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We study the finite-size corrections of the critical dense polymer (CDP) and the dimer models on ∞ × N

rectangular lattice. We find that the finite-size corrections in the CDP and dimer models depend in a crucial way
on the parity of N , and a change of the parity of N is equivalent to the change of boundary conditions. We
present a set of universal amplitude ratios for amplitudes in finite-size correction terms of critical systems in the
universality class with central charge c = −2. The results are in perfect agreement with a perturbated conformal
field theory under the assumption that all analytical corrections coming from the operators which belongs to the
tower of the identity. Our results inspire many interesting problems for further studies.
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I. INTRODUCTION

Finite-size scaling and corrections for critical systems
have attracted much attention in recent decades. The studied
systems include the Ising model [1–5], the Potts model [6],
the percolation model [7–9], the dimer model [10–15], the
critical dense polymer (CDP) [16,17], etc. A central element
of the modern theory of critical phenomena is the division
critical systems into (bulk) universality classes so that critical
systems in the same universality class have the same set of
critical exponents [18], universal finite-size scaling functions
[7], universal amplitude ratios [4], etc. For examples, critical
liquid-gas systems [19,20], the three-dimensional Ising models
[21], and the Lennard-Jones model system [22] have the same
set of critical exponents.

Although many theoretical results are now known about the
critical exponents and universal relations among the leading
critical amplitudes, not much information is available on ratios
among the amplitudes in finite-size correction terms [23,24].
In this paper, we present a set of universal ratios among
amplitudes in finite-size correction terms for critical systems
described by logarithmic conformal field theory (LCFT) with
central charge c = −2, which can be realized in different
critical model systems, including the CDP [16,17], the dimer
model on a rectangular lattice [12], the Abelian sandpile model
[25,26], the spanning tree (see Sec. III below), Hamiltonian
walks on a Manhattan lattice [27], the rational triplet theory
[28], symplectic fermions [29], the traveling salesman problem
[30] as well as branching polymers [31].

Conformal invariance implies that for an infinitely long
two-dimensional (2D) strip of finite width N at criticality,
the eigenstates of the critical transfer matrix, associated with
conformal states, have energies which scale with N like [32]

En = Nfb + fs + πζ (�n − c/24)

N
+ O(N−2), (1)

where the bulk free energy density fb, the surface free energy
fs , and the anisotropy factor ζ are nonuniversal constants;
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in contrast, the central charge c and the weight �n of the
conformal eigenstate, are universal (although �n depends on
boundary conditions). Higher order correction terms in (1) are
nonuniversal; however it has been suggested recently [4], and
partially checked for the Ising universality class (c = 1/2),
that the asymptotic expansion of the eigenstates of the critical
transfer matrix has the form (n = 0 will refer to the ground
state),

En = Nfb + fs +
∞∑

p=1

a(n)
p

N2p−1
, (2)

and that the amplitude ratios a(n)
p /a(0)

p are universal and depend
only on the boundary conditions [4,33–36]. The case p = 1
readily follows from (1).

It has been shown [17] that for the CDP model on the strip
with free boundary conditions, which is in the universality
class with c = −2, the eigenstates of the critical transfer matrix
has the same asymptotic expansion of Eq. (2). It has been
found that the amplitude ratios for the coefficients of these
series are universal and can be explained in the framework of
the perturbative conformal field theory [17].

In some two-dimensional geometries, the values of a
(n)
1 are

known [32,37], to be related to the central charge c and the
conformal weights �n of the scaling fields corresponding to
the n-exited state,

a
(n)
1 = 4πζ

(
�n − c

24

)
, for cylinder geometry (3)

a
(n)
1 = πζ

(
�n − c

24

)
, for strip geometry. (4)

In this paper we will show that for the dimer model
on rectangular lattice and for the CDP on a cylinder (all
of these models belong to c = −2 universality class) the
asymptotic expansion of the eigenstates of the critical transfer
matrix can also be written in the form of Eq. (2) and find
that the ratios among correction amplitudes are universal for
p = 1 and 2, and depends only on the boundary conditions.
In cylinder geometry we have Ramond and Neveu-Schwarz
(R-NS) sectors and Z4 sector and amplitude ratios are given

012110-11539-3755/2013/87(1)/012110(10) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.012110


N. SH. IZMAILIAN AND CHIN-KUN HU PHYSICAL REVIEW E 87, 012110 (2013)

by
a(1)

p

a
(0)
p

= 1

21−2p − 1
, R-NS sectors; (5)

a(1)
p

a
(0)
p

= 1 + 2p

4p−1B2p(1/2)
, Z4 sector. (6)

In the strip geometry we have open-closed and closed-closed
(open-open) boundary conditions and amplitude ratios are
given by

a(1)
p

a
(0)
p

= 1 + p

4p−1B2p(1/2)
, open-closed; (7)

a(1)
p

a
(0)
p

= 1 + 2p

B2p

, closed-closed (open-open), (8)

where B2p and B2p(1/2) are the Bernoulli polynomial B2p(α)
at α = 0 and α = 1/2, respectively. In the definition of the
boundary conditions on the strip we have used the language of
Abelian sandpile model [26,38].

