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We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting
of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its
angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction
and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The
term “domino model” in the title refers to the interaction among the spins. We compare the model results with
geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all
spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by
almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking
an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the
rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole).
Reversals are fast compared to the times in between and they occur at random times, both in the model and in
the case of the Earth’s magnetic field.
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I. INTRODUCTION

One of the most remarkable phenomena of geomagnetism
is that the Earth has reversed the polarity of its almost dipolar
magnetic field many times in the past at irregular intervals [e.g.,
[1,2]. Similar reversals have also been observed in turbulent
dynamo experiments [3] and in simulations of the geodynamo
[4], but the cause of the reversals has eluded a convincing
explanation [5].

The magnetic field of the Earth originates from dynamo
action in the liquid outer core [e.g., [6]. Helical flows in con-
vection columns that encircle the inner core tangent cylinder
and are aligned with the rotation axis play an important role
for the magnetic field generation [7,8]. Numerical simulations
of the geodynamo successfully reproduce many features of the
magnetic field of the Earth, including stochastic reversals [e.g.,
[9]. Depending on the importance of the inertial forces relative
to the rotational forces, dynamos with either a dominant axial
dipole or with a small-scale multipolar magnetic field are found
[10]. The transition from dipolar to multipolar dynamos takes
place at a local Rossby number of approximately 0.1 [11]. The
Earth lies close to the transition between both types [12], which
may explain why the dipole undergoes sporadic reversals.

In weakly driven dynamos, the helical convection columns
generate an axial dipole, while in strongly driven dynamos,
the flow and the field have smaller spatial structures and
chaotically fluctuate in time. Direct numerical simulations of
the geodynamo are computationally expensive and thus only
a few reversals have been studied in detail. Typically these
simulations show that reversals go along with a breaking of the
north-south (equatorial) symmetry in the flow of the aligned
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fluid columns. Sporadic flow upwellings, when transporting
inverse magnetic flux patterns from the inner core to the core
mantle boundaries, seem to trigger polarity reversals [13].
To some extent, the upwellings behave like tilted convective
columns, at least where their role in the dynamo mechanism
is concerned. We will further discuss this issue in Sec. V.

The reversal sequences in paleomagnetic data and in
dynamo models have been analyzed for their statistical
properties. First estimates that geomagnetic reversals obey
a Poissonian process where all reversals are independent of
each other do not describe all statistical features of the reversal
record. The statistical reversal rate has likely been changing
over time due to the varying heat flux through the core-mantle
boundary [14–17]. The reversal sequence also suggests that the
process may have a short- and a long-term memory, leading
to changes in the statistical behavior and the characterizing
distribution function of the times between reversals [18,19].
Similar analysis for fully 3D numerical dynamo simulations
are rare because it is very costly to compile a large number of
reversals. The analysis by Wicht et al. [20] and Driscoll and
Olson [16] indicate that the numerical simulations may follow
similar reversal statistics as the paleomagnetic record.

Simple parameterized models allow for a large number
of reversals, so that a statistical analysis becomes more
meaningful. A famous example is the two-disk dynamo of
Rikitake [21], which exhibits sporadic reversals, but also a
cyclic variation of the dipole moment during stable polarity
periods. The extensions to N -coupled disks by Shimizu and
Honkura [22] and Ito [23] improved on the latter weak point.
Hoyng et al. [24] considered a mean-field dynamo model with
stochastic fluctuations of the induction effect; these lead to
oscillations of the dipole field amplitude in a bistable potential
with minima representing normal and reversed polarity and
occasional jumps between them [25].
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Here we study another class of simplified models, an Ising-
Heisenberg model of interacting magnetic spins. Ising-like
models have been used in molecular dynamics and statistical
mechanics for describing, for instance, phase transitions in
ferromagnetism, for modeling spin glasses, and for pattern
recognition in neural networks [e.g., [26]]. Coupled spin
models of Ising type, where the individual spins can assume
two scalar states +1 or −1 and interact with each other
after certain rules, have also been suggested for describing
geomagnetic polarity reversals and their statistics [27–29]. We
analyze a planar Heisenberg model consisting of a system of
vectorial spins aligned along a ring. Each spin has unit length
and is described by its angle with respect to the rotational axis,
i.e., each spin has one degree of freedom. The orientation
of the spins can vary in time due to spin-spin interaction
and random forcing. The consecutive interaction of adjacent
spins is described as “domino model.” We consider the time
dependence of the average orientation of all spins, which
exhibits a similar behavior as the geomagnetic reversal record.

