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Phase diagram structures in a periodic one-dimensional exclusion process
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This paper studies a periodic one-dimensional exclusion process composed of a driven part and a biased
diffusive part in a mesoscopic limit. It is shown that, depending on the biased diffusion parameter δ, rich phase
diagram structures appear in which diverse phases have been exhibited and the density profile in the diffusive
part is qualitatively different. This is because the domain wall is behaving differently. Our analytical results are
in good agreement with Monte Carlo simulations.
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I. INTRODUCTION

In past years, driven diffusive systems have attracted the
interest of many researchers because of the systems’ critical
role in understanding various nonequilibrium phenomena in
chemistry, physics, and biology [1–8]. In particular, in the
steady state, driven diffusive systems exhibit nonvanishing
current under periodic boundary conditions, and boundary
induced phase transition under open boundary conditions,
which have not been observed in the counterpart of equilibrium
systems [9–18].

However, the nature of these phenomena depends on
whether the system is diffusive or is driven due to the presence
of an external field (or self-driven [19,20] due to an internal
self-produced driving force). Motivated by this fact, Hinsch
and Frey [21,22] presented a model that combines the sym-
metric and the totally asymmetric simple exclusion process
(SEP [23–26] and TASEP [1–7], respectively), which are two
paradigms for diffusive and driven transport in one dimension.
The model might be used to describe traffic of molecular
motors in closed compartments and colloidal motion in optical
traps. It is shown that in a mesoscopic limit where both dy-
namics compete, bulk-driven phase transitions have been iden-
tified. Inspired by the work of Hinsch and Frey, Shi et al. [27]
studied a periodic driven diffusive system, which separates
into two equal-sized parts with different values of hopping
rates. Competition of the two different driven parts leads to
various bulk-driven phase transitions, including shock and
antishock. More interestingly, for the symmetric scenario, one
can observe shock and antishock simultaneously in the system.

This paper generalizes the work of Hinsch and Frey to study
the effect of biased diffusion in the diffusive part, which is in-
spired by the fact that molecular motors perform a biased diffu-
sion [28]. It is shown that the phase diagram structure becomes
much richer and the density profile in the diffusive part qual-
itatively changes due to the introduction of biased diffusion.

II. MODEL

The sketch of the model is shown in Fig. 1. We study
a ring, which separates into two equal-sized parts with size
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N . In the upper biased diffusive part, a particle could hop
either toward the left with rate D1 = qN + δ or hop toward
the right with rate D2 = qN − δ. As pointed out by Hinsch
and Frey [10,21], this scaling can be understood as a time
scale separation and ensures competitive behavior between
the system’s constituents. In the absence of the scaling, the
model becomes straightforward to be understood [27]. The
lower active part is a TASEP, in which particles hop forward
with rate 1. In the special case δ = 0, the model reduces to the
one studied in Ref. [21].

III. RESULTS

Let us denote particle density np = Np/(2N ), where Np is
the particle number in the ring. Now we carry out analytical
investigations of the model. We denote the system flow rate as
J , and the mean field equation reads

J = D1ρi(1 − ρi+1) − D2ρi+1(1 − ρi) (1)

in the diffusive part. Taylor expansion over i yields

J = D1ρi

(
1 − ρi − dρi

dx
�x

)
− D2

(
ρi + dρi

dx
�x

)
(1 − ρi).

(2)

Substituting D1 = qN + δ and D2 = qN − δ into Eq. (2),
omitting the subscript i, and replacing �x by 1/N , one has

J = 2δρ(1 − ρ) − q
dρ

dx
+ δ(1 − 2ρ)

dρ

dx

1

N
. (3)

In the limit N → ∞, the last term on the right hand side could
be neglected; thus,

dρ

J − 2δρ(1 − ρ)
= −dx

q
. (4)

We denote the density of the first and the last sites of the
diffusive part as ρ0 and ρ1, respectively. Integrating Eq. (4),
one has ∫ ρ1

ρ0

dρ

J − 2δρ(1 − ρ)
=

∫ 1

0
−dx

q
. (5)
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FIG. 1. The sketch of the model.

A. δ < 0.5

We first consider the situation δ < 0.5, in which the low
density–high density (LD-HD) region separated by a shock
could exist.

LD-HD region. As argued in Ref. [21], in the LD-HD
region,1 ρ1 → 0 in the limit N → ∞. ρ0 is equal to the density
in the HD part in the driven part, which means that ρ0 is the
larger solution of ρ0(1 − ρ0) = J .