For the critical dense polymer model on the strip the
configuration space on which the transfer matrix acts can be
divided into sectors LN,�, labeled by an integer � � 0, of the
same parity as N . The overall ground state E0, found in LN,0

or LN,1. The specific levels we will consider here are the two
lowest-lying levels in each sector LN,�, denoted E

(�)
0 and E

(�)
1 .

It has been shown [12,13,39,40] that due to the certain nonlocal
features present in these models, the finite-size corrections
depend in a crucial way on the parity (even or odd) of N : A
change of parity of N induces a change of boundary condition.

For even N (even � = 2n + 2), which corresponds to the
closed-closed (open-open) boundary conditions, the asymp-
totic expansions of E

(�)
0 can be written in the form of Eq. (2)

and amplitude ratios are given by

a(n)
p

a
(0)
p

= 1 + 2p
H

(1−2p)
n

B2p

, closed-closed (open-open). (9)

The asymptotic expansions of E
(�)
1 can be also written in the

form of Eq. (2), where amplitude ratios are given now by

a(n)
p

a
(0)
p

= 1 + 2p
H

(1−2p)
n+1 − n2p−1

B2p

, closed-closed (open-open),

(10)

where H
(1−2p)
n−1 is harmonic number of order (1 − 2p),

H (p)
n =

n∑
k=1

k−p, (11)

and I
(p)
n is given by

I (p)
n =

n∑
k=1

(
k − 1

2

)−p

. (12)

For odd N (even � = 2n + 1), which corresponds to the open-
closed boundary condition, the asymptotic expansions of E

(�)
0

can be written in the form of Eq. (2) and amplitude ratios is
given by

a(n)
p

a
(0)
p

= 1 + 2p
I

(1−2p)
n

B2p(1/2)
, open-closed. (13)

The asymptotic expansions of E
(�)
1 can also be written in the

form of Eq. (2), where amplitude ratios are given now by

a(n)
p

a
(0)
p

= 1 + 2p
I

(1−2p)
n+1 − (

n − 1
2

)2p−1

B2p(1/2)
open-closed. (14)

Note, that from Eqs. (13) and (9), in the case of n = 1, one
can easily obtain Eqs. (7) and (8), respectively.

The conformal weights �0 and �1 depend on the boundary
conditions and are given by

�0 = − 1
8 , �1 = 0, R-NS sectors; (15)

�0 = − 3
32 , �1 = 5

32 , Z4 sector; (16)

�0 = − 1
8 , �1 = 3

8 , open-closed; (17)

�0 = 0, �1 = 1, closed-closed (open-open). (18)

In this paper we will consider two exactly solvable models
in c = −2 LCFT, namely, the dimer model and the critical
dense polymers (CDP) on a rectangular lattice.

II. CRITICAL DENSE POLYMERS (CDP) MODEL

We will consider an exactly solvable model of critical dense
polymers on a square lattice [39]. The degrees of freedom are
localized on elementary faces, which can be found in one of
the following two configurations:

or
, (19)

where the arcs represent segments of the polymer. Since the
polymer segments pass uniformly through each face, this is
a model of dense polymers. A typical configuration of dense
polymers is shown in Fig. 1.

A lattice model of CDP has been solved exactly for finite
strips [39] and for cylinders with finite circumference [40].
The result of [39] was proved in [41]. The CDP can be related
to the spanning tree [42]. In this section, we study finite-size
corrections for the CDP. In the next section, we study finite-size
corrections for the dimer model [12,43].

Let us first consider the CDP model on a strip, with width N

and height 2M . The partition function of the CDP is defined in
terms of a double-row transfer matrix D(u) and given by [39]

ZN,M = Tr D(u)M =
∑

n

e−2MEn(N ;u), (20)

FIG. 1. (Color online) A typical configuration for dense polymer.
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where the sum is over all eigenvalues of D(u), written as
e−2En(N ;u), En(u) is the energy associated with the eigenvalue
Dn(u), and u is a spectral parameter related to the anisotropy
factor by ζ = sin 2u.

The configuration space on which the transfer matrix acts
can be divided into sectors LN,�, labeled by an integer � � 0,
of the same parity as N . This number is related to a number
s = � + 1 of defects. The range of � is finite when N is finite,
but will be considered as unbounded in the limit N → ∞.

All eigenvalues have been determined in [39], for any finite
value of N . After using the identities,

N
2 −1∏
n=1

sin
π (n + 1/2)

N
=

√
N2

1−N
2 , for even N, (21)

N−3
2∏

n=0

sin
π (n + 1/2)

N
= 2

1−N
2 , for odd N, (22)

the expressions for eigenvalues can be simplified and written
as

En = −1

2

N−2∑
j=1

j=Nmod2

log

[(
1 + εj ζ sin

πj

2N

)(
1 + μjζ sin

πj

2N

)]
,

(23)

where the summation includes the integers j of the same parity
as N . The eigenvalues also depend on anisotropy factor ζ =
sin 2u and on parameters εj ,μj equal to ±1, although not all
choices of εj ,μj = ±1 are allowed. Exactly which sequences
of +1, − 1 correspond to actual eigenvalues, and for which
sector, are given by the selection rules conjectured in [39], and
proved very recently in [41].