These sorts of models are often classified according to spa-
tial dimensionality and number of components of spin vectors.
Our model is one-dimensional (i.e., spatial dimensionality of
the lattice is one) and vectors (spins) are two-dimensional (i.e.,
they are contained within a plane). Thus, the domino model
is a one-dimensional XY model, also referred to as the plane
rotator model or the Vaks-Larkin model [30]. Spin vectors in
Ising and Heisenberg models are 1D and 3D, respectively. A
clear classification can be found in the classic textbook by
Stanley [31].

The spins in our model might be associated with the con-
vection columns, whose electromagnetic induction generates
elementary dipoles. The tendency of the spins to be aligned
with the rotation axis is a consequence of the Proudman-Taylor
theorem, and the time variation of the spins is a measure
of the vigor of convection and of the sporadic upwellings.
The convective columns represent building blocks of the full
dynamo process. Their interaction is modeled here by the
spins in the simple domino model. It turns out that this model
successfully describes the statistics of geomagnetic reversals,
which indicates that the polarity reversals may be understood
by the collective interaction of these columns. The model does
not, however, describe the details of the dynamo process in the
individual convection columns.

The structure of the paper is as follows. In Sec. II, the
model is described. The results and the statistical analysis of
our model are presented in Sec. III. The influence of the various
parameters as well as alternative model descriptions are given
in Sec. IV. The results are compared with numerical dynamo
simulations in Sec. V and with geomagnetic data in Sec. VI.
In Sec. VII, we give our conclusions.

II. THE DOMINO MODEL

A. Model equations

We consider a system of N macrospins aligned along a
ring and interacting pairwise like in a one-dimensional Vaks-
Larkin model. The spins are embedded in a uniformly rotating
medium and we take � = (0,1) as the unit vector along the
rotational axis. Each spin Si , i = 1, . . . ,N has unit length and

FIG. 1. (Color online) Sketch of the domino model.

is described by its angle θi with respect to the rotational axis,
such that Si = (sin θi, cos θi). The orientation of the spins can
vary in time due to random forcing and spin-spin interaction
(Fig. 1).

The kinetic and the potential energy K(t) and P (t) of the
system are

K(t) = 1

2

N∑
i=1

θ̇i(t)
2 , (1)

P (t) = γ

N∑
i=1

(� · Si)
2 + λ

N∑
i=1

(Si · Si+1), (2)

where i + 1 = 1 when i = N . Here, γ is a parameter charac-
terizing the tendency of the spins to be aligned with the rotation
axis, while λ is a parameter characterizing the spin-spin
interaction. The scalar product to the square in the γ -term
ensures that there is no preferred polarity. The interaction is
such that each spin interacts with the two neighboring spins:
spin 2 interacts with spins 1 and 3, spin 3 with spins 2 and 4,
and so on. Spin N interacts with spins N − 1 and 1; i.e., we
are considering periodic boundary conditions and, therefore,
talk about a ring system here.

The Lagrangian for the system is L = K − P . We set up a
Langevin-type equation as follows:

∂

∂t

(
∂L
∂θ̇i

)
= ∂L

∂θi

− κθ̇i(t) + εχi√
τ

, (3)

where the term −κθ̇i(t) describes friction and the term εχi/
√

τ

is a random force acting on each spin. The parameters κ and
ε characterize the strengths of the friction and the random
forcing, respectively. Finally, χi is a Gaussian-distributed
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random number with zero mean and unit variance associated
to each spin, which is updated each correlation time τ .

