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Recently, different numerical studies of coarsening in disordered systems have shown the existence of a
crossover from an initial, transient, power-law domain growth to a slower, presumably logarithmic, growth.
However, due to the very slow dynamics and the long-lasting transient regime, one is usually not able to fully enter
the asymptotic regime when investigating the relaxation of these systems toward equilibrium. We here study two
simple driven systems—the one-dimensional A BC model and arelated domain model with simplified dynamics—
that are known to exhibit anomalous slow relaxation where the asymptotic logarithmic growth regime is readily ac-
cessible. Studying two-times correlation and response functions, we focus on aging processes and dynamical scal-
ing during logarithmic growth. Using the time-dependent growth length as the scaling variable, a simple aging pic-
ture emerges that is expected to also prevail in the asymptotic regime of disordered ferromagnets and spin glasses.
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I. INTRODUCTION

Recent years have seen remarkable progress in our under-
standing of physical aging in nondisordered systems with slow,
i.e., glassylike, dynamics (see [1] for a recent comprehensive
overview). In many systems, ranging from ferromagnets
undergoing phase ordering [2] to reaction-diffusion systems
[3], a single dynamical length L(¢), that grows as a power
law of time ¢, governs the dynamics out of equilibrium. In
the aging or dynamical scaling regime these systems are
best characterized by two-times quantities, such as dynamical
correlation and response functions, that transform in a specific
way under a dynamical scale transformation [4]. The resulting
dynamical scaling functions and the associated nonequilibrium
exponents are often found to be universal and to depend only
on some global features of the system under investigation.

However, growth laws can be much more complicated,
as discussed recently in disordered ferromagnets quenched
below their critical temperature. Thus convincing evidence for
adynamic crossover between a transient regime, characterized
by a power-law growth with an effective dynamical exponent
that depends on the disorder, and the asymptotic regime, where
the growth is logarithmic in time, has been found in recent
studies of the dynamics of elastic lines in a random potential
[5-8] as well as in numerical simulations of disordered Ising
models [9-15]. These indications are compatible with the
classical (droplet) theory of activated dynamics that, under
the assumption of energy barriers growing as a power of L,
predicts a slow logarithmic increase [16] of this length:

L~ (Int)"/?, 1)

with the barrier exponent ¥ > 0. Whereas in some of the
studies on disordered Ising models aging phenomena in the
crossover regime were investigated [10-15], none of these
recent numerical studies was able to enter so deeply into
the asymptotic regime that no corrections to the logarithmic
growth law were detectable anymore. Therefore a systematic
study of aging processes in this regime with pure logarithmic
growth has not yet been done.

In this paper we study two one-dimensional models that
exhibit anomalous slow dynamics and that are known to
display coarsening where the length of the domains increases

1539-3755/2013/87(1)/012114(8)

012114-1

PACS number(s): 05.70.Ln, 64.60.Ht, 05.40.—a, 05.10.Ln

logarithmically with time [17]. Even though these models are
in no way related to disordered ferromagnets and spin glasses,
their studies should allow us to gain a better understanding of
the generic properties of an aging system with a logarithmic
growth law.

The models discussed in the following are the so-called
ABC model [18], a driven diffusive system composed of three
different types of particles that swap places asymmetrically,
and a related domain model [19] whose simplified dynamics
is supposed to capture the dynamics of the ABC model at
later stages of the coarsening process. The ABC model has
recently yielded a flurry of interesting studies [20-33] that
helped in establishing it as a paradigm for systems far from
equilibrium. Not only is the ABC model characterized by
its anomalous slow dynamics, making it a representative for
a larger class of systems with a similar coarsening process
[34-38], it also exhibits a variety of interesting nonequilibrium
phase transitions whose properties change dramatically when
breaking certain conservation laws. The domain model has
been proposed as a simplified version of the ABC model
where only movements of particles between domains of
the same species are considered. This simplified dynamics
accelerates the coarsening process and allows to enter the
purely logarithmic growth regime faster [19]. In the following
we use the ABC model in order to investigate the onset
of dynamical scaling, whereas the domain model is used to
characterize aging scaling deep inside the logarithmic growth
regime.