Now we consider the left hand side of Eq. (5). Two cases
should be classified as follows. As shown in the phase diagram
(Fig. 2), in the LD-HD region, δ is always smaller than 2J .

Case (i): 0 < δ < 2J . In this case, Eq. (5) becomes⎧⎨
⎩

arctan
[√

δ(2ρ−1)√
2J−δ

]
√

2Jδ − δ2

⎫⎬
⎭

∣∣∣∣∣∣
0

ρ0

= − 1

q
. (6)

Substituting ρ0 = 1+√
1−4J
2 into this equation, J could be

solved and ρ0 could be obtained accordingly. Thus, the density
profile in the diffusive part could be calculated by∫ ρ(x)

ρ0

dρ

J − 2δρ(1 − ρ)
=

∫ x

0
−dx

q
, (7)

which yields

ρ(x) =
1 +

√
2J−δ

δ
tan

(
A −

√
2Jδ−δ2

q
x
)

2
(8)

with A = arctan[
√

δ(2ρ0−1)√
2J−δ

]. The average density in the biased
diffusive part, denoted as ρd , thus could be calculated by

ρd =
∫ 1

0
ρ(x)dx = 1

2
+ q

2δ
ln

[cos
(√

2Jδ−δ2

q
− A

)
cos A

]
. (9)

Case (ii): δ < 0. Equation (5) becomes[
1√

1 − 2J/δ
ln

∣∣∣∣∣ρ − 1+√
1−2J/δ

2

ρ − 1−√
1−2J/δ

2

∣∣∣∣∣
]∣∣∣∣∣

0

ρ0

= −2δ

q
. (10)

Substituting ρ0 = 1+√
1−4J
2 into this equation, J as well as ρ0

could be solved. In this case, Eq. (7) yields

ln

∣∣∣∣∣ρ − 1+√
1−2J/δ

2

ρ − 1−√
1−2J/δ

2

∣∣∣∣∣ = ln

∣∣∣∣∣ρ0 − 1+√
1−2J/δ

2

ρ0 − 1−√
1−2J/δ

2

∣∣∣∣∣
− 2δ

q
x
√

1 − 2J/δ. (11)

1Note that if we mention the X region (the LD-HD region), it means
that the driven part is in phase X (LD-HD). If we mention the X-Y
region (the LD-HD-Y region), it means that the driven part is in phase
X (LD-HD) and the diffusive part is in phase Y .

Since 1+√
1−2J/δ

2 > 1 and 1−√
1−2J/δ

2 < 0 when δ < 0, Eq. (11)
leads to

ρ(x) =
1+√

1−2J/δ

2 + B
1−√

1−2J/δ

2 exp
(− 2δ

q
x
√

1 − 2J/δ
)

B exp
(− 2δ

q
x
√

1 − 2J/δ
) + 1

(12)

with B = −ρ0+ 1+√
1−2J/δ

2

ρ0− 1−√
1−2J/δ

2

. Thus,

ρd = 1

2

(
1 + 1√

1 − 2J/δ

)
q

2δ

× ln

[
B + exp

(
2δ
q

√
1 − 2J/δ

)
B + 1

]

+1

2

(
1 − 1√

1 − 2J/δ

)
q

2δ

× ln

[
B exp

(− 2δ
q

√
1 − 2J/δ

) + 1

B + 1

]
. (13)

In both cases, the two boundaries of the LD-HD region are
determined by np = (ρd + ρ0)/2 and np = (ρd + 1 − ρ0)/2,
respectively.

Maximum current (MC) region. In the MC region, the
current is J = 0.25. Therefore, when 0 < δ < 2J and δ < 0,
one could obtain ρd from Eqs. (9) and (13), respectively.
Note that ρd is function of ρ0, and ρ0 is unknown here. Due
to particle conservation, ρd = 2np − 0.5. Thus, ρ0 could be
solved. Then, one could obtain ρ1 via Eq. (5). The boundary
between the MC region and the LD region is determined by
ρ0 = 0.5 and the boundary between the MC region and the
HD region is determined by ρ1 = 0.

HD region. In the HD region, the current is J = ρdr (1 −
ρdr ). Here ρdr > 0.5 is the bulk density in the driven part.
Moreover, ρ0 is also equal to ρdr .

(a) In the two cases 0 < δ < 2J and δ < 0, one could obtain
ρ(x) and accordingly ρd as before. Note that ρd is a function
of ρdr . Since ρd = 2np − ρdr , ρdr could be solved.

