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In this paper we consider a stochastic process that may experience random reset events which suddenly
bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention
on monotonic continuous-time random walks with a constant drift: The process increases between the reset
events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these
combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition
probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas
for two extreme statistics, the survival probability, and the mean exit time are also derived. To corroborate in an
independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in

full agreement with the analytical predictions.
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I. INTRODUCTION

Stochastic processes that incorporate some kind of mech-
anism which may instantaneously bring the mathematical
system to an absorbing state are not new [1,2]: The motivation
may arise from many real-life systems which are threatened by
the possibility of a sudden and severe decimation, usually with
an external origin (e.g., the extinction of biological species due
to some catastrophe, the bankruptcy of industrial and financial
firms, or a major electric power outage).

Those situations where such a catastrophic event results in
the disappearance of the system have attracted considerable
interest and are well studied in the literature, both from a
mathematical and physical perspective. Mathematical models
that encompass this possibility are fairly developed: For
diffusion processes (like Brownian motion) the possibility
of extinction has been well described and several killing
mechanisms have been considered in the literature. The
introduction of an absorbing boundary at the origin, say, is the
simplest of them. In this situation the system vanishes once
it hits the given level. However, absorption does not reflect
all possible physical situations. Neither does it exhaust the
possible behaviors at the boundary, which with more generality
may display a combination of absorption, reflection, elastic,
sticky, and jump behaviors (see [1,2] for the classification of
boundaries for diffusion processes). A different mechanism,
where boundary behavior plays no role, assumes that in
any time interval (¢,f 4+ At] the system has a probability of
extinction V(x)At where x is the actual position and V (x) the
killing rate. Unlike what happened previously, in this setting
extinction occurs in a sudden way, with no forewarning and
may take place at any location x and time ¢ [2,3].

In this paper we are interested in a related but nevertheless
fairly different situation where the system is not extinguished
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but rather is “reborn from ashes.” In such a case the
(exogenous) event represents a reset in the system activity:
the reboot of a computer, the neural spiking activity, or
the “back-to-square-one” order of certain board games. The
hallmark of such a system is the possibility of a random
restart, in opposition to random disappearance. Hence this
novel behavior cannot be captured by considering alternative
sorts of boundaries, like reflecting or sticky ones. Actually,
here we are interested in the opposite case where the
triggering of resets is fotally independent of the underlying
system.

In spite of its obvious interest and significance, it appears
that this situation has, until very recently, been virtually
ignored in the literature. As far as we know, this possibility
was first considered in the 1999 seminal work by Manrubia
and Zanette [4]. This paper analyzed a discrete-time stochastic
multiplicative process with a finite event space, namely a
Markov chain endowed with a restart mechanism. The second
exception is due to Evans and Majumdar [5,6] who in
2011 considered the diffusive evolution of a particle that
may be randomly reset to its initial position. A remarkable
conclusion, found both in Refs. [4] and [5], was that the
shut-off mechanism induces an algebraic decay for the tails
of the corresponding probability density functions. Power
laws (i.e., “heavy-tailed” distributions) have been repeatedly
observed in natural physical phenomena and advocated by
several authors [7—10] but, despite this fact, power-law tails
are by no means ubiquitous: most mathematical models ignore
them in favor of Gaussian decay, see [11] for a critical analysis
of this dichotomy.

Following these ideas, in this paper we analyze the
introduction of a restart mechanism in the framework of
continuous-time random walks (CTRWs) with a constant
drift and study the consequences that this carries. Thus, the
dynamics of a such system involves three elements, namely
the random jumps, the drift term and finally the resets.

If we deprive the system of the CTRW part but conserve the
drift and the random reset mechanism we recover the classical
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shot-noise process, a well-known model to describe sudden
light emission with current induction [12,13].

Conversely, pure CTRWs correspond to having only the first
of these elements. The interest of these processes in physics
has been advocated specially by Montroll and Weiss [14,15]. In
statistical physics driftless CTRWSs have been used to describe
transport in disordered media [16-20], earthquake modeling
[21,22], random networks [23], self-organized criticality in
granular systems [24], electron tunneling [25], and distribution
of matter in the universe [26], just to name a few. But CTRWs
have been also used in the modeling of social systems (e.g., by
giving a tick-by-tick description of financial markets [27-30]).
A comprehensive review of CTRW applications in finance
and economics can be found in Ref. [31]. For a more general
perspective on the issue see [32-34].

While not so popular in physics, the CTRW with a drift
incorporated plays a fundamental role to model the cash flow
at an insurance company [35-38]. Recently, we have shown
that energy dissipation of optical beams in a self-defocusing
medium like an optical fiber with random inhomogeneities is
also described in terms of a CTRW with a drift [39,40]; see
also [41]. Typically, in such a situation signal’s losses may
be significant and may require the incorporation of periodic
all-optical amplifiers [42] to upgrade the signal strength to the
initial amplitude. Thus, in this context, the exogenous reset
mechanism proposed here might be incorporated to the model
in a natural way.

The paper is organized as follows. In Sec. II we introduce
the process under study, a CTRW with drift on which a restart
mechanism has been superimposed. We suppose that resets
are set off with no forewarning and independently of the value
of the underlying CTRW. The resulting process is both rich
and realistic enough to deserve important attention. In Sec. I1I
we obtain an explicit analytic expression for the the transition
probability or propagator of the system. It turns out that the full
propagator can be related in a relatively simple way with the
reset-free one. We also find that as long as the reset mechanism
is present, the asymptotic behavior (in either time or space)
shows some appealing features, like, in particular, the existence
of a stationary distribution. We pinpoint conditions that
guarantee the existence of power-law tails and characterize
precisely the relevant exponent. Section IV is devoted to the
analysis of the properties of two extreme-value statistics, the
survival probability and the mean exit time. We give a closed
formula for these statistics in terms of a Laplace transform.
Conclusions are drawn in Sec. V, where future perspectives are
also sketched. We have left for the Appendices some technical
mathematical derivations.

II. THE PROCESS

Our starting point is arandom process X (t) whose dynamics
consists of a superposition of a constant rate motion along with
sudden random increments J,,, the jumps, at random instants
of time #,. More concretely, if 7Ty and T} are given times we
suppose that for Ty < r < T, X () can be expressed as

X(1) =T —To) + Z Jn0(t — 6,00t — To), (1)

n=—0oo
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where I > 0 is the constant velocity, and 6(-) is the Heaviside
step function, that takes values 6(u) = 1 for u > 0 and zero
otherwise.

