
as a power law of the distance to the stable state.

In this paper we study the probability distribution for a
shot (Poisson) noise driven system with arbitrary damping.
Our results extend from the limit of overdamped dynamics
to underdamped dynamics, where the relaxation rate is small
compared to the typical vibration frequency of the system.
Examples of underdamped systems that are of interest for
studying Poisson-noise induced fluctuations include Joseph-
son junctions [15], nanomagnetic oscillators [16], and high-Q
nanomechanical resonators coupled to electron tunneling, to
mention but a few; the problem attracted much attention
recently in the context of the studies of radiation-pressure
shot noise with optomechanical systems [17,18]. We assume
that the Poisson noise pulses have constant amplitude, which
is relevant for most of the above systems.

One would expect that, for an underdamped system, the
aforementioned singularity of the probability distribution at
the stable state should disappear. Indeed, in this case the noise

makes the system perform random vibrations. Therefore, in
contrast to an overdamped system, the probability distribution
is nonzero on the both sides of the stable state. However,
we find that the power-law singularity at the stable state
persists.

Moreover, we find that the probability distribution of
Poisson-noise driven underdamped systems can display multi-
ple power-law singularities, with positions forming a geomet-
ric progression. To gain an additional insight into this unusual
structure we look at the probability distribution of the system
energy. We show that this distribution also has singularities.

It is somewhat surprising that more is known about the tail
of the distribution of Poisson-noise driven systems [3,6,7,9,
11,14,15,19,20] than about its central part, which is singular.
Unless the noise is very strong, this central part is formed
by the motion of the system near its stable state, which is
generally described by linear equations of motion. This allows
us to obtain the results in a closed form and to study the critical
exponents that characterize the singularities of the distribution.

In Sec. II we present the model of a simple shot-noise
driven system with inertia. The onset of multiple power-law
singularities of the coordinate distribution in the overdamped
and underdamped regimes is studied in Secs. III and IV,
respectively. The onset of the singularities of the energy
distribution of an underdamped system is considered in Sec. V.
Section VI provides a qualitative insight into the onset of
singularities and explains their positions. Section VII contains
concluding remarks.

II. MODEL

We will consider a standard model where the dynamics of
a system near its stable state is described by the Langevin
equation

q̈ + 2�q̇ + ω2
0q = fP (t), fP (t) = g

∑
n

δ(t − tn). (1)

Here q is the system coordinate counted off from the equilib-
rium position, ω2

0 is the curvature of the effective confining
potential, and � is the viscous friction coefficient. The force
fP (t) is a Poisson (shot) noise. It consists of short pulses which
occur at random, the instants tn are uncorrelated. The average
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pulse rate is ν. We assume that fP (t) is independent of the
system coordinate, in agreement with our intention to keep the
leading-order terms in q and q̇.

The dynamics of the system (1) is determined by two
dimensionless parameters: the relative decay rate �/ω0 and
the relative pulse rate ν/�. The pulse area g just scales the
velocity q̇. For concreteness, we assume g > 0.

To obtain the stationary distribution of the system we
assume that the initial state has decayed and write the
coordinate as

q(t) =
∫ t

−∞
dt ′fP (t ′)α(t − t ′), α(t) = eλ1t − eλ2t

λ1 − λ2
,

λ1,2 = −� ± i
(
ω2

0 − �2
)1/2

. (2)

In this equation α(t) is the response function of the system.
Using the well-known expression for the characteristic

functional of the Poisson noise [21], we can then write the
stationary distribution of the system coordinate as

ρ(q) = 〈δ(q − q(0))〉 =
∫

dk

2π
exp

[
−ikq − ν

�
ψ(k)

]
,

ψ(k) = �

∫ ∞

0
dt[1 − eikgα(t)]. (3)

From Eq. (3), ψ(−k) = ψ∗(k). Therefore, in much of the
analysis of ψ(k) we will focus on the region k > 0.

III. POWER-LAW SINGULARITIES OF THE COORDINATE
DISTRIBUTION: OVERDAMPED REGIME

Integration over the range of small k in Eq. (3) gives
a smooth contribution to the distribution ρ(q). Singular
behavior of ρ(q) is determined by the large-k behavior of the
function ψ(k). We will discuss it in two limiting cases, which
correspond to the strongly overdamped and underdamped
regimes, as well as in the critical regime where the dynamics
changes from over- to underdamped.

In the overdamped regime the friction coefficient � exceeds
the frequency ω0. The system does not oscillate in the absence
of noise. Both eigenvalues λ1,2 in Eq. (2) are real. Then one
can see that in Eqs. (2) and (3) α(t) > 0 for t > 0. Given that
α(t) → 0 for t → ∞, function ψ(k) is analytical in the upper
halfplane of the complex-k plane. For q < 0 one can then add
to the integral over the k axis in Eq. (3) an integral over a
semicircle |k| → ∞ in the upper half plane, which is equal to
zero for q < 0. Since there are no singularities in the k plane,
the whole integral is equal to zero. Therefore once the system
becomes overdamped, even in the presence of inertia ρ(q) ≡ 0
for q < 0.