Our paper is organized as follows. In the next section
we discuss in more detail the two models that we study.
Section III is devoted to the aging processes taking place
in the ABC model. We thereby focus on the two-times
autocorrelation function where the two times are not always
in the asymptotic, logarithmic scaling regime. In Sec. IV we
characterize aging scaling in the domain model through the
study of both correlation and response functions. We discuss
our results in Sec. V.

II. MODELS AND QUANTITIES

In the ABC model particles of three different species live
on a one-dimensional ring [18]. Every lattice site is occupied
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by exactly one particle, which can swap places with its left and
right neighbors. In the symmetric case, where all exchanges
happen with the same rate, every particle undergoes a random
walk, and nothing interesting takes place. However, this
changes dramatically as soon as one introduces a bias which
makes the particles diffuse asymmetrically around the ring.
This is achieved by randomly selecting a pair of neighboring
sites and updating them using the following rates:

AB é BA, BC é CB, CA é AC, 2)
1 1 1
with ¢ < 1. As a result of these rules, phase separation
takes place in such a way that the ordered domains arrange
themselves in repetitions of the sequence ABC, where A
indicates a domain of A particles, followed by a domain of
B particles, which itself is followed by a C domain. Once this
arrangement has been achieved, the domains coarsen whereby
the typical domain size increases logarithmically with time.

Obviously these exchanges keep constant the total number
of particles of each species. We consider in our study only
lattice sizes divisible by 3 and initially populate one third
of the lattice sites by particles of each species. In that case
detailed balance is fulfilled and the system evolves toward an
equilibrium steady state [18].

In the domain model one focuses on the later stages of
the coarsening process where well-defined, compact domains
have already formed. One then defines a simplified dynamics
where only events are taken into account that change the
sizes of two neighboring domains of the same species. For
example, consider the case where two such A domains are
selected, called A; and A,, that are separated by one B
and one C domain, yielding the sequence --- A;BCA, ---.
Calling a; respectively a, the domain size of the domain A;
respectively A,, these domain sizes are then modified in one
of the following two ways [19]:

aq—a —1, a =a,+1 withrate qb,

aq— a+1, a =a, —1 withrate ¢°,

where b respectively ¢ are the number of sites of the B
respectively C domain separating our two A domains. These
rates follow from the observation that in order to go from
one domain to the other, an A particle has to cross one of
the two intermediate domains in the “wrong” direction. The
domain model therefore exclusively considers processes where
particles successfully travel between domains of the same type,
irrespective of how many jumps are needed for that transit.

Two-times quantities are well suited to study relaxation
processes far from equilibrium [1]. We here briefly recall the
expected behavior of such quantities, without entering into the
details on how these quantities are computed for our driven
diffusive systems. This will be done in the following sections
when we discuss our numerical results.

The two-times quantities usually at the center of aging
studies are the autocorrelation function C(z,s) and the autore-
sponse function R(¢,s). The autocorrelation function measures
the extent to which configurations taken at two different
times s and ¢ > s are correlated. Here s is the waiting time,
whereas ¢ is called the observation time. The autoresponse
function, on the other hand, allows us to investigate how the
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system reacts during the relaxation process to a instantaneous
perturbation (as for many other studies, we will focus below on
the time-integrated response to a longer-lasting perturbation,
which is much easier to measure). In the aging regime, where
the observation and waiting times are large compared to any
microscopic time scale, the single growth length L dominates
the properties of the system, so that the different quantities
should depend on time only through this length L. Thus
one expects the following (very general) scaling forms, using
standard notation [1]:

(L)
Clt.5) = (L(s) fc(—m)), 3)
L
Rt,s) = (L(s))—l—“fk<%>, 4

with the scaling functions fc(y) and fr(y) and the nonequilib-
rium exponents a and b. In systems undergoing coarsening one
usually has b = 0 and a # 0, but this can be different in other
situations, as, for example, during nonequilibrium relaxation
at a critical point [39]. In cases with an algebraic growth
law L(t) ~ t'/%, as observed in critical systems or coarsening
systems without disorder, one usually uses ¢/s as the scaling
variable. However, for more complicated cases with sublead-
ing contributions to the growth and/or crossover between an
initial algebraic growth and the true asymptotic behavior, this
approach is too simplistic and L(z)/L(s) has to be used as
variable in order to achieve the expected scaling [11,15].