Furthermore, #, and J, are the jump times and jump
sizes while 17, = t,, — t,,_; are the time intervals between two
consecutive jumps, the “waiting times.” We assume that J,, and
7, define sequences of independent and identically distributed
(i.i.d.) random variables, described by the probability density
functions (PDFs) A(-) and v (-), respectively

h(w)du = Plu < J, < u + du},
Y(t)dt =P{r <1, < t+dt},

where PP denotes the relevant probability. As we are interested
in the analysis of monotonic processes, we will further assume
that h(u) =0 for u < O [whereas {¥(r) =0 for 7 <0 by
definition].

Up to the time 7} Eq. (1) defines simply a CTRW with
a constant drift ' like that considered in Ref. [41]. The
difference with previous works arises at ¢+ = 7;, when the
process experiences a reset event,! that is, we declare that
X(Ty) = 0 and that for T} < t < T», X(¢) is given by

X()=T@—-T)+ Z Jnb(t = 1,)0(t, — T1).  (2)

n=—00

The same definition applies to X(¢) at t = T»,73, ..., thatis,
X(T,) =0, where T,, is an increasing sequence of random
times. Thus in general for 7, <t < T4, m =0,1,2, ...,
we have

XO)=T@ =T+ Y Jub =100 —Tp).  (3)

n=—00

Note how past 77 the initial evolution of X (¢) [cf. Eq. (1)] is
modified in an exogenous way. The novelty of this paper is the
introduction of this mechanism within the CTRW framework,
which brings forward the possibility that the system be shut
down and then restarted, see Fig. 1.

As regards the sequence of random resets 7,, we assume
that the interevent intervals .7, = T,, — T,,_; are a set of i.i.d.
random variables characterized by the PDF ¢(-)

¢(t)dr =Pt < F, <t +dt}.

We also assume that the set {.7],} is independent of {r,} and
{J,,} and hence that resets occur independently of the value of
the underlying CTRW.

The process X () thus modified is intrinsically different to
the original one,” and, generically, is not a Markov process.

! Our mathematical model assumes that both jumps and reset events
do suddenly moditfy the state of the process. While in some cases this
instantaneous-response hypothesis will be an accurate description of
the system, in others it could only be considered as an acceptable
proxy of reality.

2In spite of this fact, one could argue that the long-time limit of the
new system might follow by using an infinite combination of systems
without resets. While in the analysis of some properties of the process
this can be true, see Eq. (14) below, it is unclear if this approach could
be substantiated to produce concrete analytic results in the general
case. We are grateful to an anonymous referee for this observation.
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FIG. 1. (Color online) Sample path of the processes X(#) and
Y(#). The solid (red) line represents a possible realization of the
monotonic process X () which grows linearly between the jump times
t, and returns to the origin at the reset times 7. The dashed (blue)
line is a geometrical version of X (), Y(t) = e~ X®,

In fact, it is not a compound renewal process either: On the
one hand, if 7, is a given jump time, the evolution of X(¢)
after that time depends on X(#,) but also on the previous reset
time T*(t,) = Ty, where Ty < t,, < Ty11, for some k. On the
other hand, if T,, is a given reset time, the evolution of X(¢)
after that time depends as well on the last jump time, which
we denote by t*(7,,) = #;, with t; < T,, < #;4 for some value
of [. In other words, in spite of the formal resemblance of
Egs. (1) and (2), X(Tp + t) and X(T + ) have different laws
and therefore one cannot resort to the use of renewal equations
in the analysis of this process for a general choice of ¥/(-) and
@(-), as is commonly done when studying CTRWs.

In this paper we take the natural and usual choice that the
waiting-time and reset densities ¥/ (-) and ¢(-) are exponential
functions

VU (t) = re 7, “4)
P(x) = Ae ™, 5)

where A~! and A~' are parameters of the distributions that,
respectively, denote the mean value of 7, and .7,. Note that
with this choice X(¢) is time homogeneous and Markovian.
Indeed, if no resets are present X (¢) reduces to the well known
compound Poisson process with drift which satisfies the above
properties. (Further proof of this can be found in Appendix B,
along with several global properties of this process.)

Itis interesting to point out that in many cases the physically
measurable process Y (¢) is not the given by Eq. (3) but is rather
constructed by multiplicative (instead of additive) increments.
To accommodate this interpretation we simply consider that
X(¢) is the (aggregated) rate at which the physical observable
Y (¢) varies. In such a case X (¢) and Y (¢) are related either by

Y(t) = Yy e*?, (6)

or by
Y(t) = Yye X0, (7)

This is the interpretation that we take in the rest of this paper
where X(f), defined by Eq. (3), is mostly considered for
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computational convenience, whereas the magnitude of interest
is Y (¢). Let us enumerate a few examples.

In finance, Eq. (6) may represent the evolution of a savings
account with a minimum balance level Y, (let us say one
cent) and a continuously compounded interest rate I", wherein
sudden injections of capital are made by the owners at random
times ¢,, but which does not allow for partial withdrawals.

In biology, Eq. (6) may model the changes in the population
of a species in some geographically limited region, assuming
that it has an effective growth rate I and is subjected to
recurrent immigration and punctual massive emigrations (e.g.,
the case of many birds, swallows, or flamingos among others).
In this case the reset event does not imply the extinction of the
species as a whole, but the return to the autochthonous level
of population Y.

In an optical context, the evolution of the energy E(f)
of a signal in an optical fiber with random impurities is
also described by a related model, as we we have recently
shown [39,40]. Here E(t) = Eye X", where X(¢) is de-
scribed by Eq. (1), ' accounts for the constant damping
rate of the fiber, while jump points 7, signal the presence
of random impurities in the fiber due to manufacture errors.
As a result of these combined effects, the initial signal will
be degraded exponentially in time. The introduction of an
ulterior reset mechanism, as we do here, could be used to
describe the possibility that random (digital) amplifiers (at
which the signal is amplified to the initial value, i.e., E(T,,) =
E)y) are incorporated to the fiber to make up for the losses due
to the damping and impurities.

Finally, we note that when A = 0, namely when only resets
but no jumps are allowed, we have that Eq. (7) leads to

oo
YOy =Yy > e "0 — T,)0(Tgr — ).

m=—00

Therefore, Y (¢) is the piece-wise exponential function Y (¢) =
Yo e T¢=Tw for T,, < t < T,u41. This is the shot-noise process
where shots are triggered with Poissonian rate and suffer an
exponential decay after hitting the detector. Shot noise has been
used widely in physics [12,13] to describe sudden electron
emission with induced currents and Cherenkov radiation.

Thus, the system considered here is a natural generalization
of classical physical models. In the rest of the paper we study
the most relevant statistical magnitudes.

III. TRANSITION PDF

We start with the analysis of the propagator, the transition
probability density function of the process
px(x,t;x0,t0)dx = P{x < X(¢) < x +dx|X(t) = xo},
)

where ¢ and ¢ are arbitrary3 with t > 1.