A simple expression for the probability distribution can
be obtained in the strongly overdamped regime, which corre-
sponds to the limit of a large friction coefficient, � 	 ω0. In
this regime λ1 ≈ −2� and λ2 ≈ −ω2

0/2�, with |λ1| 	 |λ2|,
respectively,

α(t) ≈ (2�)−1
[
exp

(−ω2
0t

/
2�

) − exp(−2�t)
]
.

The main contribution to ψ(k) comes from the time range
t 	 1/�. In this range in Eq. (3) α(t) ≈ exp(−ω2

0t/2�)/2�.
One can show that the resulting expression for ρ(q) coincides
with the expression for the probability distribution obtained

in Ref. [14] using a different method and in the form less
convenient for the present analysis. We denote function ψ(k)
in this approximation as ψ

(0)
od (k); this function can be expressed

in terms of the integral cosine and sine,

ψ
(0)
od (k) = 2

�2

ω2
0

[
ln

kg

2�
− Ci

(
kg

2�

)
− iSi

(
kg

2�

)
+ γE

]
,

(4)

where γE ≈ 0.58 is the Euler constant. As seen from this
equation, parameter k is scaled by the factor �/g. Therefore
the characteristic width of the distribution (3), or in other
words, the characteristic spatial scale on which the system is
localized, is ∼g/�.

For large k, from Eq. (4) we have

ψ
(0)
od (k) ≈ 2

�2

ω2
0

[
ln

kg

2�
+ i

2�

kg
exp

(
ikg

2�

)
+ γE − i

π

2

]
.

(5)

The large dimensionless parameter used in deriving this
equation is kg/2�.

For kg/2� 	 1 it is important also to keep in ψ(k) a
correction ψ

(1)
od (k) that comes from the time range t � �−1

in Eq. (3). One can find it by calculating the integral over
t in Eq. (3) for large k by the steepest descent method;
see Sec. IV where a similar but more complicated case
is discussed. In the present case the integrand has one
saddle point, which is located at the extremum of α(t) and
is given by equation exp(−2�t) ≈ (ω0/2�)2. Therefore the
corresponding contribution is missed if one disregards the term
∝exp (−2�t) in α(t). The result reads

ψ
(1)
od (k) ≈ − �

ω0

(
4π�

kg

)1/2

exp

(
ikg

2�
− i

π

4

)
. (6)

It is seen from this expression and Eq. (5) that ψ
(1)
od exceeds

the k-dependent correction to the logarithmic term in ψ
(0)
od for

large k.
In the integral over k in Eq. (3), we expand

exp[−(ν/�)ψ(k)] in ψ
(1)
od keeping the zeroth- and first-order

terms. As seen from Eqs. (3) and (5), the zeroth-order term
in ψ

(1)
od leads to a power-law behavior of ρ(q) near q = 0 for

q > 0 [14],

ρ(q) ∝ q−βod , βod = 1 − 2ν

ω2
0

/
�

(� 	 ω0). (7)

The exponent βod is determined by the ratio of the rate of
Poisson pulses ν to the relaxation rate of the system ω2

0/�. For
βod < 0, i.e., for sufficiently high pulse rate, the distribution
ρ(q) goes to zero for q → +0. On the other hand, for small
pulse rate, where βod > 0, the distribution diverges for q → 0.
This behavior is seen in Fig. 1, which shows the results of
numerical simulations of the equation of motion (1).

Taking into account in Eq. (3) the term ∝ψ
(1)
od , one sees that,

for βod > 1/2, the distribution ρ(q) has a peak at q ≈ g/2�.
It appears on a smooth background, and the difference δρ(q)
from the background value is

δρ(q) ∝
∣∣∣∣q − g

2�

∣∣∣∣
−βod+1/2

. (8)
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FIG. 1. (Color online) The results of numerical simulations of
the probability distribution of a shot-noise driven system in the
overdamped regime, �/ω0 = 3. The data curves 1 to 3 correspond
to ν/� = 0.025, 0.05, and 0.25. The respective values of the
critical exponent are βod = 0.55, 0.1, and −3.5. The inset shows
the distribution on the logarithmic scale; the slopes of the straight
lines are given by −βod.

We emphasize that the peak is asymmetric: The prefactor in
δρ(q) depends on the sign of q − g/2�. The peak (8) does
not emerge if one disregards the inertial term in the equation
of motion (1). For smaller βod the distribution itself does not
diverge for q → g/2�, but for βod > −1/2 the divergence is
displayed by the derivative ∂qρ.