Inserting the expressions for the kinetic and potential
energy, Eqs. (1) and (2), into Eq. (3) yields

θ̈i − 2γ cos θi sin θi + λ[cos θi(sin θi−1 + sin θi+1)

− sin θi(cos θi−1 + cos θi+1)] + κθ̇i − εχi√
τ

= 0,

i = 1, . . . ,N, (4)

with θ0 = θN and θN+1 = θ1.
We integrate the equations of motion [Eq. (4)] forward in

time with a fourth-order Runge-Kutta scheme starting from a
random orientation of the spins between 0 and 2π . A standard
set of parameters N , γ , λ, κ , ε, and τ is considered in Sec. III,
while the parameter dependence of the mean time between
reversals is studied in Sec. IV A. In Sec. IV B, we also slightly
alter the model using different alternatives of the γ term, the
λ term, and the forcing term.

As main output we consider the cumulative orientation of
all spins and define

M(t) = 1

N

N∑
i=1

� · Si(t) = 1

N

N∑
i=1

cos θi(t) (5)

as the resulting total axial magnetic moment or “magnetiza-
tion.”

B. Assessment of numerical stability

We tested that the results are insensitive to the employed
numerical method. For the Runge-Kutta scheme, for instance,
we reduced the integration time step �t by factors of 2, 5, and
10 compared to the model of Sec. III without qualitative and
quantitative change of the results.

We furthermore implemented two different algorithms from
the ODEPACK [32], a predictor-corrector scheme after Adams
(suitable for nonstiff systems) and a backward differentiation
scheme after Gear (for stiff cases). In both cases, the step-size
was adaptive and controlled by relative and absolute error
tolerances. Both gave the same results as the Runge-Kutta
scheme once the error tolerances were chosen small enough,

e.g., relative error bounds equal zero and absolute error bounds
equal 10−10 for θi .

Although the particular times at which reversals occurred
varied, the overall statistical behavior did not change when
we reduced the time step of the Runge-Kutta routine or when
we employed the other integration algorithms. Both the mean
time and the distribution of times between reversals as well as
the power spectrum and the distribution of the magnetization
were all the same within the statistical margins.

We conclude from this that the results of the domino
model are numerically robust and we can stay with the
computationally less expensive Runge-Kutta method.

III. RESULTS AND STATISTICAL ANALYSIS OF A
TYPICAL MODEL

The parameters of our standard model are N = 8, γ = −1,
λ = −2, κ = 0.1, ε = 0.4, and τ = 0.01. The integration
time step was �t = 0.01, the total number of time steps
was 3 × 107, and every 10th time step is outputted. The run
comprises a total of 824 reversals, i.e., the mean time between
reversals is 364. Identifying this time with the mean time
between reversals in the case of the Earth, which is 300 kyr,
the whole run with a time of 300 000 spans approximately
250 Myr. The length of the run is not limited by numerical
constraints, but the number of 824 reversals is large enough for
a robust statistical comparison with the available geomagnetic
record of 332 reversals (see Sec. VI). In Fig. 2 the first tenth
of the full run is displayed.

The statistical analysis is based on the whole time series.
The power spectrum is shown in Fig. 3(a). Over a large range
comprising most of the reversals, the spectrum follows a
power law with an exponent of about −1.7. The spectrum
for small frequencies or long polarity chrons (i.e., epochs
of one polarity) is flatter, while the steeper decrease at high
frequencies comes from the fast variations between reversals.
The distribution of the magnetization peaks near ±1 with a
wide and deep valley between them [Fig. 3(b)]. This reflects
the fact that the flipping or reversal times are short events
compared to the average duration time between them and that
the spins are, most of the time, closely aligned with the rotation
axis.

FIG. 2. The magnetization of the standard run as a function of time. At the top, the times of all zero-crossings are indicated (all reversals),
while at the bottom, only those where a central band of M = [−0.5,0.5] is crossed are displayed (true reversals).
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FIG. 3. (a) Log-log plot of the power spectrum of the magnetization. (b) Normalized distribution of the magnetization.

The distribution of the duration of long chrons follows a
power law with an exponent of approximately −1.5 [Fig. 4(a)],
while the short chrons are approximately exponentially dis-
tributed [Fig. 4(b)].