3We note that in the previous section we used ¢, to denote one of the
jump times. This abuse of notation is not merely incidental. When
the process is not time homogeneous the renewal equations have a
simpler structure if the time origin coincides with a jump.
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Note how in the definition of px(x,t;xo,%), the “X”
subscript indicates the random variable to which the transition
PDF is associated; similarly, we denote by py(y,?; yo,%y) the
corresponding probability for the physical process Y (¢) =
X 4 However, since py follows trivially from py,

1
py(y.t; yo.t0) = ;px(logy,t;logyo;to), &)

we will mainly focus our attention on px(x,f;xg,%) in the
sequel and, to simplify the notation, drop the “X”* subscript
when there is no room for confusion.

Equation (8) intends to emphasize that, in principle, the
propagator depends on both the starting point xy and the initial
time #o. However, the process must be time homogeneous
(since both the jump and the reset mechanisms are Poissonian),
and therefore

p(x,t;x0,80) = p(x,t — ty; x0,0) = p(x,T; x0).

By contrast, one does not expect the propagator to be
translationally invariant because resets take the process to
a fixed point, thereby breaking the spatial symmetry. This
implies that the dependence on x( cannot be removed.

Let us derive first the integral equation that governs the
evolution of p(x,t;xp). Recall that 7y and ¢ (with 7y < t) are,
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respectively, the actual and a future given time instant, and that
T =1t — 1y is the associated time interval. In the following we
will denote by t’ and t” the time interval up to the first reset
event and, respectively, the first jump (note that 7’ and t” are
random variables while 7 is just a number). The equation
for the transition PDF can be built up by considering the
three possible and mutually exclusive scenarios that appear
depending on the relative values of the time interval up to the
first reset event 7', the time interval up to the first jump t”,
and 7.

(i) There is neither a reset nor a jump in the time interval
7 (i.e., 7’ > tand t” > 7). In this case X(t) = xo + I'T.

(i) There is at least one reset in the time interval, and the
first one takes place before any jump has occurred, T’ < 7 and
t” > 7/, In this case the transition PDF after the reset must be
p(x,T — 7/;0) since system must reach x, starting from zero,
in a lapse of time T — 7.

(iii)) There is at least one jump in the time interval (zy,?],
namely t” < t. This first jump (of size u) takes place before
the first reset event 7’ > t”. Right after the jump we have
X(t") =x0+ I't” + u, and then the propagator is p(x,t —
i x0 +Tt” +u).

In view of all this p(x,t;x¢) must satisfy the following
renewal equation:

o0 o0 T o0
p(x,7;x0) = / dr’Ae‘AT’/ dt" e 8(x — xg — ') —i—/ dt/Ae_A”/‘ dt"ve " p(x,t — 1;0)
T

T

0 T

+ / dt”)»e_””/ dt’Ae‘A’// duh(u)p(x,t — t";x0 +Tt” +u)
0 T 0

”

T
= MHATS(x —xo— 7)) + / dt'Ae” NV p(x, T — 75 0)

0

o0 T
+ / duh(u) / dt"re OtV pix,t — i x0 + T” +u). (10)
0 0

The standard procedure for solving integral equations like
Eq. (10) is to resort to the use of some integral transformation,
either the Laplace transform, the Fourier transform, or a
combination of them. Here, since x and t are positive variables,
the natural choice is to consider the Laplace transform in both
arguments

N o0 o0
ﬁ(a),s;xo)z/ dte_”/ dxp(x,t;xp)e” ",
0 0

where from now on the hat will denote the Laplace trans-
form with respect to the time variable, and the tilde will
denote the Laplace transform with respect to the position
variable. Typically upon transformation the integral equation
yields a purely algebraic equation whose solution can be
(straightforwardly) found. In the present case, however, the
double Laplace transform simplifies but does not solve the

“We set Yy =1 hereafter for computational convenience. In
practical terms, this can always be achieved by a suitable choice
of the physical units.

posed problem

1 —wX(

A+ A+Tw+s
0

P (0,5:x0) = sﬁ(w,s;O)

A+ A+

o0
x/ duh(u)p (w,s;x0 + 1" +u), (11)
0

since ﬁ(w,s;xo) satisfies a new (although simpler) integral
equation.

Further progress in the resolution of Eq. (11) demands a
careful analysis of the dependence of p(x,7;x() on x¢ or, in
other words, determining which is the interplay between x¢, x
and 7. In Appendix A we prove that the solution to this integral
equation is

1
Ml —h(@)]+A+Tw+s’
(12)

2 A
p(w,s3x0) = [— +e “”‘0]
N

012116-4



MONOTONIC CONTINUOUS-TIME RANDOM WALKS WITH . ..

where
- o0
h(a))E/ duh(u)e™“".
0

The propagator p(x,t;xo) then follows by inversion of the
Laplace transform of Eq. (12). Letting A — 0 one recovers
po(x,T; xp), the propagator of a reset-free, monotonic CTRW
with a drift, the process that follows if we let 7} — oo in
Eq. (1)

efwx()

Al —h(@)]+Tw+s
(13)

Polw,s;xp) = iimoﬁ (@,5;%0) =

It is noteworthy that the opposite construction can also be
carried out, namely p(x,7;xp) can be written in terms of
po(x,7;x0). In physical space this relationship reads (see
Appendix A)

T
p(x,r;xo)=f dt* Ae ™ po(x,7%;0) + po(x,7;x0)e 7.
0
(14)

Equation (14) is more informative from a structural point of
view than Eq. (12) since it relates both propagators. Actually
the proof given in Appendix B on the Markovianity of X(7)
relies heavily on this fact. Nevertheless we find it more
convenient to use Eq. (12) as starting point for obtaining
p(x,7T;xp). In particular, one can go one step further and take
the inverse Laplace transform in the s variable of ﬁ (w,s; x0)
to obtain p(w,T;xp)

Al — e—(?»[l—ﬁ(w)]-s-A-s-l“w)r]

Ml —h(@)]+ A +To
+efwxof(kllfﬁ(w)]+A+Fw)r-

Plw,t;x0) =

15)

An ulterior inverse Laplace transform in the w variable could
be given once the functional form of /(w) is chosen. Before
examining further the general properties of the propagator we
first consider a concrete example.

A. Exponential jumps

Let us exemplify the general results in Egs. (12) to (15)
with the following choice for the jump density

h(u) =ye ™, (u=0), (16)

or equivalently

hw) = _r

St a7

where y > 0is a parameter. This election is both plausible and
suitable, but even in this case the calculations are substantial.
Since the purpose of this section is mainly illustrative we first
consider the simpler case I' = 0.