III. AGING IN THE ABC MODEL

In our simulations of the original ABC model we focus
on the early time regime where coarsening slowly sets in. We
thereby always prepare the system in a disordered initial state
with every species occupying one third of the lattice sites cho-
sen at random. The data presented below have been obtained
for rings with N = 9000 sites. This is large enough so that no
finite-size effects show up for the times accessed in our simu-
lations, as we checked by making additional runs for other sys-
tem sizes. We define one time step as N proposed updates. For
every proposed update we select a pair of neighboring sites at
random and then exchange them with the rates given in Eq. (2).

A. Domain growth

We start by having a look at the average domain size.
Figure 1 shows L(t) for a large range of g values. We note
that in all cases an initial regime is observed during which
domains are formed and arranged in the correct sequence, so
that a C domain follows a B domain that follows an A domain.
This initial regime lasts longer for larger values of ¢, as it gets
increasingly difficult to form these initial domains the closer
q gets to 1.

Once these initial domains are formed, they then coarsen
and the system size increases logarithmically with time: L(¢) ~
Inz. Obviously, this is a very slow process and even after 103
time steps the average domain size does not reach 20 lattice
spacings. This coarsening proceeds faster for larger values
of g. Indeed, the slopes in the log-linear plot decrease when
decreasing ¢. Thus in the interval between t = 10%and t = 103
we obtain that the slope continuously decreases from 1.05 for
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FIG. 1. (Color online) Time-dependent average domain size for
the A BC model with various values of the rate g. After some initial
regime, which lasts longer the larger the value of g, logarithmic
growth sets in. The slopes in the log-linear plot increase with g.
The data result from averaging over 600 independent runs. For small
t values, the curves are ordered in such a way that the largest ¢
value corresponds to the lowest curve, whereas the smallest g value
yields the highest curve. For larger ¢ the curves start to cross due to
a difference in slopes. In order to make this crossing more visible,
some selected data points are shown as symbols (circles: g = 0.4,
squares: g = 0.3, diamonds: ¢ = 0.2).

q = 0.9t00.86 for g = 0.2. Whereas at short times the domain
size is the largest for the smallest g value, we expect the order
to be reversed for very long times, due to the difference in
slopes. In fact, indications of this are already seen in Fig. 1;
see the two curves for g = 0.2 and ¢ = 0.3 that start to be
below some of the curves obtained for larger ¢ values.

A closer inspection of the curves in Fig. 1 for the smallest g
values 0.2 and 0.3 reveals that their slopes change slightly with
time. Even after t = 108 time steps we are for these g values not
yet completely inside the asymptotic regime where corrections
to the logarithmic growth law should be completely absent.

B. Autocorrelation

As mentioned in the Introduction, valuable insights into
relaxation far from equilibrium can be gained through the
study of two-times quantities. In this section we discuss
the autocorrelation C(¢,s). For our three-species system we
characterize lattice site i by a time-dependent Potts variable
pi(t)(alternatively we could use a species-dependent occupa-
tion number [40,41]) that can take on the three different values
0, 1, or 2, depending on whether at time ¢ the site is occupied
by an A, B, or C particle. The autocorrelation function C(z,s)
is then defined as

1 & 1
Clt.s) = <ﬁ Zapi<f>,p,.<s>> -3 5)
i=1

where &, p is the Kronecker delta. In that equation (.- )
indicates an average over both initial conditions and noise
as realized through different random number sequences. We
subtract from this average the value 1/3 that one has for two
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FIG. 2. (Color online) Autocorrelation function for the ABC
model with (a),(b) ¢ = 0.9 and (c),(d) ¢ = 0.3. For every waiting
time s we compute the autocorrelation function for up to t = 40s
time steps. Plotting the autocorrelation against the scaling variable
L(t)/L(s) [see (b) and (d)] yields indications for the onset of
dynamical scaling for the longest waiting times. The data result
from averaging over at least 600 independent runs. The values of
the autocorrelation increase with increasing waiting times.

completely uncorrelated configurations, thus making sure that
C(t,s) approaches zero when ¢ gets very large.

In our simulations we averaged over a large number of
realizations, ranging from 600 for the longest waiting times to
20000 for the shortest waiting times. In all cases we let the sys-
tem evolve for t = 40s time steps, where s is the waiting time.