In Fig. 5, the details of one single reversal at t ≈ 3450
are shown. The reversal is triggered by a large fluctuation of
spin 4, which is successively transferred to the neighboring
spins, which fluctuate until finally all spins reverse their
polarity. We call our model “domino model” because of this
consecutive interaction of neighboring spins. The duration of
the full reversal depends on how fast the original fluctuation
is transferred to all other spins. The reversal here lasts
about 10 time units, which corresponds to 8 000 yr, roughly
the time it takes for the geomagnetic field to flip polarity.
Shortly afterwards, at t ≈ 3 470, some spins again show large
variations and even reverse for a short time. Since they fail
to transfer this to all the other spins, the total magnetization
shows an excursion rather than a reversal. Examples of a true
reversal, an aborted reversal, and two excursions are shown in
Fig. 6.

IV. PARAMETER STUDY

The model contains a number of free parameters. The
main quantity that depends sensitively on their values is the
frequency of reversals. The statistical results, described in
Sec. IV A, are based on many runs with at least three hundred
reversals. When the time between reversals was longer than

in our standard model of Sec. III we also had to execute
these runs longer to achieve stable statistical results. The
slope of the power spectrum depends only weakly on the
model parameters. The distribution of the magnetization is
also similar to the model of Sec. III. When there are very
many reversals, the valley between the two stable states is less
wide and deep.

A. Mean time between reversals

The dependence of the mean time between reversals on the
number of spins is shown in Fig. 7. In the case of a few spins,
this time steeply increases with the number, but it seems to
saturate for a larger number of spins.

The parameter γ measures the tendency of the spins to be
aligned with the rotation axis. Large negative values stabilize
the orientation and lead to fewer reversals [Fig. 8(a)]. A value
of γ = 0 still behaves like a bistable oscillator, but with many
reversals and an almost flooded valley between the stable states
in the distribution function. Positive values of γ do not lead to
a stable magnetization but to oscillations around M = 0.

The influence of the spin-spin interaction parameter λ is
similar. Large negative values stabilize [Fig. 8(b)]. For λ � 0
the system randomly oscillates around M = 0.

Increased friction, described by larger values of κ , quite
naturally stabilizes [Fig. 8(c)], while increased random
forcing, described by larger values of ε, destabilizes the

FIG. 4. (a) Log-log plot of the number of reversals as a function of the times between reversals. (b) Normalized distribution of the times
between reversals for short duration chrons.
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FIG. 5. The total magnetization of all spins,
∑N

i=1 cos θi/N (top panel), and the magnetization of the individual spins, cos θi , before and
after a reversal at t ≈ 3450.

system, leading to shorter chrons and more frequent reversals
[Fig. 8(d)].

The mean time between reversals depends sensitively on the
model parameters. Thus, the drastic changes in the reversal
frequency of the geomagnetic field could be explained by a
moderate change of the model parameters with time.

B. Alternative model descriptions

We also tested to which degree the results depend on
the details of the model setup. Instead of a γ term in
Eq. (2) proportional to

∑
(� · Si)2, we have considered a term

proportional to
∑ |� · Si |. Since all |� · Si | � 1 and, thus,∑ |� · Si | �

∑
(� · Si)2, very similar results were obtained

FIG. 6. Examples of a true reversal (top panel), an aborted reversal (middle panel), and two excursions (bottom panel).
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FIG. 7. The mean time between reversals depending on the
number of spins N . The symbol for the standard model of Sec. III is
plotted larger. The values of all other parameters are as in our standard
model.

for somewhat smaller (absolute) values of γ . For a γ term
proportional to

∑
(� · Si), no reversals were observed.

Furthermore, instead of an additive forcing with Gaussian
noise, described by the last term in Eq. (3), we also investigated
white noise, which only results in somewhat less frequent
reversals. Using multiplicative forcing proportional to cos θi

leads to much fewer reversals. Multiplicative forcing propor-
tional to mod(θi,2π ) yields random oscillations about 0 and,
thus, not a very Earth-like reversal behavior.

As an alternative to the local interaction with neighboring
spins only, described by the λ term in Eq. (2), we also

considered a global or “mean-field” interaction with all other
spins, described by (2λ/N )

∑N
i<j (Si · Sj ). A normalization

factor of 2/N is included in order to compare with the standard
interaction with just the adjacent neighbors. The mean-field
model results in less frequent reversals, but shows otherwise
qualitatively similar behavior.