Under these assumptions Eq. (12) reads

w+y
A+A+)o+ (A +s)y’
(18)

5 A
plw,sixg) = | —+e ™%
N
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from which one can readily compute the inverse w—Laplace
transform

! A8 +6(x —
m?(x) (x — x0)

A YA
———e
s A+ A +5)?
A
P 2 S
A+ A+5)?
To completely recover the density one must, in addition,
to perform the inverse Laplace transform in the s variable,

which is in turn more intricate. After some calculations (see
Appendix C) we finally obtain

plx,s5x0) =

_ (Ats)yx
AtA+s

TEARYOT0G(x — xg). (19)

P Tix0) = eSO — e U 4 8(x —xp)eT T
i . AT
+ A f dfe*(“A)T*”,/V—II(Z,/kfyx)
0 X
+67(A+A)rfy(x7x0) V)‘r
X — Xo

x 112y/Aty (x — x0))0(x — xo),

where I,(-) is the modified Bessel function of order 1.

Formula (20) implies the existence of a stationary PDF,
which follows taking the limit 7 — co and computing the
integral that appears in the third term. Alternatively, one finds
in a straightforward way from Eq. (19) that

(20)

px) = lim p(x,t;x0) = lim s p(x,s; x0)
T—00 s—0
yH 67% .
A+ A

Thus, the stationary distribution of the physically relevant
quantity Y (1) = eX® follows from Egs. (9) and (21)

A
Y [S(x) + 3y

T A+ A

() 1 A 8(1 )+ ]/)» 7[\}/10[\\;}'
=———|4&(lo e i
Pr =AY T A
_ A sy ] (22)
Tata” Ot Ayt
with
A
= _ra (23)
At A

We close this section with some remarks concerning the
stationary density for the general case I' > 0. The inclusion of
a nonvanishing drift constant blurs somewhat the neat result
in Eq. (22) with the emergence of two different exponents

A oL -y Y —a_
= , 24
Pr(y) F(a_a_)[ym S (24)
with
A+A+T A+A+Ty)2—4TyA
ai5++yi\/(++y) YA s

2r 2r

Since one has oy > y > o_ > 0, the bigger parameter o
dominates the behavior of py(y)for y ~ 1 whereas the smaller
one, «_, determines its asymptotic decay and defines the
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FIG. 2. (Color online) Power-law decay in py(y). The solid (red)
line corresponds to the stationary propagator, Eq. (24), whereas the
dashed (green) line and the dotted (blue) line correspond to a decay
rate driven exclusively by o, or a_, respectively. Superimposed to
the exact result, and in a good agreement with it, we can find (circles)
anumerical estimation of the stationary PDF obtained through Monte
Carlo simulation.

power-law exponent of the process. The critical value of y
that separates these two regimes is

(m—y)aéw
Ye = .
Yy —o_

Therefore, when the jumps are exponentially distributed, we
find a power-law decay for py(y) for any relative value of the
parameters.

To test the goodness of the previous analytical derivations
we have resorted to numerical methods. We have simulated
the evolution of 1000 000 different realizations of the process
Y (7): The relevant PDF is then derived based on the relative
frequency of the outcomes. We plot this PDF for t = 100, a
quantity that is much larger than any characteristic time scale
of the process, since we have set I' = 2.0, A = 1.0, A = 2.0,
and y = 1.0 in arbitrary units. For such large values of time,
the process is to all effects within the stationary regime, as
Fig. 2 confirms.

Figure 2 also shows the coexistence of the two different
exponents in the decay rate of the stationary PDF, o and «_.
With the choice of the parameters reported above oy = 2.0,
a_ =0.5,and y. = /8.

B. Some remarkable general properties

We have seen in the previous section that if the jump density
is exponentially distributed the system tends for long times to
a stationary state where the stationary density has a power-law
decay. We now show that this behavior is not restricted to this
particular case but occurs under fairly general conditions and
election of jump density h(-).

To this end note that in the Laplace domain p(w,t;x0)
is a well behaved function of w provided /(w) presents no
pathologies. Nevertheless, i(w) — 0 as w — oo and hence
the inversion to physical space must be done in a generalized
distributional sense that requires some care: Indeed the last
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term of Eq. (15) has no inverse Laplace transform for x >
x1 = x9+ 't and a delta contribution appears at that point.
This anomaly reflects that there is a finite probability that the
process arrives to x; before any reset or jump has occurred

P{X(t) = x1|X(0) = xo} = e ATHT, (26)

When I' = 0 there is, in addition, a finite chance of finding the
process at x = 0 after time 7, irrespective of the initial point.
This probability has its origin in the first term of Eq. (15), and
amounts to

P{X(7) = 0|X(0) = xo} = ALHU —e AT 27)

Remember that these two delta terms have previously appeared
in Eq. (20). Note also that when xo = I" = 0 the probabilities
in Egs. (26) and (27) will simply add together thus yielding
A+ Le— (AT
{X(r) = 01X(0) = 0} AT

It is also remarkable that the introduction of resets makes
the system recurrent and ergodic with a stationary density that
follows from Eqgs. (12) and (15):

plw) = lim p(w,T;x0)
T—>00
A

= . (28)
Ml —h(@)]+A+To

= limsp (w,5;x0) =
s—0

This ergodicity could be expected on physical grounds since
the incorporation of this reset mechanism guarantees that the
system will not be driven too far off from the origin, no matter
how strong the drift and jump mechanisms are. We elaborate
on these properties in Appendix B. Note that while the limit
does not depend on the initial condition x, as expected, it still
depends on the drift velocity T, a fact that is not obvious from
Eq. (10), where x¢ and I always appear side by side.

In particular, we can use expression (28) to compute the
moments of the stationary distribution for a general choice of
h(-). Thus, if we call ,, the nth-order moment of the jump-size
PDF h(-) we will have, for instance,

r+a
lim E[X(7)] = M,
T—00 A
, A 2T 4 Aup)?
21— & - "7
IIHIJOE[X(T) 1= s + e )

where [E[-] denotes the expectation of its argument.

We are particularly interested in studying the asymptotic
behavior of px(x) for large value of their arguments. By
virtue of the Tauberian theorem this amounts to studying
the limit of Eq. (28) when w — 0 and h(w) — 1. Depending
on the magnitude of A different scenarios appear. Under the
assumption that the reset rate is much larger than the jump
rate, A > A, and the velocity, A > T", we expand Eq. (28) as

1

p(w) = ~

P = T A — ) + Lo
o2 L +kl€( )

012116-6



MONOTONIC CONTINUOUS-TIME RANDOM WALKS WITH ...
This expression leads to

~ Ah
p(x) ~ oh(x),

where we have rejected the terms that do not contribute to the
asymptotic behavior.