The data shown in Fig. 2 for ¢ = 0.9 and ¢ = 0.3 are
representative for all studied values of g. Comparing data
for different waiting times reveal the expected physical aging
where the two-times quantity is not simply a function of the
time difference [see Figs. 2(a) and 2(b)]. For ¢ = 0.9 the
behavior for the shortest waiting time shown in Fig. 2(a)
clearly differs from that observed for the larger waiting times.
In fact, inspection of Fig. 1 reveals that s = 3200 lies in the
time regime where the initial domains are forming and where
coarsening starts to setin. As aresult, correlations dramatically
change in the system, which is revealed by the nonmonotonous
behavior of the autocorrelation function.

In Figs. 2(b) and 2(d) we test dynamical scaling by plotting
the data as a function of L(¢)/L(s). Clear deviations are
observed for the smaller waiting times, but these deviations get
less and less important the larger s gets, yielding for ¢ = 0.3
already a good data collapse for the largest waiting times. All
this indicates that for very large s we start to be in the aging
scaling regime. In agreement with Fig. 1, the scaling regime
is accessed more rapidly for the smaller ¢ values. We also
note that even for ¢/s = 40, the ratio of the corresponding
lengths L(¢)/L(s) remains rather small. Obviously, the regime
L(t)/L(s) > 1 remains out of reach in systems displaying
logarithmic growth.

IV. AGING IN THE DOMAIN MODEL

It follows from the discussion in the previous section that
it is extremely difficult to fully enter the asymptotic growth
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regime for the A BC model. We therefore focus in the following
on the domain model with simplified dynamics that captures
the essential properties of the ABC model deep inside the
coarsening regime while speeding up the dynamics [19].

For the domain model we consider systems with N =
27000 sites, thereby checking carefully that no finite-size
effects affect our data for the times accessed in our simulations.
As the dynamics assumes the existence of domains that
coarsen, we prepare our system in an initial state where we
have 3000 sequences of ABC domains, with every domain
extending over three lattice sites. We then start the system
with the chosen value of g. During the simulations smaller
domains tend to disappear as larger domains keep growing. If,
say, an A domain vanishes in the original ABC model, this
yields a sequence ABC BCA, which rapidly evolves into a
sequence ABC A as for two neighboring sites C B is replaced
by BC with rate 1. The resulting B respectively C domains
have then sizes that are identical to the sums of the sizes
of the two B respectively C domains at the moment of the
dismissal of the A domain. In the domain model this merging
is done immediately whenever a domain vanishes [19]. For
simplicity we increase in our simulations time ¢ by one unit
when the number of proposed updates is equal to the number
of domains that are in the system at time 7.

A. Domain growth

In Fig. 3 we verify that we are indeed deep inside the
logarithmic growth regime for all studied values of g. As
already observed in Ref. [19], the logarithmic growth sets
in very rapidly when using the simplified dynamics. We note
that the growth proceeds faster for larger values of ¢. This is
of course in agreement with our observation in Fig. 1 that for
the system with the full dynamics the prefactor in the equation
(which corresponds to the slope in the log-linear plot),

L(t) = y Int, (6)
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FIG. 3. (Color online) Time-dependent average domain size for
the domain model for various values of the rate . Logarithmic growth
is observed where the slopes in the log-linear plot increase with g. The
data result from averaging over at least 100 independent runs. For a
fixed time ¢ the domain size is larger the larger the value of the rate q.
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FIG. 4. (Color online) Autocorrelation function for the ABC
model with (a),(b) ¢ = 0.9 and (c),(d) ¢ = 0.7. Plotting the auto-
correlation against the scaling variable L(z)/L(s) [see (b) and (d)]
yields a perfect data collapse. The data result from averaging over
50000 independent runs.

is decreasing when ¢ decreases. In Ref. [19] it has been
proposed that the length should grow as

L(t) = plnt/|Ing| @)

for the domain model. We indeed obtain consistently a value
of p ~ 2.0 for all g values. This value is slightly smaller than
the value of 2.6 found in Ref. [19]. This difference should be
due to the different definitions of a time step in both studies.