It is interesting to note that in globally coupled models a
qualitatively similar behavior to the domino model described
above is also found even without noise and without friction.
The resulting system is conservative and only two parameters,
γ and λ, are left. We study this system in detail in another
paper [33].

V. COMPARISON WITH NUMERICAL DYNAMO
SIMULATIONS

A direct comparison with numerical dynamo simulations is
difficult. In our simplified spin model the dynamic equations
only concern the relative angles of the spins to the rotation axis
while a typical numerical dynamo deals with magnetic field,
velocity, pressure, and temperature. Based on the close analysis
of numerical simulations [4,5,13,17,20,34–40], see Fig. 9 as
an example, we may nevertheless build some analogies, in
particular concerning the reversal behavior.

Convection in fast rotating bodies like planetary liquid
interiors organizes itself in the form of convective columns.
They encircle the inner core tangent cylinder and are aligned
in the z direction parallel to the rotation axis. The flow
becomes quasi-two-dimensional (geostrophic), minimizing
any variation in z direction according to the Taylor-Proudman

γ

κ ∋

λ

FIG. 8. The mean time between reversals depending on (a) γ , (b) λ, (c) κ , and (d) ε. The symbol for the standard model of Sec. III is
plotted larger. All other parameters are as in our standard model.

012108-6



DOMINO MODEL FOR GEOMAGNETIC FIELD REVERSALS PHYSICAL REVIEW E 87, 012108 (2013)

 

-45

0

45

T
ilt

 [d
eg

]

Time [Myr]
0 5 10 15 20 25

FIG. 9. (Color online) Dipole tilt angle in a MHD dynamo simulation with Ekman number E = 2 · 10−2, Rayleigh number Ra = 300,
Prandtl number P = 1, and magnetic Prandtl number Pm = 10 (adapted from Ref. [20]).

theorem. Cyclonic and anticyclonic columns, rotating faster
or slower than the planet, respectively, alternate in azimuthal
direction [7]. In strongly driven dynamos, the number of
columns increases. In addition to this primary rotation, there
is a secondary flow along the axis of the individual columns,
toward the equator in cyclonic and away from the equator
in anticyclonic columns. Primary and secondary components
taken together determine the helicity U · (∇ × U), where U
is the velocity field. For weakly driven convection (i.e., low
Rayleigh number) the columns described above dominate the
flow and have helicity of one sign in the northern and of
the opposite sign in the southern hemisphere. The helicity is
known to play a crucial role for the dynamo process. The
so-called α2-dynamo mechanism, described by Kageyama

and Sato [41] and Olson et al. [8], can be thought of as
a process where the helicity associated to each convective
column produces its own magnetic field. The alignment with
the rotation axis and the organized helicity guarantees that
the sum of these individual contributions adds up to form the
dominant axial dipole field. The dynamo equation describing
magnetic field generation can, in principle, produce field of
either polarity. This symmetry is broken, however, by the
presence of a dominant dipolar background field. Only flows
with the opposite helicity in one hemisphere can weaken the
prevailing magnetic field and lead to reversals.

In order to better characterize the dynamo process in
numerical simulations, Aubert et al. [13] have introduced the
terms magnetic cyclone and magnetic anticyclone. Both are

FIG. 10. Geomagnetic reversal record from present to 166 Myr BP. The record comprises 332 reversals. A magnetization of +1 is assigned
for chrons with normal polarity and of −1 for chrons with reversed polarity.
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directly related to the cyclonic and anticyclonic convective
columns. A reversal is initiated when another magnetic
structure appears that Aubert et al. [13] call “magnetic
upwelling.” These features are related to radial flow upwellings
and can produce inverse magnetic field. While they seem
to be a common feature at strong convective driving (i.e.,
large Rayleigh numbers) they only succeed to trigger a
reversal when they are fierce enough to also affect the
field produced by the neighboring magnetic cyclones and
anticyclones, practically annihilating the prevailing magnetic
field. Alternatively, several upwellings can team up to do the
job. Once the background field is weak enough, convective
columns are free to produce inverse magnetic field, tilting the
“local dipole” field over and thereby convincing neighboring
columns to follow. The reversal ends once columns producing
inverse field dominate. Conceptually, the magnetic upwellings
can be understood as columns with the “wrong” helicity.