A main result from [39] is that the set of eigenvalues
of the transfer matrix in the sector LN,� is such that it
leads, through (1), to a set of conformal weights �n whose
values and degeneracies exactly match those of a quasirational
representation V1,s of highest weight h1,s = [(s − 2)2 − 1]/8,
with s = � + 1. This representation V1,s is the quotient of the
highest weight Verma module V1,s by the singular vector at
level s.

The overall ground state E0, found in LN,0 or LN,1,
corresponds to all εj = μj = 1 in (23):

E0 = −
N−2∑
j=1

j=N (2)

ω(CDP)

(
πj

2N
,u

)
, (24)

where

ω(CDP)(x,u) = ln (1 + sin 2u sin x). (25)

Using Taylor’s theorem, the asymptotic expansions of the
ω(CDP)(x,u) can be written in the following form:

ω(CDP)(x,u) =
∞∑

p=1

λ(CDP)
p

p!
xp,

where λ
(CDP)
1 = sin 2u, λ

(CDP)
2 = − sin2 2u, λ

(CDP)
3 =

2 sin3 2u − sin 2u, . . ..

From the Euler-MacLaurin summation formula, the asymp-
totic expansion of E0 takes the form (2) with the coefficients,

a(0)
p = π2p−1B2p(α)

(2p)!
λ

(CDP)
2p−1 , α = N

2
mod 1, (26)

where Bn(z) are the Bernoulli polynomials and α = 0,1/2.
The bulk free energy is fb = f

(CDP)
b and surface free energy

fs are given by

f
(CDP)
b = 1

2
ln 2 − 1

π

∫ π/2

0
ln

(
1

sin t
+ sin 2u

)
dt, (27)

fs = 1

2
ln(1 + sin 2u). (28)

For p = 1, in particular, one finds �0 − c/24 = 1/12 for N

even and −1/24 for N odd. Assuming c = −2, this gives
�0 = h1,1 = 0 for N even, and �0 = h1,2 = −1/8 for N

odd. Thus we can see that the CDP model on the strip with
even N corresponds to the closed-closed boundary condition
given by Eq. (18) and the CDP model on the strip with odd N

corresponds to the open-closed boundary condition given by
Eq. (17).

For p = 2 one finds from the previous formula,

a
(0)
2 = π3

6

(
�2

0 − 1

120

)
λ

(CDP)
3 , (29)

with �0 = 0 for even N , and �0 = −1/8 for odd N .
The excited levels are obtained by switching the εj ,μj from

+1 to −1 in a way allowed by the selection rules [39,41]. The
specific levels we will consider here are the two lowest-lying
levels in each sector LN,�, denoted E

(�)
0 and E

(�)
1 , for all � �

1 except � = 2 (which is somewhat special and requires a
separate treatment; the following checks, however, work for
them too). They are nondegenerate (within their sector) and are
obtained by setting to −1 the parameters μj with the following
indices (keeping those of the appropriate parity),

1 � j � � − 2 for E
(�)
0 , (30)

1 � j �= � − 2 � � for E
(�)
1 . (31)

For even N (even � = 2n + 2), the asymptotic expansions of
E

(�)
0 can be written in the form of Eq. (2), where coefficients

a(n)
p are given by

a(n)
p = π2p−1λ

(CDP)
2p−1

(2p − 1)!

(
B2p

2p
+ H (1−2p)

n

)
. (32)

That yields the first coefficients for p = 1,2,

a
(n)
1 = π

(
1

12
+ n(n + 1)

2

)
λ

(CDP)
1

= π

(
1

12
+ h1,2n+3

)
λ

(CDP)
1 , (33)

a
(n)
2 = π3

6

(
n2(n + 1)2

4
− 1

120

)
λ

(CDP)
3

= π3

6

(
h2

1,2n+3 − 1

120

)
λ

(CDP)
3 . (34)

From Eqs. (26) and (32) one can see that the ratio a(n)
p /a(0)

p is
independent from the function ω(CDP), which means that this
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ratio can be universal and given by Eq. (9) for arbitrary n and
by Eq. (8) for n = 2. By comparing the expressions given by
Eqs. (26) and (33) for the case n = 1 with Eq. (4), one can
find that the conformal weights �0 and �1 correspond to the
closed-closed boundary condition given by Eq. (18).

The asymptotic expansions of E
(�)
1 can also be written in

the form of Eq. (2), where coefficients a(n)
p are given now by

a(n)
p = π2p−1λ

(CDP)
2p−1

(2p − 1)!

(
B2p

2p
+ H

1−2p

n+1 − n2p−1

)
. (35)

For p = 1,2

a
(n)
1 = π

(
13

12
+ n(n + 1)

2

)
λ

(CDP)
1

= π

(
1

12
+ h1,2n+3 + 1

)
λ

(CDP)
1 , (36)

a
(n)
2 = π3

6

(
n4

4
+ n3

2
+ 13n2

4
+ 3n + 119

120

)
λ

(CDP)
3

= π3

6

(
h2

1,2n+3 + 6h1,2n+3 + 119

120

)
λ

(CDP)
3 . (37)

For odd N (odd � = 2n + 1), the asymptotic expansions of
E

(�)
0 can be written in the form of Eq. (2), where coefficients

a(n)
p are given by

a(n)
p = π2p−1λ

(CDP)
2p−1

(2p − 1)!