More compelling is the behavior in the opposite case
when the above relations are inverted. Concretely, if the jump
density has finite mean p; then for small values of w we can
approximate

hw) ~ 1 — pw + o(w),
and hence Eq. (28) reads

A
plw) ~ it Tlot A (29)
Assume in addition that the ratio
o), (30)
Apyp +T

that is, it is at least as small as w is. In this case the Laplace
inversion yields for large x

p(x) ~ 31)

App +T

It is interesting to observe the emergence of different
regimes in py(y) as well, as we increase the reset parameter A.
Setting A = 0 (i.e., if we freeze the reset mechanism) the sta-
tionary density disappears as befits an increasing unbounded
process. When we introduce a small reset parameter A, the
stationary density py(y) exists and if condition (30) is satisfied
it will show a heavy-tail decay

B
pr(y) y'_+5’ (32)
with power-law exponent
B= A (33)
A+

Note that this proves that under the above assumptions the
stochastic process Y (t) is ergodic with a stationary density
that shows a power-law decay. The critical exponent depends
on a sophisticated combination of all the parameters that
characterizes the model: the jump and reset rates, the drift
velocity, and the typical jump sizes. The result is similar to
that reported in Ref. [4].

As one keeps increasing the reset rate so that A > A and
A > T, the stationary density is dominated by the functional
form of the jump density, which may or may not decay
rationally

1
pr(y) ~ ;h(log y).

Finally, for ever larger values of A the pure density part
is dimmed while the delta term takes over and dominates the
stationary probability distribution, a result which is easy to
understand from a physical point of view.
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We finish this discussion by noting that, in the given ranges,
these expressions reduce to the results obtained in the previous

section: One just has to recall that from Eq. (16) one has

m=y "

IV. EXTREME-EVENT STATISTICS

In this section we analyze some statistical properties of
extreme events of the process X (7).

We are concerned with the survival probability (SP) of the
process, Pla.p(T;x0)

Plapn(t5x0) = Pla < X(T) < b, T < 11X(0) =x}, (34)

namely, the probability that the process which is initially in xg
does not leave the region [a,b], a < xog < b, before time 7. In
other words, if we denote by 7 the first time the process exits
[a,b] starting from x

7 = min{t : X(7) ¢ [a,b]|X(0) = xo}, (35)
then the SP is simply the probability that 7 > t, that is,
P{T <t} =1~ Pl p(;x0)- (36)

A related magnitude of interest is the mean exit time (MET),
the expected value of 7

Tia,p1(x0) = E[T]. (37

Even though these two magnitudes are meaningful for any
choice of the interval [a,b] we are primarily interested in the
case a = 0, b > 0: By construction the process will tend to
reach the upper boundary b steadily, but occasionally it returns
to the lower boundary a = 0.

To ease the notation in the sequel we drop the subscript
in xg, and assume that the process is initially at x. To
get an equation for Pjg;j(7;x) we will resort to renewal
arguments, very similar to those enumerated in Sec. III,
but with the additional requirement that the process does
not cross the upper boundary at any time. With the same
notation as in Sec. III we will explore the three nonoverlapping
situations.

(i) There is neither a jump nor a reset in the time interval
7,7 > tand t” > t, and the elapsed time is not long enough
to reach the boundary by the effect of the driftt < (b — x)/T.
In this case the process will survive with certainty.

(ii) There is at least one reset event at t’ before the
first jump, 7' < 7, T/ <t”. If ' > (b —x)/T the process
does not survive, otherwise the survival probability is Py
(r —1;0).

(iii) There is at least one jump before the first reset at t”,
t” < 1/, 7”7 < t. After this event there is survival probability
Pos(t —t";x + Tt +u) only if t”7 < (b —x)/T and the
jump size u is smaller than b — x — I't”.
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These three possible contingencies lead to the following integral equation:

[e ] o0 T [o¢]
Pro.p(T;x) = / d‘L'/Ae—Af// dt"re'9(b — x — T'7) —+—/ dr/Ae_A’,[ dt"re ™ Pyt — 7;000(b — x — T'T))

T

0 T

T L, [ , b—x-TI1"
+ / dt"re / dt' Ae 7 / duh()Ppp(t —t";x + Tt +u)d(b —x —T1"),
0 T 0

”

— e—(x+A)r9(b —x—T1)+ / d‘L'/Ae_(A+A)T/'P[O,b](T — 7,000 —x —T7)

0

T b—x—-Tt”
+ / dt" re DT / duh(u)Pp(t —t";x + 01" +u)0(b — x —T't"). (38)
0 0

Next we will consider the Laplace transform of the SP with
respect to the time variable

o0
P[o,b](S;X)E/ dt Py py(t;x)e™’", (39
0
and obtain
A 1+ APy, (55 0) Ak
P, )= —— T - (b—x)
10,61(85 %) T A+s [1—e ]
n A /b—xd RN (g )
= e
r), “

Z
. / duh(@Proy(sib— 2+ ). (40)
0

Note that in this case we cannot perform the Laplace transform
with respect to x in a straightforward way because x is
restricted to the interval [0,b]. In the following section we
show how to overcome this limitation.

We also remind (see Appendix D) that setting s = 0 in
Eq. (40) the corresponding integral equation for the mean exit
time of the process out of the interval, Ty (x), is directly
obtained’

14 ATO.b (O) — Ay
Tio.5(x) = T[A][l e Gl
A[r ran
+Ff0 dZ€7 T (b—x—2)

X / duh(u)Tlo,b](b —z4u). 41)
0

A. General solution

Here we consider the solution to Eq. (40) with arbitrary
choice of the jump size PDF k(-). To this end we have to find
the general solution of the allied integral equation

1+ AA(s) penks

Fon =y h—e T

4 N
+ &/ dz/e_wrl/_\ﬂ (Z—Z/)
I Jo
2

xf duh(W)F(s;7 — u), (42)
0

5One can alternatively obtain this equation by means of the same
kind of arguments that led to Eq. (40) (see, e.g., [28,41]).

for z > 0, with A(s) an arbitrary function of 5.° Notice that
one recovers ﬁ[o,b](s;x) via ﬁ[(),h](s;x) = .7:"(s;b —x) and
requiring that A(s) = 75[0,b] (s;0). The solution of F (s; z) for
values larger than b (i.e., when x < 0) is mathematically
meaningful but has no physical significance.

