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Comment on “Plasma oscillations and nonextensive statistics”
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The paper authored by Lima et al. [Phys. Rev. E 61, 3260 (2000)] has discussed the dispersion relation and
Landau damping of a Langmuir wave in the context of the nonextensive statistics proposed by Tsallis. However,
the results obtained in this paper are not appropriate. In this comment on the paper we shall derive the correct
analytic formulas for both the dispersion relation and Landau damping in the Tsallis formalism. We hope that
this comment will be useful in providing the correct results.
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I. INTRODUCTION

Over the last few years, it has been proven that systems
which present long-range interactions, long-time memory,
fractality of the corresponding space time, or intrinsic inhomo-
geneity are intractable within the conventional B-G statistics
[1,2]. So there has been an increasing focus on the new statis-
tical approach, i.e., nonextensive statistical mechanics (NSM),
in recent years. For q �= 1, it gives a power law distribution
and only when the parameter q → 1 Maxwellian distribution
is recovered [3]. NSM has been successfully applied to stellar
polytropes [4], two-dimensional (2D) Euler and drift turbu-
lence in a pure electron plasma column [5], as well as to the
peculiar velocity function of galaxy clusters [6]. In particular,
Liu et al. [7] showed a reasonable indication for the non-
Maxwellian velocity distribution from plasma experiments.

Dispersion relations are fundamental and important for
studying the wave in the plasma. According to the dispersion
relations, we can study the problem of instability, propagation,
refraction, and absorption of the plasma wave. While power
law tail distributions have often been discussed in plasma
physics cases such as the experimental results and Coulomb
Fokker Planck model analysis of Liu et al. [7], and while such
distributions are also a feature of Tsallis-type analysis, the
particular paper that has made this connection is that of Lima
et al. [8]. The paper authored by Lima et al. [8] studied the
dispersion relation of a Langmuir wave based on nonextensive
distribution; the results show that a nonextensive formalism
presents a good fit to the experimental data, while the standard
Maxwellian distribution provides only a crude description.
However, the results of this paper are fundamentally flawed
because they are obtained by using only a one-dimensional
(1D) equilibrium distribution, a distribution which should be
what is called in Tsallis theory the marginal distribution i.e., the
one obtained by integrating over the momenta perpendicular to
the direction of interest. If this one dimensionality implies that
this behavior does not apply in other directions, however, that
implies that the nonextensive distribution involves dynamics
only in this direction, a situation which is difficult to obtain
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in any physically realistic situation and certainly not in that of
Ref. [7]. In the experimental part of Ref. [7], the data referred
to in the isotropic three-dimensional (3D) non-Maxwellian
distribution function arises in the Coulomb Fokker Planck
equation because of the interplay between the energy deposi-
tion, which is 3D isotropic in velocity and mostly into the lower
energy electrons with higher Coulomb cross section, and the
Fokker Planck evolution is manifest in the distribution of this
change towards higher energy. The distribution of energy is
slower and slower and over a much longer range as the energy
increases. This is a typical Tsallis scenario as the scale length
increases and the dynamics become less and less localized. It
should be noted that these are not actual equilibria but a kind
of quasi-equilibria, between which thermodynamic transfer or
equilibration is far from evident. In any case it is clear that for
Ref. [7], since the deposition and transport mechanisms are
3D isotropic, so must the actual distribution be 3D isotropic.
In these circumstances the 1D marginal distribution should
be obtained by integration over the momenta perpendicular to
the chosen direction (i.e., that of a wave vector) as done in
this work. In this comment (really a correction) on the paper
by Lima et al. [8] we will rework the concept by beginning
with the appropriately 3D symmetric distribution projected
(integrated over py , pz) down to the correct 1D marginal
distribution result. From this we will obtain the resulting
correct analytic formulas for both the plasma wave dispersion
relation and Landau damping in detail according to the Tsallis
formalism, and for q �= 1 (at q = 1, both are Maxwellian) the
results will differ in important details. It is our hope that the
discussion here will be useful in the field of plasma physics.

The paper is organized as follows. In Sec. II we briefly
introduce the nonextensive distribution function. The
generalized dispersion relation and Landau damping for
Langmuir wave are obtained in Sec. III. Finally, the summary
is given in Sec. IV.