(
B2p(1/2)

2p
+ I (1−2p)

n

)
. (38)

For p = 1,2

a
(n)
1 = π

(
11

12
+ n2 − 1

2

)
λ

(CDP)
1 = π

(
1

12
+ h1,2n+2

)
λ

(CDP)
1 ,

(39)

a
(n)
2 = π3

6

(
n2(2n2 − 1)

8
+ 7

960

)
λ

(CDP)
3

= π3

6

(
h2

1,2n+2 − 1

120

)
λ

(CDP)
3 . (40)

The asymptotic expansions of E
(�)
1 can also be written in the

form of Eq. (2), where coefficients a(n)
p are given now by

a(n)
p = π2p−1λ

(CDP)
2p−1

(2p − 1)!

×
(

B2p(1/2)

2p
+ I

(1−2p)
n+1 −

(
n − 1

2

)2p−1)
. (41)

For p = 1,2

a
(n)
1 = π

(
23

24
+ n2

2

)
λ

(CDP)
1 = π

(
1

12
+ h1,2n+2 + 1

)
λ

(CDP)
1 ,

(42)

a
(n)
2 = π3

6

(
n4

4
+ 23n2

8
+ 247

960

)
λ

(CDP)
3

= π3

6

(
h2

1,2n+2 + 6h1,2n+2 + 119

120

)
λ

(CDP)
3 . (43)

Thus working out the asymptotic expansion of E(�)
r for r = 0,1

yields the first coefficients,

a
(n)
1 = π

(
h1,s + r + 1

12

)
λ

(CDP)
1 , (44)

and

a
(n)
2 = π3

6

(
h2

1,s − 1

120

)
λ

(CDP)
3 , r = 0, (45)

a
(n)
2 = π3

6

(
h2

1,s + 6 h1,s + 119

120

)
λ3, r = 1, (46)

with s = 2n + 3 for even N and s = 2n + 2 for odd N .
Let us now consider the CDP model on the cylinder. The

partition function of CDP is defined in terms of a one-row
transfer matrix T(u) and given by [40]

ZN,M = Tr T(u)M =
∑
n�0

Tn(u)M =
∑
n�0

e−MEn(N ;u), (47)

where the sum is over all eigenvalues of T(u), written as
e−En(N ;u), En(u) with n = 0,1,2, . . . is the energy associated
with the eigenvalue Tn(u), and u is a spectral parameter related
to the anisotropy factor by ζ = sin 2u. The maximal eigenvalue
T0(u) is labeled by n = 0.

Let us first consider the case with odd N . The largest
eigenvalue 
0 and the second largest eigenvalue 
1 of the
transfer matrix for the CDP model on the cylinder with odd
N are the largest [T0,1(u)] and the second largest eigenvalues
of the transfer matrix in the Z4 sector, respectively, and were
found in [40]. After using the identity,

N−1∏
n=0

sin
π (n + 1/2)

N
= 21−N, (48)

the expression for the largest and second largest eigenvalues
of the transfer matrix can be simplified and rewritten in the
following form:

ln 
0 = ln T0,1(u) = 1

2

N−1∑
n=0

ω(CDP)

(
π (n + 1/2)

N
,u

)
, (49)

ln 
1 = ln 
0 + ln

(
1 − sin 2u sin π

2N

1 + sin 2u sin π
2N

)
. (50)

The sums in Eqs. (49) and (50) can be handled by using the
Euler-Maclaurin summation formula [44]. After a straightfor-
ward calculation, we obtain that E0 and E1 can be written in
the form of Eq. (2) where coefficients a(0)

p and a(1)
p are given

by

a(0)
p = π2p−1B2p(1/2)λ2p−1

(2p)!
,

(51)

a
(0)
1 = −πλ1

24
, a

(0)
2 = 7π3λ3

5760
· · · ,

a(1)
p = a(0)

p + π2p−1λ2p−1

22p−2(2p − 1)!
,

(52)

a
(1)
1 = 23 πλ1

24
, a

(1)
2 = 247π3λ3

5760
· · · ,

with λ2p−1 = λ
(CDP)
2p−1 . The bulk free energy is fb = f

(CDP)
b and

surface free energy fs is zero. By comparing the expressions
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given by Eqs. (51) and (52) with the prediction of the conformal
field theory for the cylinder geometry Eq. (3), we show that the
central charge c = −2, while the conformal weights �0 and
�1 correspond to the Z4 sector given by Eq. (16). The ratio
a(1)

p /a(0)
p is independent of the function ω and given by Eq. (6).

If 
0 and 
1 are the largest and the second-largest eigen-
values of the transfer matrix acting along the M directions,
in the limit M → ∞ the ground-state energy E0 and the first
exited state energy E1, are given, respectively, by

E0 = − ln 
0 and E1 = − ln 
1.

Let us first consider the case of infinitely long cylinder with
even N .