B. Autocorrelation

For the autocorrelation we proceed as for the original ABC
model. Using Eq. (5) we compute C(t,s) for various waiting
times s and plot the data as a function of L(¢)/L(s). The
result is shown in Fig. 4 for two values of ¢. In all cases
we achieve perfect data collapse when plotting the data in
this way [see Figs. 4(b) and 4(d)]. This vindicates the simple
aging scaling form Eq. (3) also for systems with anomalous
slow dynamics. As for the autocorrelation, only configurations
at different stages of the time evolution are compared. We
expect to encounter for that quantity the same scaling in other
systems characterized by a single length scale that grows
logarithmically with time, including disordered ferromagnets
and spin glasses in their asymptotic regime.

C. Different responses

Changes in the relaxation process due to external perturba-
tions are best captured through the study of two-times response
functions. For spin systems, as, for example, ferromagnets or
spin glasses, one of the often-used protocols, both in theoretical
[1] and experimental [42,43] studies, consists of applying
a (random) magnetic field at the moment of a temperature
quench. This field is then removed after the waiting time and
the relaxation of the system is monitored.

For the domain model we employ a similar scheme for
the computation of the response. Preparing the system in the
same way as for the calculation of the autocorrelation, we let
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the system initially evolve with a given exchange rate g = g;.
At time ¢+ = s we change the exchange rate to its final value
g = gy that is kept constant until the end of the run. Due to
the initial value of g, the average domain size at the waiting
time s differs from the typical domain size encountered in a
system that evolves at the fixed value g = g¢. Consequently,
we choose as our observable the difference in system sizes
between the perturbed system, where we switch from ¢g; to
g, and the unperturbed system, where g = g for the whole
run:

M(t,s) = |L,(t,s) — L(1)]. ®)

Here L ,(t,s) is the actual domain size of the perturbed system,
whereas L(#) is the average domain size without a perturbation.
As in the long time limit L,(z,s) —> L(¢), this quantity
vanishes for long observation times. The absolute values are
used in Eq. (8), as we can have either that L,(s,s) > L(s)
or that L,(s,s) < L(s), depending on whether ¢; > g, or
gi < gyr. In our study we considered multiple cases with
various combinations of ¢; and g . In doing so, we restricted
ourselves to values of g; > 0.7, as well as to not-too-large
changes in g, such that |g; — g | < 0.1.

Let us mention that the response M (¢,s) is a time-integrated
global response as (a) it sums up all the changes that
accumulate over the time during which the perturbation is
switched on and (b) it gives the global response of the system
to a perturbation that affects all parts of the system in the
same way. As such it is related in a rather complicated way
to the response R(z,s) discussed previously, which is the local
response to an instantaneous perturbation. It is not clear a
priori whether a scaling form like that given in Eq. (4) remains
valid for the more complicated response studied here.

Let us start with a discussion of the time evolution of
the domain length L ,(¢,s) after changing the value of the
rate g. As we see in Fig. 5 for two cases with g; = 0.8,
the behavior of L ,(t,s) is remarkably different depending on
whether g is decreased or increased. When decreasing ¢ after

160 T I
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120~ -7 —

Lp(t,s)

FIG. 5. (Color online) Time evolution of the average growth
length when changing after the waiting time s the value of the
rate ¢ from 0.9 to 0.8 (upper full-colored lines) or from 0.7
to 0.8 (lower full-colored lines). The different waiting times are
s = 20000 (cyan lines), s = 60000 (green lines), and s = 100000
(red lines).
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the waiting time (see the upper colored curves in Fig. 5),
the domain size is at the moment of the change much larger
than the average domain size in the unperturbed system that
evolves at the constant value ¢ = gy. As a result domains
grow extremely slowly after the change and it takes a very
long time for L ,(z,s) to approach the unperturbed curve L(t).
A closer inspection reveals that the difference L ,(,s) — L(s)
varies logarithmically with time, L ,(z,5s) — L(s) = pInt + v,
where w is found to be independent of the waiting time s.
The situation is very different for cases where ¢ is increased
(see the lower colored curves in Fig. 5). In these cases
accelerated growth sets in and the perturbed curve approaches
the unperturbed curve very rapidly. Indeed, after an initial short
time regime, the difference between the two lengths L ,(z,s)
and L(¢) vanishes in an approximately algebraic way, with
an effective exponent whose value is between 1.7 and 1.9,
depending on the waiting time s.