The potential energy P (t) of Eq. (2) models two effects.
Effect one, scaled with γ , is the alignment of the convective
columns producing field of either polarity with respect to the
rotation axis. Effect two, scaled by λ, models the fact that
the polarity that a convective structure produces is strongly
influenced by the neighboring field. The second term in the
potential energy also models the effect that a tilted spin can
convince its neighbors to follow. In the interpretation by Aubert

et al. [13], that would happen once a magnetic upwelling is
strong enough. Without either of these effects, no dominant
polarity or stable dipole epoch can emerge.

As the alignment of the spins with the rotation axis is
enforced by increasing the absolute value of γ , we expect
that the reversal rate goes down as seen in Fig. 8(a). There
should be a tradeoff between γ and the random forcing factor
ε. In MHD simulations, this is probably related to the fact
that the Rayleigh number, and thus the convective forcing, has
to be increased to compensate a rise in rotation rate  (i.e.,
decreasing Ekman number E) [11].

The diffusive term, scaled with κ in the Langevin Eq. (3),
represents the fact that a magnetic field needs time to be
generated against magnetic diffusion. Finally, the random
forcing term, scaled with ε in Eq. (3), encodes the flow
fluctuations that seem to trigger reversals in the simulations,
for example, the appearance of strong magnetic upwellings.
In kinematic dynamo models, this would be described by
stochastic α fluctuations [e.g., [24].

If the friction time scale (proportional to κ) becomes shorter
than the typical flow time scale (proportional to ε), polarity
reversals are suppressed consistently with the behavior of the
spin model [see Fig. 8(c)]. In the numerical simulations, this
is connected to the fact that the Rayleigh number has to be
significantly larger than the value at which dynamo action

FIG. 11. (a) Log-log plot of the number of reversals as a function of times between reversals of the geomagnetic reversal record shown in
Fig. 10. (b) Normalized distribution of the times between reversals for short duration chrons of less than 1 Myr. These make up 298 of the
332 reversals. The bin size here is four times the interval size. The dashed line is the expected probability density function in the case of a
Poissonian process with a mean polarity residence time of 300 kyr. (c) Power spectrum of the geomagnetic reversal record.
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starts. Increasing ε increases the number of reversals as shown
in Fig. 8(d). From numerical simulations [16], we know that a
stronger convective driving (i.e., larger Rayleigh number) not
only leads to more complex behavior in time and space but
indeed also to more frequent reversals.

The number of spins is an additional parameter explored
here. In the MHD simulations this is not a free parameter, but
the number of columns is known to increase with increasing
 (i.e., with decreasing E). Since the numerics then become
increasingly difficult, the effect on the reversal rate has not
really been explored so far. Statistically meaningful results
only exist for relatively small rotation rates (large E) [20].

In conclusion, though the spin model is only a rough
parametrization of the reversal dynamics in a full 3D dynamo
simulation, it nevertheless seems to capture the main effects.

VI. COMPARISON WITH GEOMAGNETIC DATA

We use the geomagnetic polarity time scale of Cande and
Kent [42,43] and Ogg [44], which covers the past 166 Myr
and comprises 332 reversals. Assigning a magnetization of +1
for chrons of normal polarity and −1 for chrons of reversed
polarity we derive Fig. 10, which is an analog to Fig. 2.
Reversals occurred at irregular intervals of 105 to 107 yr.
The mean time between reversals is approximately 300 kyr,
whereas reversals are fast events lasting only a few kyr. The
reversal frequency has considerably decreased toward and
increased away from the Cretaceous superchron, which lasted
from 118 to 83 Myr BP [15].