The largest (
0) eigenvalue of the transfer matrix for
the CDP model on infinitely long cylinder with even N is
the largest [T0,0(u)] eigenvalue of the transfer matrix in the
Ramond sector, and was found in [40]. After using the identity,

N
2 −1∏
n=0

sin
2π (n + 1/2)

N
= 2

2−N
2 , for N - even, (53)

the expression for the largest eigenvalue of the transfer matrix
can be simplified and rewritten in the following form:

ln 
0 = ln T0,0(u) =
N
2 −1∑
n=0

ω(CDP)

(
2π (n + 1/2)

N
,u

)
. (54)

The second largest (
1) eigenvalue of the transfer matrix
for the CDP model is the largest [T0,2(u)] eigenvalue of the
transfer matrix in the Neveu-Schwarz sector, and was found
in [40]. After using the identity,

N
2 −1∏
n=1

sin
2πn

N
= N2− N

2 , (55)

the expression for the largest eigenvalue of the transfer matrix
can be simplified and rewritten in the following form:

ln 
1 = ln T0,2(u) =
N/2−1∑
n=1

ω(CDP)

(
2πn

N
,u

)
. (56)

The sums in Eqs. (54) and (56) can be handled by
using the Euler-Maclaurin summation formula [44]. After a
straightforward calculation, we obtain that E0 and E1 can be
written in the form of Eq. (2) where coefficients a(0)

p and a(1)
p

are given by

a(0)
p = 22pπ2p−1B2p(1/2)λ2p−1

(2p)!
,

(57)

a
(0)
1 = −πλ1

6
, a

(0)
2 = 7π3λ3

360
· · · ,

a(1)
p = 22pπ2p−1B2pλ2p−1

(2p)!
,

(58)

a
(1)
1 = πλ1

3
, a

(1)
2 = −π3λ3

45
· · · ,

with λ2p−1 = λ
(CDP)
2p−1 . The bulk free energy is f∞ = f

(CDP)
∞ =

ln
√

2 − 1/π
∫ π/2

0 ω(CDP)(x,u)dx and surface free energy (fs)
is zero.

By comparing the expressions given by Eqs. (57) and
(58) with Eq. (3), the central charge is readily seen to be
c = −2, while the values of the conformal weights �0 and
�1 correspond to the periodic boundary condition given by
Eq. (15). Note that the anisotropy factor is equal to ζ = sin 2u

for the CDP model. Equations (57) and (58) imply that the
ratios of the amplitudes of the N2p−1 corrections term in the
first exited state energy E1, and the ground-state energy E0

expansion, that is, a(1)
p /a(0)

p should not depend in detail on the
function ω(x,z) as given by Eq. (5). In deriving Eq. (5) we
have used the relation B2p(1/2) = (21−2p − 1)B2p.

III. DIMER MODEL ON THE RECTANGULAR LATTICE

To check whether Eqs. (5)–(8) are still valid for other
models in the c = −2 universality class, we proceed to study
another exactly solvable model, namely dimer model on
the rectangular lattice. The dimer problem originated from
investigation of the thermodynamic properties of a system of
diatomic molecules (called dimers) absorbed on the surface of
a crystal. Dimer system is specified by a lattice G consisting
of vertices (sites) connected by bonds.

Dimer can be placed on the bonds of G so that no vertex
has more than one dimer (see Fig. 2). The “dimer problem” is
to determine the number of ways of covering a given lattice
with dimers, so that all sites are occupied and no two dimers
overlap. The partition function ZM,N of the dimer model on a
M × N lattice is given by

ZM,N (zv,zh) =
∑

znv

v z
nh

h ,

where summation is taken over all dimer covering config-
urations, zv and zh are, respectively, dimer weight in the
horizontal and vertical directions, nv and nh are, respectively,
the number of vertical and horizontal dimers. ZM,N (1,1) is the
total number of different ways to cover the lattice by dimers.
We consider a transfer matrix acting along the M direction.

The dimer model itself has no specific critical behavior, but
serves as a way to construct different models with different
universality classes (Ising model, Kasteleyn model, spanning
trees, etc.). For example, the dimer model on square and

FIG. 2. A lattice G consisting of vertices connected by bonds.
Dimers can be placed on the bonds of G so that no vertex has more
than one dimer.
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FIG. 3. (Color online) Mapping of dimer covering to a spanning
tree on the odd sublattice and to the sandpile model with open top and
closed bottom horizontal boundaries and closed vertical boundaries
for an M × N = 6 × 9 lattice.

triangular lattices belongs to spanning tree universality class
(c = −2) [12,15]; the dimer model on honeycomb lattice
belongs to q = 0 Potts model universality class (c = 1)
[45] and Fisher introduced a correspondence between the
two-dimensional Ising model defined on a graph G, and the
dimer model defined on a decorated version of this graph [46].

The finite-size corrections of the free energy of the dimer
model show a strong dependence on the parity of the lattice.
In our recent works [12,13], we have studied the finite-size
corrections of the dimer model on an infinitely long strip of
the square lattice with width N under two different boundary
conditions: free and periodic. We have shown that changing
the parity of N genuinely changes the boundary conditions,
which is unusual in the world of conformal field theory. The
correspondence between the change of boundary conditions
and the change the parity of N is not apparent in the dimer
model itself, but it becomes clear when one maps the dimer
model onto the spanning tree model [42] or the sandpile model
[25] (see Figs. 3 and 4). Thus we can see from Figs. 3 and 4 that
in the limit M → ∞ the dimer model on the infinitely long
strip with odd N corresponds to the sandpile model on the

FIG. 4. (Color online) Mapping of dimer covering to a spanning
tree on the odd sublattice and to the sandpile model with open top and
closed bottom horizontal boundaries and with open right and closed
left vertical boundaries for an M × N = 6 × 10 lattice.

infinitely long strip with closed-closed boundary conditions,
while the dimer model on the infinitely long strip with even N

corresponds to the sandpile model on the infinitely long strip
with open-closed boundary conditions.