We investigate the possible scaling behavior of the response
M(t,s) [see Eq. (8)] in Figs. 6 and 7. The case g; > g is
illustrated in Fig. 6 by two examples: a change from g; = 0.9
to gy = 0.85, as well as a change from ¢; = 0.8 to gy = 0.7.
We first remark [see Figs. 6(a) and 6(c)] that M(¢,s) indeed
varies linearly with In ¢, independent of the waiting time s. This
observation already suggests that the time-integrated response
also exhibits a scaling behavior where the time dependence is
completely captured through the dynamic correlation length
L(1):

L)

M(t,s) = (L(S))an<m)7 €))

with the scaling variable % As shown in Figs. 6(b) and 6(d),
this indeed yields a data collapse of the time-integrated
response, with an exponent « that depends on the rates g;
and g: o = 1.04(2) when changing the rate from 0.9 to 0.85
and o = 1.10(2) when changing the rate from 0.8 to 0.7. It
therefore follows that for the case ¢; > g the response shows a

450 - - ‘
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M(t,s)
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Int L(t)/L(s)

FIG. 6. (Color online) Response function for the ABC model
where at the waiting time s the exchange rates are decreased from
some initial value g; to the final value g: (a),(b) g; =0.9 and g5 =
0.85, (¢),(d) ¢; = 0.8 and g, = 0.7. Plotting the response function
against the scaling variable L(¢)/L(s) [see (b) and (d)] yields a perfect
data collapse. The data result from averaging over 10 000 independent
runs.

012114-5



NASRIN AFZAL AND MICHEL PLEIMLING

M(t,s)

1.00 1.05 1.10 1.15
L()/L(s)

FIG. 7. (Color online) Response function for the ABC model
where at the waiting time s the exchange rate is increased from the
initial value g; = 0.8 to the final value gy = 0.9. The waiting times
are the same as in Fig. 5. As the different curves intersect (see inset),
no data collapse can be achieved by simply multiplying M (z,s) with
a waiting-time-dependent constant. The data result from averaging
over 10000 independent runs.

standard aging scaling, similar to the autocorrelation, provided
that the time-dependent length L(#) is used.

This is completely different for the case g; < g (see Fig.7).
As already discussed, the domains at the moment of the
change of the rate are smaller than those encountered in the
unperturbed system with the same number of time steps, and
the larger rate g ; yields a much higher probability for a particle
to jump from one domain to another. Consequently, the domain
growth proceeds very fast. As shown in Fig. 7 for the case with
gi = 0.8and gy = 0.9,n0 good data collapse is observed when
using L(t)/L(s) as the scaling variable. In fact (see the inset),
the curves for different waiting times always cross, which of
course renders a data collapse impossible. Clearly, when the
approach of L,(t,s) to L(z) is faster than logarithmic, then
a scaling behavior like that observed for ¢; > g, cannot be
expected. As mentioned before, L(t) — L,(t,s) displays in a
certain regime an effective algebraic dependence on ¢. This
might suggest that we could choose as scaling variable ¢/s.
However, as this effective exponent displays a dependence on
the waiting time, this also does not yield a data collapse.

Letus close this section by mentioning a possible alternative
way to probe the response of our system. Adapting a protocol
discussed in Ref. [44], one can consider a space-dependent rate
where g, = qo % a, ¢ is the rate at position x. Here, a, = %1,
whereas ¢ is a small parameter. One would then consider two
different realizations with the same noise (i.e., sequence of ran-
dom numbers): one where the rate is kept fixed at g = ¢ and
one where the space-dependent rate g, is used up to the waiting
time, after which the constant rate go is used. Comparison
of the resulting configurations should then allow monitoring
of how the perturbed system relaxes toward the unperturbed
system. This alternative protocol is very close to the standard
protocol used to calculate the autoresponse in magnetic
systems where a space-dependent random magnetic field is
applied [45]. It remains to be seen, however, whether this
approach allows one to sample the local response with good
enough statistics. We leave it to a future study to clarify this
point.
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V. DISCUSSION AND CONCLUSION

In recent years numerous studies have yielded a rather good
understanding of aging processes governed by an algebraic
growth of the unique relevant length scale. This is especially
true for systems with competing ground states where phase
coarsening dominates the out-of-equilibrium behavior in the
ordered phase, thereby yielding a typical domain size that
increases as a power law of time. Perfect magnets, as embodied
by the Ising or Potts models, are well-studied examples. How-
ever, as soon as one adds disorder and/or frustration effects,
the dynamics slows down. A series of recent numerical studies
[11,12,14,15] have confirmed the existence of a crossover
from an initial power-law-like regime to an asymptotic regime
where the relevant length scale increases much slower with
time. Even though it is expected that this long time regime
is characterized by logarithmic growth, none of the studies in
which the time evolution of the system was followed were able
to fully enter this asymptotic regime. Consequently, most of
the nonequilibrium relaxation properties in such regimes have
not yet been explored.