The potential nonstationarity of the geomagnetic reversal
record is not present in the domino model of Sec. III but
could be easily accounted for by a gradual change of the
model parameters with time (Sec. IV). This may present some
difficulties for the direct comparison of the statistical analysis.
The cumulative distribution of polarity chrons roughly follows
a power law with an exponent of −1.5 [Fig. 11(a)]. Polarity
intervals of a duration shorter than 1 Myr, which make up
the vast majority of all intervals, follow an exponential or
Poissonian distribution with a mean of 300 kyr [Fig. 11(b)].
Ryan and Sarson [19] find that the full set of polarity intervals
is better fitted by lognormal and loglogistic distributions
rather than Poisson and gamma distributions [15]. The power
spectrum of the geomagnetic record follows power laws with
an exponent of about −0.6 for chrons longer than about 3 Myr
and an exponent of about −1.9 for chrons of shorter duration
[Fig. 11(c)].

As a measure of the short-term variability of the geomag-
netic field at times between reversals, we analyze the virtual
axial dipole moment (VADM) of the SINT-2000 data set
[Fig. 12(a)] [45]. The power spectrum of these fluctuations
with a characteristic power index of −3 is displayed in
Fig. 12(b), while the distribution of the VADM is given in
Fig. 12(c). For a comparison of the distribution derived from
the shorter SINT-800 data set of Guyodo and Valet [46], see
Hoyng et al. [47].

When comparing the geomagnetic data with the behavior
of our reference model illustrated in Figs. 3 and 4, striking
similarities become apparent. The fits to the chron durations
suggest similar power law exponents of approximately −1.5

FIG. 12. (a) Variability of the virtual axial dipole moment (VADM) during the past 2 Myr, the SINT-2000 data set. The absolute values of
the VADM are given, disregarding the five reversals during this period. (b) Power spectrum of the VADM time series. (c) Distribution of the
VADM.
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for the paleomagnetic sequence and for our simple model.
In the latter, we have disregarded the short chrons, which
seem to represent brief statistical ventures into the other
polarity because they follow a different behavior. These may
be identified with paleomagnetic excursions.

The power spectrum of the geomagnetic reversal record
[Fig. 11(c)] only refers to polarity epochs and, therefore, does
not contain the high-frequency contributions in our model
[Fig. 3(c)]. The low-frequency range can be interpreted as the
background variation in the reversal frequency. This leaves
us with comparing the midfrequency spectrum with a slope
of −1.9 for the paleomagnetic data and −1.7 for our model.
The high frequency part of the model can be compared with
the SINT data analysis, which yield a slope of −3 compared
to −6 in the model. Not surprisingly, this discrepancy
suggests that our model does a good job in replicating the
statistics of the reversals, but not in the details of the secular
variation. A detailed discussion of the power spectrum of
reversals as well as intensities is presented in Constable and
Johnson [48].

VII. DISCUSSION AND CONCLUSIONS

Our simple domino model of interacting magnetic spins
reproduces the qualitative features of geomagnetic polarity
reversals remarkably well. The orientation of the aggregate
of all spins is most of the time nearly aligned or antialigned
and deviates only slightly from the rotational axis. Once in
a while, at sporadic times, it starts flipping to ultimately
change the orientation by almost 180 degrees or to move
back to the original direction. The model thus mimics sporadic
reversals of polarity, excursions, and secular variation of the
geomagnetic dipole field. The power spectrum derived from
the paleomagnetic reversal records as well as the distribution
of the virtual axial dipole moment are qualitatively well

represented in the model. Furthermore, the statistics of the
times between reversals is similar in the model and in the case
of the Earth’s magnetic field.

Our model provides a convincing statistical representation
of the geomagnetic field reversals process. One should be
careful, however, when interpreting the model properties in
terms of magnetohydrodynamics. Secular variation, which
is mainly determined by the details of the convective flow
dynamics, is certainly not captured correctly. The view that
the convective columns to a certain degree represent building
blocks of the full dynamo process seems to be strengthened
by our results. A stable polarity can only be established when
the majority of these entities cooperate and produce fields
of the same polarity. Random forcing counteracts this and
may sometimes be violent enough to cause a spin to flip
significantly and leave the team. This may cause its neighbors
to follow and ultimately lead to a global reversal. The magnetic
upwellings identified in full 3D dynamo simulations by Aubert
et al. [13] could be these events. When these upwellings last
long enough or produce enough inverse field, they disrupt the
normal dynamo process. The statistics of the complex interplay
of many agents seems to be nicely describable by our domino
model of a Vaks-Larkin-type set of interacting magnetic spins.
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