(b) In the case δ > 2J , as demonstrated below, ρ(x) is
always larger than 1+√

1−2J/δ

2 in the diffusive part. Thus, the
density profile could be obtained,

ρ(x) = 1 + √
1 − 2J/δ

2

[
1 − CD exp

(− 2δ
q
x
√

1 − 2J/δ
)

1 − C exp
(− 2δ

q
x
√

1 − 2J/δ
)

]
,

(14)

with C = ρdr− 1+√
1−2J/δ

2

ρdr− 1−√
1−2J/δ

2

and D = 1−√
1−2J/δ

1+√
1−2J/δ

. Obviously ρ(x) is

always larger than 1+√
1−2J/δ

2 , because 0 < C < 1 and 0 <

D < 1 (note that ρdr = 1+√
1−4J
2 and δ < 0.5). Thus, ρd =

q

2δ
ln[C−exp(E)

C−1 ] −
√

1−2J/δ

2 + 1
2 , with E = 2δ

q

√
1 − 2J/δ.

(c) In the case δ = 2J , the integration∫
dρ

J − 2δρ(1 − ρ)
= 1

2δ

∫
dρ

(ρ − 1/2)2
= − 1

2δ(ρ − 1/2)
.

(15)

As demonstrated below, ρ(x) is always larger than 1/2 in the
diffusive part. Therefore, the density profile could be obtained
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FIG. 2. (Color online) Analytical results (black lines) and Monte Carlo simulation results (red squares) of phase diagram at different values
of δ. From (a) to (h), δ = 10, 1, 0.5, 0.48, 0.3, 0, −1, −20. In (d) and (e), lines LD-Pow and HD-Pow correspond to δ = 2J . Between the two
lines, δ < 2J , and beyond the two lines, δ > 2J . The inset in (a)shows the details for the MC-Exp1 phase. Note that the MC-Exp1 phase is so
narrow that it cannot be distinguished from the simulations. Simulation size is N = 500.
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as follows:

ρ(x) = 1
2δ
q
x + 1

ρdr−1/2

+ 1

2
. (16)

Obviously ρ(x) is always larger than 1/2. Thus, ρd = q

2δ

ln[ 2δ
q

(ρdr − 1
2 ) + 1] + 1

2 . The curve of δ = 2J is determined
by

ρd + ρdr = 2np. (17)

LD region. In the LD region, the current is still J =
ρdr (1 − ρdr ). Here ρdr < 0.5. Since ρ1 = 0 in the LD region,
the density profile in the diffusive part could be obtained:∫ 0

ρ(x)

dρ

J − 2δρ(1 − ρ)
=

∫ 1

x

−dx

q
. (18)

(a) In the two cases 0 < δ < 2J and δ < 0, together with
ρd = 2np − ρdr , ρdr could be solved.

(b) In the case δ > 2J , ρ(x) is always smaller than
1−√

1−2J/δ

2 in the diffusive part. Therefore, the density profile
could be obtained:

ρ(x) = 1 − √
1 − 2J/δ

2

{
exp

[
2δ
q

(1 − x)
√

1 − 2J/δ
] − 1

exp
[

2δ
q

(1 − x)
√

1 − 2J/δ
] − D

}
.

(19)

Thus,

ρd = 1 − √
1 − 2J/δ

2

{
1 +

(1 − D) ln
[ (1−D) exp(E)

exp(E)−D

]
DE

}
. (20)

(c) In the case δ = 2J , ρ(x) is always smaller than 1/2 in
the diffusive part. Therefore, the density profile is

ρ(x) = 1

2

[
1 − 1

δ
q

(1 − x) + 1

]
(21)

and ρd = 1
2 − q

2δ
ln(1 + δ

q
). The curve of δ = 2J in the LD

region is still determined by Eq. (17).
Figures 2(d)–2(h) show the phase diagram at different

values of δ < 0.5. When 0 < δ < 0.5, there are eight phases
[Figs. 2(d) and 2(e)]. Note that here X-Pow corresponds to the
boundary separating X-Exp and X-Tan. Here “Tan” (“Exp”,
“Pow”) means that the density profile in the diffusive part
follows a tangent-related (an exponential-related, a power-
law-related) function. Phases LD-Exp and HD-Exp shrink,
and phases X-Tan expand with the decrease of δ. When δ = 0,
phases X-Tan transit into phase X-Lin [Fig. 2(f)] and other
phases disappear. Here “Lin” means linear density profile in
the diffusive part. When δ becomes negative, phases X-Lin
transit into phases X-Exp. With the further decrease of δ,
phase LD-HD-Exp expands and the other three phases shrink
[Figs. 2(g) and 2(h)].