Let us first consider the case of infinitely long cylinder with
even N . For the dimer model the expressions for largest (
0)
and second largest (
1) eigenvalues of the transfer matrix are
given, respectively, by [43]

ln 
0 =
N/2−1∑
n=0

ω(dimer)

(
π (n + 1/2)

N/2
,z

)
, (59)

ln 
1 =
N/2−1∑
n=1

ω(dimer)

(
πn

N/2
,z

)
, (60)

where

ω(dimer)(x,z) = arcsinh(z sin x), (61)

and z = zv/zh.
Using Taylor’s theorem, the asymptotic expansions of the

ω(dimer)(x,z) can be written in the following form:

ω(dimer)(x,z) =
∞∑

p=1

λ
(dimer)
2p−1

(2p − 1)!
x2p−1,

where λ
(dimer)
1 = z, λ

(dimer)
3 = −z(1 + z2), . . ..

The sums in Eqs. (59) and (60) can be handled by
using the Euler-Maclaurin summation formula [44]. After a
straightforward calculation, we obtain that E0 and E1 can be
written in the form of Eq. (2) where coefficients a(0)

p and a(1)
p

are given by Eqs. (57) and (58) with λ2p−1 = λ
(dimer)
2p−1 . The bulk

free energy is f∞ = f
(dimer)
∞ = −1/2π

∫ π

0 ω(dimer)(x,z)dx and
surface free energy (fs) is zero.

By comparing the expressions given by Eqs. (57) and
(58) with Eq. (3), the central charge is readily seen to be
c = −2, while the values of the conformal weights �0 and �1

correspond to periodic boundary condition given by Eq. (15).
Note that the anisotropy factor is equal to ζ = z for dimer
model. Equations (57) and (58) imply that the ratios of the
amplitudes of the N2p−1 corrections term in the first excited
state energy E1, and the ground-state energy E0 expansion,
that is, a(1)

p /a(0)
p should not depend in detail on the function

ω(x,z) as given by Eq. (5). What is surprising is that the ratio
a(1)

p /a(0)
p for the dimer and CDP models on the cylinder with

even N exactly coincides with the ratio a(1)
p /a(0)

p for the Ising
model in the case of periodic boundary conditions [4].

Following along the same line as in [43], we have calculated
the largest and the second-largest eigenvalues of the transfer
matrix for the dimer model on the infinitely long strip with even
and odd N and on the infinitely long cylinder with odd N .

For the dimer model on the cylinder with odd N we find
that

ln 
0 =
(N−1)/2∑

n=1

ω(dimer)

(
πn

N/2
,z

)
, (62)

ln 
1 =
(N−3)/2∑

n=1

ω(dimer)

(
πn

N/2
,z

)
= ln 
0 − ω(dimer)

(
π

N
,z

)
.

(63)
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Now, using expressions for 
0 and 
1 for the dimer model on
the cylinder with odd N given by Eqs. (62) and (63), with the
help of the Euler-Maclaurin summation formula [44], we can
write the asymptotic expansion of E0 and E1 in the form of
Eq. (2), with coefficients a(0)

p and a(1)
p given by

a(0)
p = π2p−1B2pλ2p−1

(2p)!
,

(64)

a
(0)
1 = λ1π

12
, a

(0)
2 = −π3λ3

720
· · · ,

a(1)
p = π2p−1λ2p−1

(2p − 1)!
,

(65)

a
(1)
1 = λ1π, a

(1)
2 = π3λ3

6
· · · ,

with λ2p−1 = λ
(dimer)
2p−1 . The bulk free energy is f∞ = f

(dimer)
∞

and surface free energy fs is zero. By comparing the
expressions given by Eqs. (64) and (65) with Eq. (4), one
can find that the central charge is c = −2 and the conformal
weights �0 and �1 correspond to the open-open boundary
condition given by Eq. (18). One can see that the ratio a(1)

p /a(0)
p

again is independent from the function ω, which means that
this ratio can be universal and given by Eq. (8).

This is a very unusual situation. Although the dimer model
is originally defined on a cylinder, it shows the finite-size
corrections expected on a strip, and must really be viewed as
a model on a strip [12,13].