Motivated by the absence of systematic studies of aging
in systems with logarithmic growth, we propose to follow a
different route and to focus on model systems for which it is
possible to access the logarithmic regime. Even though these
models are not related to disordered magnetic systems, their
study should allow us to gain a better understanding of the
more universal properties encountered in this regime.

In this paper we have studied the A BC model and a related
domain model with a simplified dynamics. The ABC model
allows us to study the crossover from an early time regime to
the logarithmic regime. The domain model, on the other hand,
very rapidly displays a logarithmic growth of the domains.
Therefore, using this model we can test the scaling behavior
of two-times quantities like correlation and response functions.

Our study shows that in the crossover regime the correlation
function can be rather complicated. Once the domains are
formed and coarsening proceeds, one enters the logarithmic
regime where for waiting times large enough, the two-time
autocorrelation starts to exhibit a scaling behavior. This scaling
behavior is fully elucidated when studying the domain model.
In that case we find for the autocorrelation function a standard
aging scaling, provided that the time dependence is expressed
through the length scale L(¢) that increases logarithmically
with time.

In order to study the response of the system to a pertur-
bation, we keep the swapping rate ¢, the only parameter in
the model, at some initial value g; up to the waiting time s,
where we then change this rate and set it equal to the final
value g y. We then compare the time evolution of the domains
formed using this protocol with that of the domains that are
formed when from the start the rate is set equal to g¢. The
response function is then a time-integrated global response to
a global change in the system. Interestingly, we find different
types of behavior, depending on whether the rate is decreased
or increased at the waiting time. If the rate is decreased, then
the difference between the domain sizes of the perturbed and
unperturbed systems decreases logarithmically with time. This
then yields again a simple aging scaling with the typical length
L(t) as a scaling variable, in complete analogy to the behavior
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of the autocorrelation function. This is completely different
when considering the case where ¢ is increased. In that case
the domains of the perturbed system grow very fast and rapidly
approach the size of the unperturbed system, yielding a regime
where the approach to the unperturbed regime displays an
effective power-law behavior, with effective exponents that
depend on the waiting time. Consequently, no dynamical
scaling is observed in that case.

We view the present study as a first step in the systematic
study of aging properties of systems undergoing logarithmic
growth. We expect additional important insights through the
study of space-time quantities, like the two-times space-time
correlation function. Also, until now we restricted ourselves
to the global response to a global change. In the future, this
should be extended to the investigation of the local response
to a local perturbation.

The two models studied here have of course no direct
relation with the magnetic systems that motivated our study.
Still, we expect that some of the results obtained in our
study should also remain valid for magnetic systems with
logarithmic growth. This is especially true for the simple
aging scaling with the scaling variable L(z)/L(s) that is
found for the autocorrelation. We expect that this is a general
feature of systems undergoing anomalous slow dynamics that
is characterized by a logarithmic growth of the typical domain
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size, including the disordered ferromagnets. Future studies
of other systems displaying this type of growth should be
able to substantiate this statement. Less obvious for us is
whether the intriguing behavior encountered for the global
response function is also a generic property. For the disordered
ferromagnet the corresponding protocol would consist in
letting the system relax in the presence of a magnetic field
H, whose value is then changed after the waiting time (this
final value could of course be H = 0). We then should again
have that the domains at the waiting time have a different
typical length when compared with the domain size at constant
magnetic field. The situation therefore seems rather similar to
what is discussed in this paper. Still, the domains in two-
and three-dimensional ferromagnets are very different to the
pure domains encountered in the domain model. It therefore
remains an intriguing question for the future as to whether
responses in other systems with anomalous slow dynamics
behave in a similar way to what has been found in our
study.
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