B. δ = 0.5

In the range 0 < δ < 0.5, phases LD-HD-Tan, LD-Tan,
and HD-Tan shrink with the increase of δ. The boundary
between MC-Tan and HD-Tan becomes more and more
straight [Figs. 2(d) and 2(e)]. When δ = 0.5, the three phases

LD-HD-Tan, LD-Tan, and HD-Tan disappear, the phase LD-
Exp remains, the phase MC-Tan transits into MC-Pow, and the
phase HD-Exp transits into HD-HD [Fig. 2(c)].

Now we analyze the three phases MC-Pow, LD-Exp, and
HD-HD. In the phase MC-Pow, with J = 0.25 and δ = 0.5,
the density profile in the diffusive part is

∫ ρ(x)

ρ0

dρ

0.25 − ρ(1 − ρ)
=

∫ x

0
−dx

q
, (22)

which leads to

ρ (x) = 0.5 + (ρ0 − 0.5) q

(ρ0 − 0.5) x + q
(23)

since ρ(x) is always smaller than 1/2 in the phase. Thus,

ρd = 0.5 + q ln

(
ρ0 − 0.5 + q

q
.

)
(24)

Together with ρd + 0.5 = 2np, ρ0 as well as ρ1 could be
solved. The two boundaries of the phase are determined by
ρ1 = 0 and ρ0 → 0.5. Note that ρ = 0.5 is a divergence point
in Eq. (22). When ρ0 = 0.5, one knows that the density profile
should be flat [ρ(x) = 0.5] from Eq. (3), which corresponds
to np = 0.5 [see, e.g., δ = 0.5 in Fig. 3(a) and np = 0.5 in
Fig. 4(b)].

In the HD-HD phase, with δ = 0.5, the density profile in
the diffusive part is

∫ ρ(x)

ρdr

dρ

J − ρ (1 − ρ)
=

∫ x

0
−dx

q
. (25)

However, since ρdr = 1+√
1−4J
2 is the divergence point in this

equation, Eq. (25) is invalid. In this case, one knows that the
density profile should be flat [ρ(x) = 1+√

1−4J
2 ] from Eq. (3),

which is equal to the bulk density in the drive part [see, e.g.,
np = 0.6 in Fig. 4(b)].

Finally, in the LD-Exp phase, with δ = 0.5, the density
profile in the diffusive part is

∫ 0

ρ(x)

dρ

J − ρ(1 − ρ)
=

∫ 1

x

−dx

q
, (26)

which leads to

ρ (x) = 1 − √
1 − 4J

2

{
exp[(1 − x) E] − 1

exp[(1 − x) E] − D

}
(27)

since ρ(x) is always smaller than 1−√
1−4J
2 in the phase.

C. δ > 0.5

When δ > 0.5, four phases exist in the phase diagram as
can be seen from Figs. 2(a) and 2(b). In particular, there are
two MC regions. In the MC-Exp1 (MC-Exp2) phase, ρ(x) is
monotonically decreasing (increasing) with x in the diffusive
part. With the increase of δ, phase MC-Exp2 expands and
phase MC-Exp1 shrinks.
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FIG. 3. (Color online) Typical
density profiles: (a–d) the diffusive
part, and the corresponding driven
part is in MC, LD, HD, and MC,
respectively (not shown); (e, g) the
diffusive part; and (f, h) the cor-
responding driven part. The solid
lines are simulation results and the
dashed lines are analytical ones. The
parameters are (a) np = 0.5, q =
0.1; (b) np = 0.1, q = 0.5; (c) np =
0.9, q = 0.5; (d) np = 0.4, q = 1.0;
(e, f) np = 0.5, q = 0.1; (g, h) δ =
−20, np = 0.5. Simulation size is
N = 500.

In the two phases, with J = 0.25, the density profile in the
diffusive part is∫ ρ(x)

ρ0

dρ

0.25 − 2δρ(1 − ρ)
=

∫ x

0
−dx

q
. (28)

In the MC-Exp1 phase, ρ(x) is always smaller than
1−√

1−1/2δ

2 ; thus,

ρ (x) = 1

2
− F

1 + 2[
F+(0.5−ρ0)
F−(0.5−ρ0) exp

(
− 4δFx

q

)]
−1

, (29)

with F =
√

1−1/2δ

2 , is monotonically decreasing.