The analysis can be extended to the case where the motion
is weakly overdamped: � > ω0, but the ratio �/ω0 is not
large. If, as before, 0 < −λ2 < −λ1, so that α(t) ∝ exp(λ2t)
for t → ∞, then to the leading order ψ

(0)
od (k) ≈ (�/|λ2|) ln k

for k → ∞. The power-law singularity for q → +0 is given
by Eq. (7), but now βod = 1 − (ν/|λ2|). The distribution ρ(q)
also has a power-law singularity at nonzero q. It is described
by Eq. (8) with the corresponding βod and with the position of
the singularity changed from q = g/2� to q = gα(ts), where
ts is the root of equation α̇(t) = 0.

The occurrence of the singular peak of the distribution for a
nonzero q is a benchmark of inertia in overdamped shot-noise
driven systems. It is clearly seen in Fig. 1. For the chosen
�/ω0 = 3 the position of the peak is already close to its value
g/2� in the limit of large �/ω0. We checked that it approaches
this value with increasing �/ω0. The critical exponents of the
peaks at q = 0 and q ≈ g/2� are in excellent agreement with
the analytical results. They approach the asymptotic values (7)
and (8) with increasing �/ω0 and become within the error of
the simulations already for �/ω0 = 10.

A. Critical regime

The results for the overdamped regime can be extended and
the explicit expressions for the parameters can be obtained in
the critical regime where the motion changes from overdamped
to underdamped. This happens where |� − ω0|  � and,
consequently, |λ1 − λ2|  |λ1,2| ≈ �. For � > ω0 the distri-
bution ρ(q) = 0 for q < 0, whereas for � < ω0 the probability
to find the system in the region q < 0 is nonzero, but ρ(q)
steeply decays with increasing −q for small (ω0 − �)/�.

For � = ω0 we have α(t) = t exp(−�t) � 0, and therefore
still ρ(q) = 0 for q < 0. Using the arguments that led to

Eqs. (7) and (8) one obtains that the power-law singularity of
ρ(q) for q → +0 has the form q−βcr with βcr = 1 − (ν/�).
The distribution ρ(q) also has a power-law singularity of
the type of Eq. (8), which is located at q = g/e� and is
characterized by exponent βcr − 1/2.

For small (ω0 − �)/� > 0 there emerge additional power-
law singularities of ρ(q). However, they are located at
exponentially small |q| ∝ exp[−π�/(ω0 − �)] and therefore
are extremely hard to resolve.

IV. UNDERDAMPED REGIME

The general expression for the probability distribution
simplifies also in the case of small relaxation rate, �  ω0.
In this case the motion of the system in the absence of
noise is weakly damped vibrations at frequency ≈ω0, and
λ1,2 ≈ −� ± iω0. Noise pulses excite vibrations at random.
Clearly, the stationary probability distribution ρ(q) in the
presence of dissipation and noise is no longer limited to the
region q � 0, it is expected to be almost symmetric with
respect to q.

To describe ρ(q) we note that in Eq. (2)

α(t) ≈ ω−1
0 exp(−�t) sin ω0t.

For an underdamped system the function ψ(k) ≡ ψud(k) in
Eq. (3) to the leading order in �/ω0 has the form

ψud(k) ≈ ψ
(0)
ud (k) =

∫ kg/ω0

0
dx[1 − J0(x)]/x. (9)

Function ψ
(0)
ud describes the smooth part of the distribution

ρ(q). The typical width of the distribution, as seen from
Eqs. (3) and (9), is ∼g/ω0.

In the range kg/ω0 	 1 we have

ψ
(0)
ud (k) ≈ ln

kg

2ω0
+ γE, (10)

which indicates that, even in the underdamped case, the dis-
tribution has a power-law singularity for |q| → 0. Generally,
this singularity appears on a smooth background. From Eqs. (3)
and (10) the difference δρ(q) from the background value for
small |q| is

δρ(q) ∝ |q|−βud , βud = 1 − ν

�
(�  ω0). (11)

In contrast to the overdamped case, Eq. (7), the singular
behavior occurs on the both sides of q = 0, with the same
exponent βud. This exponent is again determined by the ratio
of the pulse rate ν to the relaxation rate, which is equal to �

for weak damping.
The approximation leading to Eq. (11) is justified for βud >

−2. In the opposite case, βud < −2, the distribution for small
q is formed primarily by the region where kg/ω0 � 1 and is
parabolic near q = 0. Still there may be singularities in the
derivatives of ρ of sufficiently high order; in what follows we
assume βud > −2.