II. NONEXTENSIVE DISTRIBUTION FUNCTION

First, let us recall some basic facts about Tsallis statistics.
In Tsallis statistics, the entropy has the form [3] of

Sq = kB

1 − ∑
i p

q

i

q − 1
, (1)
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where kB is the Boltzmann constant, q is a parameter quan-
tifying the degree of nonextensivity, and pi is the probability
of the ith microstate. The B-G entropy is recovered in the
limit q → 1. The basic property of Tsallis entropy is the
nonadditivity or nonextensivity for q �= 1. For example, for
two systems A and B, the rule of composition [3] reads

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B). (2)

In the nonextensive description, the 3D equilibrium distri-
bution function can be written as [9]

fq (p) = Aq

[
1 − (q − 1)

p2

2m2v2
T

] 1
q−1

= Aq

[
1 + (1 − q)

p2

2m2v2
T

]− 1
1−q

, (3)

according to the normalizing condition∫
fq (p) dp

1

(2π )3 = n0, (4)

and the normalization constant reads

Aq = Lq

(
√

2π )3

(mvT )3
n0, (5)

in which

Lq =
�

(
1

1−q

)
(

1
1−q

)3/2
�

(
1

1−q
− 3

2

) ,
1

3
< q � 1 (6)

and

Lq = 3q − 1

2

(
1

q−1

)−3/2
�

(
1

q−1 + 3
2

)
�

(
1

q−1

) , q � 1, (7)

where p, vT = √
kBT /m, kB , T , m, and n0 denote, respec-

tively, the momentum of particles, thermal speed, Boltzmann
constant, temperature of particles, mass of particles, and
particle number density. As one may check, for q < 1/3,
the q distribution is unnormalizable. For 1/3 < q � 1, the
momentum of the particles can take any value. For q � 1,
the distribution function [Eq. (3)] exhibits a cutoff on the
maximum value allowed for the momentum of the particles,
which is given by

pmax =
√

2/(q − 1)mvT . (8)

We see that in the limit q → 1, pmax goes to infinity, and
Eq. (3) reduces to the Boltzmann distribution function

fq=1(p) = (
√

2π )3

(mvT )3 n0 exp

(
− p2

2m2v2
T

)
. (9)

In order to define the temperature of the system, which is
described by the nonextensive distribution, we will calculate
the average kinetic energy below. For 1/3 < q � 1,

〈Eq〉 =
〈

p2

2m

〉
=

∫
p2

2m
fq (p) dp

1

(2π )3

= Lq

(2π)3

(
√

2π )3

(mvT )3 n0,

∫ ∞

0

p2

2m

[
1 − (q − 1)

p2

2m2v2
T

] 1
q−1

4πp2 dp

= Lq√
2π

1

(mvT )3

n0

m

∫ ∞

0
p4

[
1 + 1 − q

2m2v2
T

p2

]− 1
1−q

dp

= 2

5q − 3

3

2
n0mv2

T = 2

5q − 3

3

2
n0kBT , (10)

where Eq. (10) has been calculated using the integral formula
[10, p. 325], that is,∫ ∞

0
xμ−1(1 + βxp)−νdx = 1

p
β

− μ

p B

(
μ

p
,ν − μ

p

)
(11)

with |arg β| < π,p > 0,0 < Reμ < pReν, q > 3/5 is re-
quired in Eq. (10) on the basis of Eq. (11). B is the β function,
and the relation of the β function and γ function is [10, p. 909]

B(x,y) = �(x)�(y)

�(x + y)
. (12)

For q � 1,

〈Eq〉 =
〈

p2

2m

〉
=

∫
p2

2m
fq(p)dp

1

(2π )3
= Lq

(2π )3

(
√

2π )3

(mvT )3 n0,

∫ pmax

0

p2

2m

[
1 − (q − 1)

p2

2m2v2
T

] 1
q−1

4πp2 dp

= Lq√
2π

1

(mvT )3

n0

m

∫ pmax

0
p4

[
1 − (q − 1)

p2

2m2v2
T

] 1
q−1

dp

= Lqn0√
π

2mv2
T

(q − 1)5/2

∫ 1

0
t3/2 (1 − t)

1
q−1 dt

= 2

5q − 3

3

2
n0mv2

T = 2

5q − 3

3

2
n0kBT , (13)

where Eq. (13) has been calculated using the transformation
t = (q − 1) p2/2m2v2

T and integral formula [10, p. 324], that
is, ∫ 1

0
xμ−1(1 − xλ)ν−1dx = 1

λ
B

(
μ

λ
,ν

)
(14)

with Reμ > 0, Reν > 0,λ > 0. So the average kinetic energy
can be expressed as

〈Eq〉 =
〈

p2

2m

〉
= 2

5q − 3

3

2
n0kBT = 3

2
n0kBTq, (15)

where Tq = 2T /(5q − 3) is the physical temperature of
the nonextensive system. We see that in the limit q → 1,
Tq=1 = T and the average kinetic energy reduces to 〈Eq=1〉 =
3n0kBT /2, which is the standard result in B-G statistics.