For the dimer model on the strip with odd N we obtain

ln 
0 =
(N−1)/2∑

n=1

ω(dimer)

(
πn

N + 1
,z

)
, (66)

ln 
1 =
(N−1)/2∑

n=2

ω(dimer)

(
πn

N + 1
,z

)

= ln 
0 − ω(dimer)

(
π

N + 1
,z

)
, (67)

where ω(dimer)(x,z) is given by Eq. (61). Now, using expres-
sions for 
0 and 
1 for the dimer model on the strip with
odd N , with the help of the Euler-Maclaurin summation
formula [44], the asymptotic expansion of the E0 and E1

can be written in the form of Eq. (2), where coefficients a(0)
p

and a(1)
p are exactly the same as in the case of the dimer

model on the cylinder with odd N and given by Eqs. (64)
and (65), with λ2p−1 = λ

(dimer)
2p−1 . The only difference is that

surface free energy for the dimer model on the strip with odd
N is fs = 1

2 ln (z + √
1 + z2), while for the case of the dimer

model on the cylinder with odd N the surface free energy fs is
zero. The ratio a(1)

p /a(0)
p is independent of the function ω and

given by Eq. (7). Thus we can see that the dimer model on the
strip with odd N corresponds to the closed-closed boundary
condition given by Eq. (18).

Finally, let us consider the dimer model on the strip
with even N . For the largest (
0) and second largest (
1)
eigenvalues of the transfer matrix for the dimer model on
the strip with even N we have obtained the following

expressions:

ln 
0 =
N/2−1∑
n=0

ω(dimer)

(
π (n + 1/2)

N + 1
,z

)
, (68)

ln 
1 =
N/2−1∑
n=1

ω(dimer)

(
π (n + 1/2)

N + 1
,z

)

= ln 
0 − ω(dimer)

(
π

2(N + 1)
,z

)
, (69)

where ω(dimer)(x,z) is given by Eq. (61).
Now, using expressions for 
0 and 
1 for the dimer model

on the strip with even N , the asymptotic expansion of E0 and
E1 can be written in the form of Eq. (2), where coefficients
a(0)

p and a(1)
p are given by Eqs. (51) and (52). The ratio a(1)

p /a(0)
p

is independent of the function ω and given by Eq. (7). Thus
we can see that the dimer model on the strip with even N

corresponds to the open-closed boundary condition given by
Eq. (17).

IV. CONFORMAL FIELD THEORY

The finite-size corrections to Eq. (1) can be calculated by
using a perturbated conformal field theory [47,48]. In general,
any lattice Hamiltonian will contain correction terms to the
critical Hamiltonian Hc,

H = Hc +
∑

k

gk

∫ N/2

−N/2
φk(v)dv, (70)

where gk is a nonuniversal constant and φk(v) is a perturbative
conformal field with scaling dimension xk . The possible
irrelevant operators for the Ising model was classified in [49].
Among these operators are those associated with the conformal
block of the identity operator, the leading operator of which
has the scaling dimension xl = 4. To the first order in the
perturbation, the energy gaps (En − E0) and the ground-state
energy (E0) can be written as

En − E0 = 2π

N
xn + 2π

∑
k

gk(Cnkn − C0k0)

(
2π

N

)xk−1

,

E0 = E0,c + 2π
∑

k

gkC0k0

(
2π

N

)xk−1

,

where Cnkn are universal structure constants. Note, that the
ground-state energy E0 and the first energy gap (E1 − E0)
are, respectively, the quantum analogies of the free energy fN

and inverse spin-spin correlation length ξ−1
N ; that is, NfN ⇔

E0, ξ−1
N ⇔ E1 − E0.

Perturbation techniques have been studied for a long time,
and successfully applied in concrete models [50]. Here it is
sufficient that the state |n〉 be nondegenerate within its own
representation since φ preserves each representation. Quite
recently, Izmailian, Ruelle, and Hu [17] generalized the pertur-
bation expansion to include Jordan cells, and examine whether
the finite-size corrections are sensitive to the properties of
indecomposable representations appearing in the conformal
spectrum, in particular, their indecomposability parameters
and find that the corrections do not depend on these parameters.
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We will show below that for c = −2 LCFT the leading
finite-size corrections (1/N3) can be described by the Hamil-
tonian given by Eq. (70) with a single perturbative conformal
field φ1(v) = L2

−2(v) with scaling dimension x1 = 4, which
belongs to the tower of the identity. In the case of the cylinder
geometry the spectra of the Hamiltonian (70) are built by the
irreducible representation �,�̄ of two commuting Virasoro
algebras Ln and L̄n [37]. Having in mind that we are interested
in corrections coming from the conformal fields that belong to
the conformal block of the identity operator, we are left with
two possibilities [51]:

φ1(v) = L2
−2(v) + L̄2

−2(v) and φ2(v) = L−2(v)L̄−2(v).

The universal structure constants Cnkn (for k = 1,2) can be ob-
tained from the matrix elements 〈n|φk(0)|n〉 = (2π/N )xkCnkn

[47], which have already been computed by Reinicke [51]:

Cn1n = (� + r)

(
� − 2 + c

12
+ r(2� + r)(5� + 1)

(� + 1)(2� + 1)

)

+ r

30
[r2(5c − 8) − (5c + 28)]δ�,0

+
(

c

24

)2

+ 11c

1440
+ (� → �̄,r → r̄), (71)

Cn2n = (� + r − c/24)(�̄ + r̄ − c/24). (72)

Let us consider the case c = −2. For the critical dense polymer
and dimer models on the infinitely long cylinder with even N

(periodic boundary condition) the ground state |0〉 and first
excited state |1〉 are given by

|0〉 = ∣∣�0 = − 1
8 ,r = 0; �̄0 = − 1

8 ,r̄ = 0
〉

(73)
|1〉 = ∣∣�1 = 0,r = 0; �̄1 = 0,r̄ = 0

〉
.