A. Multiple distribution peaks away from the origin

The overall distribution ρ(q) in the underdamped case turns
out to have multiple singularities. In their analysis one should
take into account the terms ∼�/ω0 in ψud(k). In the limit of
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FIG. 2. (Color online) The contour of integration over time for
calculating function ψ(k) [Eq. (3)] for an underdamped system
for kg/ω0 	 1. In the range exp(−�t ′)kg/ω0 	 1 (t ′ ≡ Re t) the
contour is oscillating and goes through the saddle points tn ≈ (n +
1/2)π/ω0 of the function exp[ikgα(t)], making angles (−1)n+1π/4
with the Re t axis (n = 0,1,2, . . .). The saddle points are indicated
by the solid circles. For large Re t the integration contour approaches
the Re t axis. In the overdamped limit the integration contour used to
obtain Eq. (6) crosses the Re t axis only once for exp(−�t) = ω0/2�

and then approaches the Re t axis.

large k they can be found by calculating the integral over time
in Eq. (3) by the steepest descent method. It requires bending
the contour of integration over time, which is justified since
α(t) has no singularities near the Re t axis; see Fig. 2.

As seen from Fig. 2, for large k the function ψud(k)
has two major contributions. One comes from the region of
large time, where kgα(t) � 1 and the integration goes along
the Re t axis. To the leading order in k, it is given by the
logarithmic term in ψ

(0)
ud (k) [Eq. (10)]. It is not proportional to

�/ω0  1. The other contribution comes from smaller times,
where the exponential term exp[ikgα(t)] in ψ(k) in Eq. (3)
can significantly differ from 1. In this region, if the integration
contour is appropriately bent, this term has multiple saddle
points where α̇(t) = 0. These points are marked in Fig. 2. The
resulting contribution is ∝�/ω0 and has the form

ψ
(1)
ud (k) ≈ − �

ω0

(
2πω0

kg

)1/2 nmax∑
n=0

e�tn/2 exp[iφn(k)],

φn(k) = (−1)n
kg

ω0
e−�tn − (−1)n

π

4
, (12)

tn = πω−1
0 (n + 1/2).

Here parameter nmax is determined by the condition
(kg/ω0) exp(−�tn) 	 1 for n < nmax. Therefore |ψ (1)

ud |  1,
and in Eq. (3) exp[−(ν/�)ψ (1)

ud ] can be expanded in ψ
(1)
ud ; we

will keep the first-order term in this expansion.
From Eqs. (3) and (12), for sufficiently low rate of noise

pulses ν/�, where βud > 1/2, distribution ρ(q) has multiple
power-law peaks. The deviation of ρ(q) from the smooth
background near the nth peak δρn(q) is

δρn(q) ∝ |q − qn|−βud+1/2, qn = (−1)n
g

ω0
e−�tn . (13)

As seen from Eqs. (12) and (13), the positions qn of the singular
peaks of ρ(q) form a geometric progression. All peaks display
a power-law shape with the same exponent βud − 1/2. At the
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FIG. 3. (Color online) The results of numerical simulations
of the probability distribution of a shot-noise driven system in
the underdamped regime, �/ω0 = 0.125. The data curves 1 to 3
correspond to ν/� = 0.15, 0.4, and 0.75. The respective values of
the critical exponent are βud = 0.85, 0.6 and 0.25. The inset shows
the distribution on the logarithmic scale; the slopes of the straight
lines are given by βud.

same time, the prefactor in δρn(q) takes on different values on
the opposite sides of the peak; i.e., it depends on the sign of
q − qn. Equations (12) and (13) make it possible to find the
prefactor (this can also be done in the overdamped regime),
but the expression is somewhat cumbersome.

The peaks with largest |qn| are the ones with n = 0 and
n = 1. They lie on the opposite sides of the center of the
distribution at q = 0. The positions q0 and q1 are asymmetric
for nonzero �/ω0, but the asymmetry is weak for small π�/ω0.
Other peaks lie between q0 and q1. Their amplitudes increase
with decreasing |qn| because of the factor exp(�tn/2). We note
again that these amplitudes are ∝�/ω0  1. For higher rates
of shot-noise pulses, where 1/2 > β > −1/2, the peaks of
ρ(q) disappear in the asymptotic theory (13), but a self-similar
structure of power-law divergences can still be seen in the
derivative of the distribution ∂qρ.

The predicted behavior is in agreement with the results
of numerical simulations of Eq. (1) shown in Fig. 3. The
distribution obtained by simulations displays power-law singu-
larities, and the positions of these singularities are in excellent
agreement with Eq. (13). The exponent of the singularity for
q = 0 is also in agreement with the theory. For the peaks of
ρ(q) at q �= 0 in the case of the smallest ν/�, where βud = 0.85
and these peaks are most pronounced, the exponents agree with
the theory. However, for the moderately small �/ω0 used in
Fig. 3, for larger ν/� the agreement is worse: for βud = 0.6
instead of the expected exponent 0.1 [see Eq. (13)] the obtained
exponent is ∼0.16, which we believe is due to the overlapping
of the peaks that complicates retrieving the exponent.