Expression (42) is now well suited to be Laplace trans-
formed in the z variable as well

2 o A
F(s;w) = / dzF(s;z)e %,
0

yielding in this way

1 14 AA®s)

Foo= L 1HAAO)
(53 ) o+ A+To+s

— L F(si0). (43
Y T ATTots (W)F (s;w).  (43)
Then we can obtain a closed solution of the problem for any
functional form of A(-) in the Laplace-Laplace domain
1 1+ AAGs)

Flo) = T el + At Tots

(44)

B. Exponential jumps

Let us exemplify the general result in Eq. (44) with the
exponential case, introduced earlier in Eq. (16).
Let us begin by writing down the explicit expression for

F(s;0)

5 Yy +o 1+ AAGs)
F(siw) = 5
w To?+A+A+s+Ty)o+yA+s)
_ I+ A 1) —y |y —a(s)
Al wlotait) wo+a(s)]
(45)
where
i (s) = A+A+s+Ty " A(s) (46)

2r 2r”’

A)=vVA+A+s+Ty2 —4Ty(A+s). @7

SNote that in Eq. (40) s is a parameter and hence to all effects Als)
plays the role of a constant.
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Note that the o1 defined above in Eq. (25) corresponds simply
to a+ = a(0).

The w-Laplace inversion of Eq. (45) is lengthy but
straightforward

A 1+ AA(S) C{+(S) -V a8z

F(s;z) = AG) [ 2 s) (I—e )
LY (xf(S)(l _ e—a(S)Z)jI’ (48)

a_(s)
and then
. 1+ AP ;0 -
Prop(s;x) = : A[((S](S : [atfi)(s) - (1=
LY OP(S)(1 B ea(s)(bx))il. (49)
a_(s)

The value of Py (s;0) is obtained after demanding self-
consistency to expression (49) by letting x = 0. We will
not pursue further our analysis to detail the explicit form of
Plo.s)(s;0) since Laplace inversion in the s variable is not
possible.

We will concentrate instead in the s = 0 case, which leads
to the MET, Ty (x), as we have previously stated. From
Eq. (49) we get

1+ ATy (0 —
Tiox) = DT OAON @ 2V (e
’ Moy — o) oy
+ %0 e“<bx>)]. (50)
a_
The value of T|p 5)(0) must satisfy
1+ ATpnO) [ oy — —w
Ty0.51(0) = 0.2] TV (1~ eehy
Moy —a-) o
+X"%q —e_“b)j|, 51)
o
that is,
1 oy — o
Tp.,(0) = — —1],
10,51(0) A |:(% _ oz,)e_‘”b + (Ol+ _ %)e—wb ]
(52)
which is always finite since
A

oy > = >a_.
r

We can find in Fig. 3 some representations of T 5;(0) where
we can observe the opposite effect of changing A and I'.
Now, we combine Egs. (50) and (52) to obtain finally

1
T =
00100 = R et + (T — Ao b
% oy — J/(l _ e_m(h—x))
ot

+ T a- e—““?—x))]. (53)
o

Figure 4 shows how T 5j(x) depends on the starting point x,
for different intensities of the reset mechanism. We can observe
how when the reset events are sparse T »(x) decreases gently,

PHYSICAL REVIEW E 87, 012116 (2013)

3.0

To,5(0)

A

FIG. 3. (Color online) Sample representations of Ty (0) in
terms of A for different choices of I'. The solid lines were obtained
by direct representation of the analytical result, whereas the points
were computed through numerical simulation for: I' = 1.0, (red)
diamonds; I" = 2.5, (green) triangles; I' = 5.0, (blue) circles; and
I' =10.0, (magenta) squares. The rest of the parameters were
b=10,A=10,and y = 1.0.

almost linearly, as a direct consequence of the constant drift
term. Reciprocally, when there is large reset activity, the escape
time is nearly insensitive to the value of x. This means that
in this regime the main possibility for the process to leave the
interval [0,b] comes from the jump mechanism.

Figures 3 and 4 also include numerical estimations of the
MET for a discrete set of values of the free parameter, A and x,
respectively. Once again we have used a Monte Carlo method
in which 1000000 different realizations of the process were
averaged to produce the reported results. Note that in this case,
since the estimation of the MET is a problem with a built-in

T[O. b](x)

X

FIG. 4. (Color online) Sample representations of Ty (x) for
different values of A. The solid lines were obtained by direct
representation of the analytical result, whereas the points were
computed through numerical simulation for A = 0.1, (red) diamonds;
A = 1.0, (green) triangles, A = 10.0, (blue) circles; and finally
A =100.0, (magenta) squares. The rest of the parameters were
b=10,l =1.0,A=1.0,and y = 1.0.
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stop mechanism, no time cutoff is necessary in the simulation
of the process.

We conclude this section by considering some mathemati-
cal limits on Eq. (53). This will allow us to explore more deeply
the limiting properties exposed in Figs. 3 and 4. Letting A — 0
no reset exists and we recover the reported result [39,40]

. Y
lim T = b— _
ADD 10.61(%) A+ Fy( )+ (A+Typ)?
ATy
x [l — e r =9, (54)
Letting A — oo we find
. er’

All_I)I;O Tro.p(x) = R (55)

There exists an alternative, more physical derivation of this
result by noting that when A — oo the system is constantly
redirected to 0, and exit can only happen when a jump of
magnitude greater than b occurs. Hence the MET cannot
depend on the initial position x nor on the drift parameter.
Furthermore one must also have

i = - .o - < sJn
lim Tyo,(x) ;‘E[rﬂ tolJ1, - Jut < b,Jy > b]

oo
=Y nE[tIP{J1.....Ju1 < b.J, > b}
n=1
yb

00
S - ey =2,
n=1

and the previous result is recovered. This constant value is
depicted in both Figs. 3 and 4 by a horizontal dotted (black)
line.

We can also explore the limits involving the magnitude of
the drift

Ay 1 1 Ay
1 — piab) = — — —ﬁ(b—x)
}13}) Tio,p)(x) = e7+5 {A + A[1 e A ]}, (56)

and

lim T[o,b](x) =0. (57)
'—oo

V. CONCLUSION

In this paper we have analyzed in detail the main statistical
magnitudes of a stochastic process that experiences random
reset events whereupon the system returns to the initial
point. As the basic stochastic process we take a monotonic
continuous-time random walk with a constant drift: The
process increases between the reset events, either by the effect
of the random jumps, or by the action of the deterministic
drift. We find that the system that results from the balance
of these opposite effects has interesting properties, like the
existence of a stationary transition probability density function
for any choice of jump density and drift strength, or the faculty
of the model to reproduce power-law-like behavior for a
certain range in the parameter space. If the jump density is
exponential the transition density can be computed explicitly.
The long time limit yields a heavy-tailed density with a simple
power-law exponent. Similarly, exit times of the model can also

PHYSICAL REVIEW E 87, 012116 (2013)

be determined. Analytic results are found to be in a remarkable
agreement with the numerical observations obtained using
Monte Carlo analysis to average over a large number of
realizations.