Thus for the universal structure constants Cn1n and Cn2n (n =
0,1) we can obtain from Eqs. (71) and (72) the following
values:

C010 = 7/480, C111 = −1/60, (74)

C020 = 1/576, C121 = 1/144. (75)

Then, the expansion of the ground-state energy (E0) and the
energy gaps (E1 − E0) up to N−3 order can be written as

E0 − E∞ = −πζ

6N
+ 2π

(
7g1

480
+ 1/576g2

)(
2π

N

)3

, (76)

E1 − E0 = πζ

2N
− 2π

(
g1

32
− 1/192g2

)(
2π

N

)3

, (77)

where E∞ is the ground-state energy of the infinite lattice.
A comparison of the expressions given by Eqs. (76) and (77)
with the finite-size corrections for the critical dense polymer
model and critical dimer model given by Eqs. (57) and (58),
shows complete agreement for

g2 = 0 and g1 = λ3/(12π ),

where λ3 = − sin 2u + 2 sin3 2u for critical dense polymer
and λ3 = −z(1 + z2) for dimer model. It is interesting to
note that for the 2D Ising model, one finds [50] that the
leading finite-size corrections (1/N3) can also be described by

the Hamiltonian given by Eq. (70) with a single perturbative
conformal field φ1(v) = L2

−2(v) + L̄2
−2(v).

For the critical dense polymer on infinitely long cylinder
with odd N (Z4 sector) the ground state |0〉 and first excited
state |1〉 are given by

|0〉 = ∣∣�0 = − 3
32 ,r = 0; �̄0 = − 3

32 ,r̄ = 0
〉

(78)
|1〉 = ∣∣�1 = 5

32 ,r = 0; �̄1 = 5
32 ,r̄ = 0

〉
.

Thus for the universal structure constants Cn1n (n = 0,1) we
can obtained from Eq. (71) the following values:

C010 = 7/7680, C111 = 247/7680. (79)

In the case of strip geometry the spectra can be understood
in terms of irreducible representations � of a single Virasoro
algebra. Having in mind that we are interested in corrections
coming from the conformal fields that belong to the conformal
block of the identity operator, we are left with one possibility
[51]:

φ1(v) = L2
−2(v),

and the universal structure constants Cn1n are now given by
Eq. (71), where the dependence on �̄ and r̄ are suppressed.

For the dimer model on the cylinder and strip with N -odd
and the CDP on the strip with N -even [closed-closed (open-
open) boundary condition] the ground state and the first excited
state are given by

|0〉 = |�0 = 0,r = 0〉 and |1〉 = |�1 = 1,r = 0〉. (80)

Then, from Eq. (71) we can obtain the values of the universal
structure constants:

C010 = −1/120 and C111 = 119/120.

For the dimer model on the the strip with N -even and
the CDP on the strip and cylinder with odd N (open-closed
boundary condition) the ground state and first excited state are

|0〉 = ∣∣�0 = − 1
8 ,r = 0

〉
and |1〉 = ∣∣�1 = 3

8 ,r = 0
〉

(81)

and from Eq. (71) we obtain

C010 = 7/960 and C111 = 127/960.

Thus the ratio of first-order corrections amplitudes for ξN

and fN is universal and equal to (C111 − C010)/C010, which
is consistent with Eqs. (5), (7), and (8) for the case p = 2.
Namely,

b2

a2
= C111 − C010

C010
= −15/7, R-NS sectors;

b2

a2
= C111 − C010

C010
= 240/7, Z4 sector;

b2

a2
= C111 − C010

C010
= −120, open-closed;

b2

a2
= C111 − C010

C010
= 120/7, closed-closed (open-open).
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V. CONCLUSION

We find that the finite-size corrections in the CDP and
dimer models depend in a crucial way on the parity of N ,
and show that a change of the parity of N induces a change
of boundary conditions: The dimer and the CDP model on
the cylinder with even N belong to the periodic boundary
condition (Ramond and Neveu-Schwarz sectors), the CDP
model on the cylinder with odd N belongs to the periodic
boundary condition (Z4 sector), the dimer model on the
cylinder and strip with odd N and CDP model on the strip with
even N belong to the closed-closed boundary condition, and
the dimer model on the strip with even N and the CDP model
on the strip with odd N belong to the open-closed boundary
condition.

Taking a careful account of this, these unusual finite-size
behaviors can be fully explained in the framework of the
c = −2 logarithmic conformal field theory. We find that the
ratios among correction amplitudes are universal for p = 1
and 2, and depend only on the boundary conditions [see
Eqs. (5)–(8)].

The results of this paper inspire several problems for further
studies: (i) Further work has to be done to possibly evaluate
exactly all finite-size correction terms from perturbative
conformal field theory. (ii) Can one obtain from the perturbated
conformal field theory the value of the universal amplitude
ratios bp/ap for p > 2? (iii) How do such amplitudes behave
in other models, for example, in the three-state Potts model?
(iv) Our results also present new challenges to scientists
working on numerical studies of critical phenomena. For
example, it is of interest to present accurate numerical
evidences about whether the nonintegrable models in c = −2
universality classes has the same set of amplitude ratios.
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