Careful studies for smaller �/ω0 demonstrated an excellent
agreement of both the positions of the peaks and the exponents
with the theory. The exponents are the same on the both sides
of the peaks and are the same for all peaks at qn �= 0. The
results are shown in Fig. 4. This figure also demonstrates an
excellent agreement with the theory of the exponents obtained
by numerical simulations for an overdamped system.

An important feature of the singularities of the distribution
ρ(q) is that their positions qn depend only on the area of the
noise pulses g and the system parameters, but not on the pulse
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FIG. 4. (Color online) The vicinities of the peaks of the distribu-
tion ρ(q) that lie away from q = 0 for the overdamped (left panel)
and underdamped (right panel) systems. The distances are counted off
from the positions of the corresponding peaks qn; in the overdamped
case there is only one such peak, whereas for the underdamped case
we chose peaks with n = 0 and 3 [Eq. (13)]. The labels “right” and
“left” indicate the right and left side of the peak, i.e., q − qn > 0 and
q − qn < 0, respectively. In the left panel �/ω0 = 10, βod = 0.8; in
the right panel �/ω0 = 0.05, βud = 0.85. The straight lines show the
expected asymptotic slopes of ln ρ(q) for q → qn. The maxima for
comparatively large |q − qn| visible in the right panel correspond to
other peaks of ρ(q), i.e., the peaks with n �= 0,3.

rate ν. In contrast, the exponent βud depends on ν scaled by the
system relaxation rate, but is independent of the noise pulse
area g.

V. SINGULAR PEAKS IN THE ENERGY
PROBABILITY DISTRIBUTION

For a Poisson-noise driven system the probability distribu-
tion over the system energy ρE(E) differs from the Boltzmann
distribution. The tail of this distribution in the limit of small
damping was discussed earlier [15]. Here we also consider
the small damping case, �  ω0, but we are interested in the
central part of the distribution. We show that the distribution
is singular and can have multiple power-law peaks.

Function ρE(E) can be conveniently expressed in terms of
the distribution of the system in phase space ρq,p(q,p). For
a linear system described by the equation of motion (1) the
stationary distribution ρq,p = 〈δ[q − q(t)]δ[p − p(t)]〉 can
be found using the explicit expression (2) for the system
coordinate q(t) and the corresponding expression for p(t) =
q̇(t) = ∫ t

−∞ dt ′fP (t ′)∂tα(t − t ′),

ρE(E) =
∫

dq dpρq,p(q,p)δ[E − E(q,p)],

E(q,p) = (
p2 + ω2

0q
2
) /

2,

ρq,p(q,p) = (2π )−2
∫

dkq dkp

× exp

[
−i(kqq + kpp) − ν

�
ψE(k)

]

[k = (kq,kp)],

ψE(k) = �

∫ ∞

0
dt {1 − exp [igfk(t)]} ,

fk(t) = kqα(t) + kpα̇(t). (14)

This expression is a straightforward extension of Eq. (3).
The singular behavior of the distribution ρE is determined

by the behavior of the function ψE in the range of large
|kq |,|kp|. The leading-order contribution ψ

(0)
E to ψE comes

from the region of t in Eq. (14) where the term exp[igfk(t)] is
fast oscillating and can be disregarded. The size of this region
can be estimated by noticing that α(t),α̇(t) ∝ exp(−�t).
Therefore

ψ
(0)
E ≈ ln

[
g max

(|kq |ω−1
0 ,|kp|)] . (15)

From Eqs. (14) and (15), the distribution ρE has a power-law
singularity at E = 0,

ρE(E) ∝ E−βE , βE = 1 − ν

2�
(E → +0). (16)

This singularity corresponds to a divergent (but integrable)
peak for βE > 0; if βE > −1 the derivative ∂EρE diverges for
E → +0.

It is interesting to compare the singularity (16) with
the singularity of the coordinate distribution ρ(q) of the
underdamped system for q → 0, Eq. (11). The exponent
βE is expressed in terms of the exponent of ρ(q) as βE =
(βud + 1)/2. Therefore, if βud > 0 and ρ(q) has a peak for
q = 0, the energy distribution also has a peak for E → +0.
However, the energy distribution can have a peak for E = +0
even where βud < 0 and ρ(q) does not have a peak for q = 0.

A. Multiple peaks of the energy distribution for nonzero energy

The contribution ψ
(1)
E to ψE of the subleading order in kq,kp

leads to the onset of singularities in the distribution ρE for
E > 0. To find them we first change to cylindrical coordinates
in k space,

ω−1
0 kq = κ cos θ, kp = κ sin θ.