In the MC-Exp2 phase, ρ(x) is always larger than 1−√
1−1/2δ

2

and smaller than 1+√
1−1/2δ

2 ; thus,

ρ (x) = 1

2
− F

1 + 2[
F+(0.5−ρ0)
F−(0.5−ρ0) exp

(
− 4δFx

q

)]
−1

(30)

is monotonically increasing.
On the boundary separating the two MC phases, the density

profile is flat [ρ(x) = 1−√
1−1/2δ

2 ] in the diffusive part [see, e.g.,
np = 0.33 in Fig. 4(a)].
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FIG. 4. (Color online) Typical density profiles: (a, b) the diffusive part. (a) The corresponding driven part is in HD for np = 0.6 and in
MC for np = 0.5, 0.33, and 0.3 (not shown). (b) The corresponding driven part is in HD for np = 0.6 and in MC for np = 0.45 (not shown).
(c) The corresponding driven part is in MC for np = 0.5. The solid lines are simulation results and the dashed lines are analytical ones. The
parameters are (a) δ = 1, q = 0.9; (b, c) δ = 0.5, q = 0.5. Simulation size is N = 500.

In the HD-Exp phase, ρ(x) is always smaller than 1+√
1−2J/δ

2

and larger than 1−√
1−2J/δ

2 , and it is also determined by Eq. (14).
However, since C < 0, the density profile is monotonically
increasing.

In the LD-Exp phase, ρ(x) is always smaller than
1−√

1−2J/δ

2 , and it is also determined by Eq. (19).

D. Simulation results

Figures 3 and 4 show the typical density profiles; the
analytical results are in good agreement with simulation
ones. We would like to point out that when both δ and np

are very close to 0.5, the simulation results slightly deviate
from the analytical ones; see, e.g., the density profile of
np = 0.5 in Fig. 4(b). This is because the system size is finite.
As a result, the driven part has a non-negligible boundary
layer [see, e.g., the left boundary layer in Fig. 4(c), which
extends into the bulk] and thus its average density slightly
deviates from the analytical prediction. Consequently, the
density profile of the diffusive part slightly deviates from
the analytical result due to particle conservation. One expects
that with the increase of system size, the boundary layer is
gradually restricted in the very vicinity of the boundaries;
thus, the deviation will decrease and disappear asymptotically.
However, as pointed out in Ref. [22], correct Monte Carlo
results may not be retrieved in the large-size limit if the
random-number generator produces a pseudorandom number
series (pseudo-RNS) instead of a true RNS.

When δ < 0, |δ| is large and q is small [see Fig. 3(g)], the
flow rate in the system approaches zero, and the density profile
in the diffusive part forms an antishock. The densities upstream
and downstream of the antishock approximately equal 1 and 0,
respectively. However, the densities upstream and downstream
of the shock in the driven part approximately equal 0 and 1,
respectively [Fig. 3(h)].

On the other hand, when δ > 0 and |δ| is large, the flow
rate in the system also approaches zero, and the density profile
in the diffusive part forms a shock in the MC-Exp2 phase
[Fig. 3(a)]. The densities upstream and downstream of the
shock approximately equal 0 and 1, respectively. As a result,
the boundaries separating the LD and HD phase from the MC-
Exp2 phase gradually approach the straight line np = 0.25 and
np = 0.75, respectively [Fig. 2(a)]. Note that the MC-Exp1
phase is extremely small when δ is large.

The difference in density profile in the diffusive part
is because the domain wall is behaving differently. The
domain wall is the object that separates bulk domains of
different dynamic phases. It has been shown that properties
of asymmetric exclusion processes can be well described and
understood via random-walk dynamics of the domain wall
(see Refs. [6,29]). If the motion of the domain wall is biased
then one of the corresponding dynamic phases wins and it
occupies the whole system in the stationary-state limit. The
phase boundary corresponds to the situation when the motion
of the domain wall is unbiased. If the diffusion rate for the
domain in this case is independent of the position at large times
then a linear particle density profile is observed. However, in
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our system the entrance and exit rates to different parts of the
lattice are not independent, and it leads to position-dependent
diffusion of the domain wall. The domain wall moves in an
effective potential created by this coupling. When the potential
is flat, the domain wall diffuses equally in each direction and
we have a linear profile. All other cases (Exp, Tan, and Pow)
are the result of the bias in the motion of the domain wall.

IV. CONCLUSION

To summarize, this paper has investigated the effect of
biased diffusion in a mesoscopic ring composed of a driven part
and a diffusive part. The dependence of the phase diagram and
density profile on the biased diffusion parameter δ have been
studied. Analytical investigations have shown that the density
profile in the diffusive part could follow various functions

(exponential, tangent, power-law, or linear, because the domain
wall is behaving differently), be flat, or be in a shock or
antishock. Consequently, rich phase diagram structures have
been observed. Our analytical results are in good agreement
with Monte Carlo simulations.
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