Finally note that we have concentrated our efforts in the
case in which both the waiting times between successive reset
events and consecutive jumps have a Poissonian origin, in the
same line of the previous work by Manrubia and Zanette [4].
The inclusion of alternative innovation mechanisms is deferred
to a future publication.
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APPENDIX A: THE GENERAL PROPAGATOR

Here we analyze in more detail how p(x,t;x0) depends
on xgo. This will allow us to solve Eq. (11) and, eventually, to
recover Eq. (14).

Assume first that x < xo + I't. In that case the process
must at least experience one reset before 7 since otherwise
it could not have reached x starting from x,. Since the reset
event removes any memory on past locations of the process,
we must have

p(x,7;x0) = g(x,7),

independent of xo. When x > xo + 't there is in addition a
possibility that the process goes from x to x directly, with no
reset event in the meanwhile

p(x,T;x0) = g(x,7) + O(x,7;x0).

Therefore, Q(x,t;x() corresponds to the possibility that the
process reaches x starting from x( by the combined action of
the random jumps and the constant drift. The later contribution
will affect the stochastic process in a deterministic way, by
decreasing the effective distance that the process must travel
by means of the random jumps alone. Since the jumping
mechanism is space homogeneous we must have that, for a
given time interval t, Q(x,t;xo) must depend on x and x
only via the precise combination of variables x — xy — I't

O(x,75x0) = q(x —xo — I't, 7).
Thus, summing up, p(x,7;xo) must have the structure

px,t;x0) = g(x, 1) +q(x —x9 — I't,71)0(x — x9 — '1),
(A1)

for some functions g(z,7) and g(z, 7). Note that the full process
with drift cannot be recovered from the driftless process by the
Galilean transformation x — x — I't.

We can still gain more insight on g(x,t). This function
although related with p(x,7;0) is not the same object. In
g(x,7) at least one reset event has occurred within the time
interval t. This means that we know that the time of the last
reset event is positive, 0 < 7*(7r) < 7, and from that point the
process has toreach x. Therefore, if we define t* = v — T*(1),
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0 < t* < 7, it follows with a similar reasoning to that which
led to Eq. (A1) that we must demand g(x,7) to conform to the
following structure

T
glx,7t) = / dt*K(x —Tt*,1%0(x — I't").
0

Here the kernel K(x — I't*,7*) includes the probability of
reaching x from the origin after time t* as well as the fact
that the last reset event was at T*(t) =t — t*; the step
function simply ensures that x is still accessible. Based on
the Poissonian nature of the reset events we could argue that
indeed K(x — I't*,7*) = Ag(x — I't*,7*), but that is not a
necessary ingredient at this point: We will recover this result
as a byproduct of the problem-solving procedure.

This procedure begins with the computation of the double
Laplace transform of our ansatz for p(x,t; xp)

T
p(x,T;x0) = / dt*K(x — Tt*,t90(x — I't")
0

+qg(x —x0—Tt,1)0(x —x0 —T'1), (A2)
which reads
R 12 A
p(w,s;x0) = —K (w,s + Tw) + g(w,s + Tw)e™ . (A3)
s

Inserting this result into the right-hand side of Eq. (11) we
obtain

A 1
=~ . — —wXx(
p@.six0) = 57
+— A 1 R s 4T + d@s+Tw)
T ATs|s w,s+Tw) + g(w,s+Tw
A ~ A
[ — = , r —wxp
+A+A+s+Fw (w)q(w,s + Tw)e
A 12
— K (w, Iw), A4
+A+A+“ (w,s +Tw) (A4)
where

h(w) = /ooduh(u)e_‘“”.
0

Let us compare the output in Eq. (A4) with Eq. (A3): On the
one hand equating the terms that contains the factor e™* we
obtain

A 1 A
(0. Fow) —
(@5 +Tw) A+A+s+Fw+k+A+s+Fw
x h(w)§(w,s + Tw), (AS)
thus we find
A 1
qd(w,s) = (A6)

Ml —h@]+A+s

On the other hand, considering the terms which are indepen-
dent from xo we get

LR (. + Ty = — ATAR (.5 +Tw)
P w,s w) = T A+ P w,s w
+Af(w,s + rw)] (A7)
and hence
K (0,5) = Ad(w,9), (A8)
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as we have already anticipated. Therefore, in the Laplace
domain the solution of the problem reads

1
Ml —h@]+A+s+To

. A
p(w,s5x0) = [— + e“”‘“}
N

Let us analyze the structure of the above equation. Note
how it can be expressed as

A A L A
p(w,s;x0) = ?ﬁ olw,s + A;0) + polw,s + Asxp), (A9)

with

— WX
e 0

po(w,s:x0) = lim p (w,s;x9) = = .
Po(@.s:%0) = im p (.53 o) Al — h(@)] +Tw + s

The interpretation of po(x,T;x¢) is direct: it is the transition
probability of the process between xy and x when the reset
mechanism is disconnected. Therefore, by appealing to the
well-known properties of Laplace transforms [see Egs. (C2)
and (C4) below], expression (A9) leads to Eq. (14)

T
p(x,r;xo)=/ dt*Ae ™ po(x,7%;0) 4+ po(x,T;x0)e M.
0

Note how we have used 7* as the integration variable. This
fact is not incidental at all: v* was defined above as the
time period comprised between the last reset and t, and due
to the Poissonian nature of the reset events, this interval is
exponentially distributed with intensity A. The interpretation
of Eq. (14) is the following: The probability of going from x, to
x is the sum of that probability when no reset has taken place,
plus the probability of reaching x after the last reset event.
This probabilistic construction is valid because the propagator
does not depend on the whole path of the process.

APPENDIX B: MARKOVIANITY, INVARIANCE,
AND IRREDUCIBILITY

This Appendix contains the proofs of several probabilistic
properties which have been used in the text. We begin with
the Markov property. It is well known [1,2] that a time-
homogeneous stochastic process X(t) is a Markov process
if and only if its transition probability satisfies the Chapman-
Kolmogorov equation (CKE)

p(x,r+f;xo)=/ dip(x,T;%)p(X,T;x0), (Bl)
0

for any 7, 7. We also note that if X(7) is Markov then so it is
Y(7).