Then, changing in Eq. (14) from q,p to the standard action-
angle variables [22] and integrating over the angle, we obtain

ρE(E) = (2π )−1
∫

κ dκ dθJ0(κ
√

2E)e−(ν/�)ψE . (17)

In variables (κ,θ ), to first order in �/ω0 function fk in the
integrand of ψE becomes

fk(t) ≈ κ exp(−�t) [sin(ω0t + θ ) − (�/ω0) sin θ sin ω0t] .

(18)

It is seen from this equation that, for κ → ∞, the leading-order
term in ψE is ψ

(0)
E ≈ ln(κg), which coincides with Eq. (15).

We note, however, that variables (κ,θ ) are less convenient for
calculating the behavior of ρE for E → 0 than (kq,kp) because
of the singular nature of the integrals; nevertheless, the above
expression for ψ

(0)
E and Eq. (17) immediately show that the

scaling of ρE for E → +0 is indeed of the form of Eq. (16).
The subleading term ψ

(1)
E can be obtained by calculating the

integral over time in Eq. (14) by the steepest descent method,
as in Sec. IV; cf. Fig. 2. From Eq. (18), to the lowest order in
�/ω0 the saddle points are

tn(θ ) = πω−1
0 (n + 1/2) − ω−1

0 θ (19)

[the instants tn in Eq. (12) are equal to tn(0)].
The result of the integration has the form similar to Eq. (12),

ψ
(1)
E ≈ −(�/ω0) (2π/κg)1/2

∑
n

e�tn(θ)/2an(κ,θ ),

an(κ,θ ) = exp[igfk(tn(θ )) − (−1)niπ/4]. (20)
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Here we have disregarded corrections ∝�/ω0 unless they are
multiplied by a large factor. In particular, we keep the term
∝�/ω0 in function fk, since it is multiplied by κ . It can be large
for large κ and such tn(θ ) that κg exp[−�tn(θ )] > ω0/� 	 1.
To first order in �/ω0,

fk(tn(θ )) ≈ κe−�tn(0)(−1)n
[

1 + �

ω0

(
θ − 1

2
sin 2θ

)]
.

The condition κg exp[−�tn(θ )] 	 1 imposes the upper limit
on n in the sum over n in Eq. (20).

To find the most pronounced singularities of ρE we expand
in Eq. (17) exp[−(ν/�)ψ (1)

E ] to the first order in ψ
(1)
E . Then

the calculation of ρE reduces to integrating ψ
(1)
E over θ , which

has to be followed by integration over κ with the appropriate
weight. Since from Eq. (14) tn(θ ) � 0, it is convenient to
integrate over θ from −3π/2 to π/2, which is seen from
Eq. (19) to correspond to n � 0 in Eq. (20).

For large κ , integration of exp[igfk(tn(θ ))] over θ can be
done by the stationary phase method. The stationary points,
∂θfk = 0, are located at θst = mπ with integer m. At these
points ∂2

θ fk = 0. Therefore∫
dθan(κ,θ ) ≈ Cn

(κg)1/3
[an(κ,0) + a∗

n+1(κ,0)], (21)

where

Cn = {(2�/3ω0)(−1)ne−�tn(0)}−1/3�(1/3)/
√

3

[�(x) is the Gamma function].
Taking into account that J0(x) ∝ x−1/2 cos(x − π/4) for

x 	 1, one obtains from Eqs. (17)–(21) that ρE(E) displays
power-law singularities for nonzero E, and near an nth
singularity the deviation δρE,n(E) of ρE from the smooth
background is

δρE,n(E) ∝ |E − En|−2βE+4/3,

En = 1
2g2 exp[−2�tn(0)]. (22)

As in the case of the singularities of the coordinate dis-
tribution for an underdamped system, for all singularities
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FIG. 5. (Color online) The results of numerical simulations of
the probability distribution over the energy of a shot-noise driven
underdamped system, where �/ω0 = 0.125. The data curves 1 to 3
correspond to ν/� = 0.15, 0.4, and 0.75. The respective values of
the critical exponent for E → 0+, which are shown by straight lines
in the inset, are βE = 0.925, 0.8, and 0.625.
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FIG. 6. (Color online) The results of numerical simulations of
the probability distribution over energy of an underdamped system
near the peaks (22) with n = 0 and 3. The labels “right” and “left”
refer to the right and left sides of the peaks, where E − En > 0 and
E − En < 0, respectively. The parameters are �/ω0 = 1/20,βE =
0.925 (ν/� = 0.15). The straight line shows the analytical value of
the exponent of the power-law peaks for E → En.

of ρE the exponents are the same and the positions of the
singularities form a geometric progression. The exponent
2βE − 4/3 = (2/3) − (ν/�) is independent of the area of the
noise pulses g, whereas the positions of the singularities En

are independent of the pulse rate ν. In the most interesting
case of comparatively low pulse rate, where 2βE − 4/3 > 0,
the singularities correspond to the peaks of the distribution. We
note that the condition 2βE − 4/3 > 0 holds for higher pulse
rate ν than the condition βud − 1/2 > 0, which is necessary
for observing multiple peaks of the coordinate distribution.

In Fig. 5 we compare the predictions with the results of
numerical simulations. The positions of the peaks of ρE are in
excellent agreement with Eq. (22) already for moderately small
�/ω0 = 1/8. As expected, the peaks become less pronounced
with the increasing noise pulse rate. The singularities of ρE

for E = En > 0 are still visible even for 2βE − 4/3 < 0 (data
curve 3 in Fig. 5); the asymptotic theory predicts that, for
the corresponding βE , the derivative ∂EρE should diverge
for E = En. The exponent of the peak for E = +0 obtained
numerically is also in excellent agreement with the theory.

In Fig. 6 we present the results of simulations of the
singularities very close to the peaks of ρE . We find that
the singularities are well described by the power law, and
the exponents are in excellent agreement with the analytical
theory. It should be noted that the peaks found in numerical
simulations had a structure of doublets, with extremely small
distance between the peaks in the doublet. Analytically one
might expect a doublet structure for not too small �/ω0, as
seen from Eq. (21). However, the corresponding analysis is
beyond the accuracy of the asymptotic theory developed here.

VI. QUALITATIVE PICTURE OF THE ONSET
OF THE DISTRIBUTION SINGULARITIES

The onset of singularities of the probability distribution of
Poisson-noise driven systems can be understood by noticing
that a single noise pulse shifts the momentum of the system
by g. If the pulse rate ν is small compared to the relaxation
rate t−1

r , on average the system has time to relax between the
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pulses and to approach the equilibrium position q = p = 0.
This leads to accumulation of the probability distribution near
the equilibrium position for νtr  1. As we showed, the result
is a power-law peak of ρ(q) at q = 0 with exponent 1 − νtr .

The argument and the result apply to both overdamped
and underdamped systems; for strongly overdamped systems
tr = 2�/ω2

0, whereas for strongly underdamped systems tr =
1/�. The expression for the exponent for ν → 0 agrees with
the qualitative picture that, where the pulses are rare, the
distribution should be proportional to the reciprocal velocity
for a given q, which is itself proportional to q (or to |q|, in the
underdamped case). On the other hand, for large ν the noise
becomes effectively Gaussian and the distribution becomes
smooth near the maximum; see below. We note that even in
the large-νtr limit ρ(q) has a power-law cutoff for gq → +0
in the case of an overdamped system.

The power-law singularity emerges also in the critical
regime where the system dynamics changes from overdamped
to underdamped. A similar singularity, and with the same
exponent, can be shown to characterize the distribution over
the momentum p. Interestingly, power-law singularities of the
distribution emerge also in overdamped systems driven by
another important type of non-Gaussian noise, the telegraph
noise [23].

An underdamped system excited by a single noise pulse
performs weakly damped vibrations. If initially the system was
at the equilibrium position, the momentum right after the pulse
is p = g, and the ensuing vibrations in the weak-damping limit
have the form

q(t) ≈ (g/ω0)e−�t sin ω0t (ω0 	 �);

here we count time off from the instant when the pulse
occurred.

The slowing down at the turning points q̇ = p = 0
leads to the peaks of the probability distribution. From the
above expression, such peaks should be located at q = qn =
(−1)n(g/ω0) exp(−�tn) with tn = πω0(n + 1/2), in agree-
ment with Eqs. (12) and (13). As we showed, they are described
by a power law with the exponent (1/2) − νtr . This exponent
differs from the exponent of the peak at q = 0. The onset of
the peaks at qn �= 0 requires a lower value of νtr than for the
q = 0 peak.

The fact that the exponent approaches 1/2 for ν → 0 can
be again understood as a result of the probability distribution
being proportional to the reciprocal velocity in this limit. Near
the extrema of q(t) the velocity scales as |q − qn|1/2. We note
that the peaks of ρ(q) become strongly asymmetric for small
νtr , in agreement with the above argument.

In the case of an overdamped system, after the pulse-
induced increase of the momentum p = 0 → p = g, the
system coordinate first moves away from equilibrium and then
monotonically comes back,

q(t) ≈ (g/2�)
(
e−ω2

0 t/2� − e−2�t
)

(ω0  �).