A simple way to prove Eq. (B1) is to use the fact that
the reset-free process is Markovian and that propagators of
the process with and without the reset mechanism, namely
p(x,7;x0) and po(x,T;x0), are related by Eq. (14). Indeed it
implies at once that the right-hand side of Eq. (B1) can be
written as a sum of several factors

px, Tt +1T;x0) = Fi + F, + F5 + Fy.
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Here

00 T
F E/ d)?po(x,r;i)e_m/ dt* Ae™" po(%,7*;0)
0 0

T
:/ dt* Ae 2T po(x, T + 7730)
0

T+7T .
_ / dT* Ae ™M po(x,7:0), (B2)

oo T
F; 5/ dx/ dt* Ae ™7 po(x,T%;0)po(X,T; x0)e AT
0 0

= f dt* Ae 2 po(x,7%;0), (B3)
0
and

o0 T .
Fy E/ d)?/ dt*Ae ™™ po(x,T*;0)
0 0

T
X / df*Ae_Af*po(i,f*; 0)
0

T T
:/ dr*Ae*AT*po(x,r*;O)/ dt*Ae T
0 0
T ; ~
=/ dt*Ae 7 po(x,t*;0)(1 — e A7), (B4)
0
Hence these three factors add to

T+7T
h+FB+F= / dt*Ae™ po(x,7*;0)
T . *
+ / dt*Ae 7 po(x,7*;0)
0

T+7 .
= f dt*Ae ™7 po(x,7%;0).  (B5)
0
We now consider the remaining term

o0
Fi E/ dX po(%,%; x0) po(X,T; x0)e MHD
0

= po(x,T + T;x0)e AHD, (B6)

where we have used that the process without resets is
Markovian and hence po(x,t;x0) must satisfy its own CKE
similar to Eq. (B1)

o0
po(x,T +T;x0) = / dx po(x,7; %) po(X,T; X0). (B7)
0
Finally, using again Eq. (14) we have
Fi+ F, + Fs+ Fy = po(x,t + f;xo)e*A(fH)
T+T
+ / dr*Ae‘A’*po(x,t*;O)
0

= p(x,T + T;x0). (B3)

Equation (B1) now follows.
Next, by letting T — oo, Eq. (B1) implies that

px) = / dip(x,7;%)p(X),
0

where we remind that p(x) = lim,_  p(x,T;xp) is indepen-
dent of x(, the initial state. This means that if we start with
an initial distribution p(-) then for all time the density of the
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process is also p(-). Thus the limit distribution is invariant
under the dynamics.

Finally, we prove that the system is irreducible, namely, that
there is positive probability to visit any region A = [x,x +
€], x > 0, starting from xy > 0. An analysis of the sample
path trajectories along with the fact that J, has a continuous
density function %(-) will prove that this is indeed the case. For
example, if xg < x then X(t) can reach A with just one jump.
Consequently, the probability P(A,1; xp) to visit A before time
7 satisfies the lower bound

X+€—X0
P(A,T;x0) = e 27(1 — e—“)/ h(%)d% > 0.
X—X0
The case x 4+ € < x¢ can be handled similarly with the only

proviso that a reset must occur before T whereupon A may be
visited via jumps

P(AD) > | —D(l— e )4 (1 — ey
S . ¢ a_As ¢

A

x+e
X / h(x)dx > 0.

APPENDIX C: DERIVATION OF EQ. (20)

This Appendix shows the how the basic result Eq. (20) can
be recovered by Laplace inversion of Eq. (19).

We first introduce some notational conventions and list two
basic properties of the Laplace transform that are used below.
For the sake of brevity, we denote by £ and £~! the direct and
inverse Laplace transform operator, respectively,

fe&) =Lif(.rsl, f(0)=L71f6s)s.1].
The first property is the so-called frequency shifting
LIf(@e™", .51 = f(s + s0). (€1
which can be alternatively expressed as
L7 +s0)s,7] = L7 [f(s)s,Tle™ . (C2)

The second property concerns the interplay between integra-
tion and Laplace transform

c[ / T f(f)df,r,s} = %f(sx (C3)
0
or
ﬁl[éﬂs),s,r} = / rdfﬁ*‘[ﬂs),s,ﬂ. (C4)
0

Thus, we want to compute

pCx,T5x0) = L7 [px,s5x0),5,7],

for
5(x,53.x0) L2500 4 80— x0)
x,8;x) = —— | —8(x X —Xx
PRS0 = A v s s 0
é—y)\ e—(ffﬂf
s A+ A +5)?
J/)& — Ay (x—x0)
4+ — ¢ tats Y YO(x — xp).
Ot A+ 57 (=)
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Since the Laplace operator is linear, we can write with obvious
notation

p(x,T5x0) =Ly + Lo+ L3+ Ly.

Let us begin with the simplest term

(C5)

8(x — x0) = e MM (x — xq),

Ly=L"— st
A+A+s
(C6)

where we have used the property (C2) for so = A + A and the

fact that
1
E_ll:—,s,ri| =1.
K

The next term L is very similar to L, using partial fraction
decomposition

(C7)

al A
L] =L —m,s,f S(X)
K K
A 1 1
=L ————— 5,7 |8(x)
A+ A s A+A+s
A
= H—An — e~ M MTI5(x). (C8)
The fourth term reads
A« S
La= L7 [(A +Jz/\ + S)ze—;.ﬁXHW—xo),s,r]e(x 0

I o
= yre T |:—2 e sky(xx“),s,ti|9(x — X0)
s
L syt
Ses V5,7 |0(x — xg)

— 7/)\67()\+A)‘r77/()cfxo)ﬁf1 |:
N

A
= ey [ T2 @y ey (= x0)6 (e — x0)
— A0

(C9)
where we have used again Eq. (C2) and also that
1 .
E_ll:—zes,s,t:| = \/211(2«/”), (C10)
s c
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see [43]. Here I;(-) is the modified Bessel function of
order 1.

Only the term L3 remains. It can be handled by using
Egs. (C4), (C2), and (C10) consecutively

—1 A )/)\. _ (At+s)yx
— ¢ A 8, T
s A+ A +5)?
t 1 1 (A+s)yx
con [t ]
0 A+A+s)

T 1 _
= Ayk/ df[,_1|:—2e¥,s,fi|e_(“A)’_Vx
0 S

L3E[,

T B )\,_
—A / dee~ 0=y [Y2T 10 fiZyx). (ClD)
X

0
Putting together all the terms, Eq. (20) follows.

APPENDIX D: FROM SURVIVAL PROBABILITIES
TO MEAN EXIT TIMES

According to the results of Sec. IV and Eq. (36), the mean
exit time Ty, 4)(xo) may be computed as follows:

T[a,b](xO) = / ‘L'd]P{T < ‘L’} = —f po[a,b](T;X())
0 0

o0
= / Pla.p(T; x0)dT,
0

where in the last equality we have assumed that P, 4)(7; x0)
decays appropriately as T — 00 to perform safely integration
by parts. Now, note that by definition

o0
Prapi(s = 0;x0) = / Pla.p)(t;x0)e T dt
0

s=0

oo
= [ Puntrimar,
0
and thus finally

Tia.51(x0) = Prasi(s = 0; xp). (D1)
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