Respectively, the probability distribution over q has a peak
where q(t) is maximal, q ≈ g/2�. We showed that the peak
is described by a power law with an exponent (1/2) − νtr for
νtr < 1/2.

Similar arguments can be applied to the peaks of the energy
distribution in an underdamped system ρE . This distribution

can have a power-law peak for E → 0 due to the accumulation
of the probability density near q = p = 0 for rare noise pulses.
To understand the peaks for nonzero energies we note that, for
low pulse rate, after a noise pulse at t = 0 the energy evolves
as

E(t) ≈ 1
2g2 exp(−2�t) [1 − (�/ω0) sin 2ω0t]

to first order in �/ω0. Function E(t) has inflection points at
tn = πω−1

0 (n + 1/2). The peaks of ρE occur as a consequence
of the slowing down near these points. The values En = E(tn)
give the positions of the peaks, in agreement with Eq. (22).
The corresponding exponent is (2/3) − νtr , the same for all
peaks. The limiting value of the exponent for ν → 0 can be
again understood by noticing that ρE in this case is given by
the reciprocal rate of the change of E(t) near the inflection
point.

In real systems, along with Poisson noise, there are present
other noises. In particular, if dissipation comes from the
coupling of the system to a thermal bath, there is white
Gaussian thermal noise with intensity 4�kBT , where T is
the bath temperature. This noise is described by an extra force
fT (t) in the equation of motion (1). Using the explicit form
of the characteristic functional for white Gaussian noise (cf.
Ref. [21]), one can show that such noise leads to an extra term
in the function ψ(k) in Eq. (3),

(ν/�)ψ(k) → (ν/�)ψ(k) + 2kBT ω−2
0 k2. (23)

In the absence of Poisson noise, ν = 0, the distribution ρ(q) (3)
is then Gaussian, with no singularities. The distribution is
Gaussian also if the noise is Gaussian, but not δ-correlated.

The term ∝k2 in Eq. (23) imposes an effective cutoff on
the values of k that contribute to the integral over k in Eq. (3),
|k| � ω0/(kBT )1/2. Respectively, the peaks of the distribution
ρ(q) are described by the power laws found in Secs. III and IV
at distances that exceed (kBT )1/2/ω0 from the centers of the
peaks. This provides the bound for the observation of the
considered power-law singularities.

VII. CONCLUSIONS

We have studied the central part of the stationary probability
distribution of shot-noise driven systems. We analyzed the
probability distributions of the system coordinate and energy.
Our central result is that the distributions can display singu-
larities, and in particular peaks, at the equilibrium position of
the system as well as away from it. The singularities emerge
whether the system dynamics is overdamped or underdamped.
They are described by the power law, with characteristic
exponents. The positions of the singularities and the exponents
are obtained in the explicit form.

The pattern of the singularities of the stationary distribution
provides a reliable indication of the presence of shot noise. In
tunable systems, to observe the singularities it is advantageous
to make the relaxation rate of the system t−1

r larger than the
pulse rate ν. Observing the peak of the coordinate distribution
at the equilibrium position requires νtr < 1, whereas the peaks
away from the equilibrium position emerge for νtr < 1/2.
However, even where νtr > 1/2, there are still singularities in
the derivatives of the distribution. The power-law peak in the
energy distribution of underdamped systems at E = 0 emerges
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for νtr < 2, whereas the peaks for finite energies emerge for
νtr < 2/3.

The peaks in the probability distributions away from the
equilibrium position are characterized by the same exponents,
which are determined solely by the parameter νtr . The expo-
nents are different for the coordinate and energy distributions.
The positions of the peaks, on the other hand, depend on the
area of the noise pulses, but are independent of the pulse
rate ν.

Particularly attractive in terms of identifying the noise seem
to be underdamped systems, since the distributions can display
multiple singularities whose locations form a geometric
progression with common ratio ∝exp(−π�/ω0). However, if
the system is very strongly underdamped, the singularities
may start overlapping, which would complicate resolving
them. Also, the characteristic heights of the distribution peaks
decrease with the decreasing �/ω0, which suggests that �/ω0

should not be too small. This can be of interest for revealing
shot noise in side-band cooled vibrational systems, since the
cooling leads to the increase of the decay rate [17,18,24,25].

The singularities of the probability distribution should
occur also in more general types of shot-noise driven systems
than the ones discussed above. An important example of
current interest is nonlinear vibrational systems modulated by
a strong resonant periodic field, with shot noise coming from
fluctuations of this field or, in the case of nanomechanical
resonators, charge on the resonator. The dynamics of such
systems in the rotating frame near the stable state of forced
vibrations is described by linearized equations of motion that
have a form somewhat different from the standard Langevin
equation (1) [9]. However, we expect that the presented
results can be extended to such systems and to other systems
that perform small-amplitude fluctuations about their stable
states.
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