III. THE GENERALIZED DISPERSION RELATION AND
LANDAU DAMPING

For the longitudinal wave propagating in an unmagnetized,
collisionless, isotropic plasma, the longitudinal dielectric
function of electron can be written as [11,12]

εl
k = 1 + 4πe2

k2

∫
1

ω − k · v + iδ

[
k · ∂fq (p)

∂p

]
dp

(2π )3
,

(16)
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where we consider the direction of wave vector k to be along the x axis, and Eq. (16) becomes

εl
k = 1 + 4πe2

k2

∫
dpx

2π

k ∂
∂px

ω − kvx + iδ

∫
fq (p)

dpy dpz

(2π )2 = 1 + 4πe2

k2

∫
k

ω − kvx + iδ

∂fq (px)

∂px

dpx

2π
, (17)

where e is the electron charge and iδ comes from Landau rules (δ → 0+) [12]. Note that fq (px) is the marginal distribution,
which is given by [see (29.9) and (29.10) of Ref. [12]]

fq (px) =
∫

fq (p)
dpy dpz

(2π )2 . (18)

Next, we will derive the expression of the marginal distribution in the nonextensive framework. Substituting Eq. (3) into
Eq. (18), for 3/5 < q � 1, we obtain

fq (px) = 4Lq

(mvT )3

n0√
2π

,

∫ ∞

0
dpz

∫ ∞

0

[
1 − (q − 1)

p2
x + p2

y + p2
z

2m2v2
T

] 1
q−1

dpy ; (19)

then the integral in Eq. (19) over py is

∫ ∞

0

[
1 − (q − 1)

p2
x + p2

y + p2
z

2m2v2
T

] 1
q−1

dpy =
∫ ∞

0

[
2m2v2

T + (1 − q)
(
p2

x + p2
z

)
2m2v2

T

+ (1 − q)

2m2v2
T

p2
y

]− 1
1−q

dpy

=
{

2m2v2
T + (1 − q)

(
p2

x + p2
z

)
2m2v2

T

}− 1
1−q

,

∫ ∞

0

{
1 + (1 − q)

2m2v2
T + (1 − q)

(
p2

x + p2
y

)p2
y

}− 1
1−q

dpy =
√

π

2

�
(

1
1−q

− 1
2

)(
1

1−q

)1/2

�
(

1
1−q

) (
2m2v2

T

) 1
1−q , (20)

{
2m2v2

T + (1 − q)
(
p2

x + p2
z

)}− 1
1−q

+ 1
2 ,

where Eq. (20) has been calculated using the integral formula (11), and substituting Eq. (20) into Eq. (19), according to the same
method, we can calculate the integral over pz. Finally Eq. (19) becomes

fq (px) = Lq

q

√
2πn0

mvT

[
1 − (q − 1)

p2
x

2m2v2
T

] 1
q−1 +1

. (21)

For q � 1, substituting Eq. (3) into Eq. (18), we obtain

fq (px) = 4Lq

(mvT )3

n0√
2π

,

∫ pz max

0
dpz

∫ py max

0

[
1 − (q − 1)

p2
x + p2

y + p2
z

2m2v2
T

] 1
q−1

dpy ; (22)

then the integral in Eq. (22) over py becomes

∫ py max

0

[
1 − (q − 1)

p2
x + p2

y + p2
z

2m2v2
T

] 1
q−1

dpy =
∫ py max

0

[
2m2v2

T − (q − 1)
(
p2

x + p2
z

)
2m2v2

T

− (q − 1)

2m2v2
T

p2
y

] 1
q−1

dpy

=
[

2m2v2
T − (q − 1)

(
p2

x + p2
z

)
2m2v2

T

] 1
q−1

,

∫ py max

0

[
1 − (q − 1)

2m2v2
T − (q − 1)

(
p2

x + p2
y

)p2
y

] 1
q−1

dpy =
[
2m2v2

T − (q − 1)
(
p2

x + p2
z

)] 1
q−1 + 1

2

2
√

q − 1
(
2m2v2

T

) 1
q−1

·

∫ 1

0
t−

1
2 (1 − t)

1
q−1 dt =

√
π

2

�
(

1
q−1

)
(q − 1)

3
2 �

(
1

q−1 + 3
2

) ,

[
2m2v2

T − (q − 1)
(
p2

x + p2
z

)] 1
q−1 + 1

2(
2m2v2

T

) 1
q−1

,

(23)
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where Eq. (23) has been calculated using the transformation
t = (q − 1)p2

y/[2m2v2
T − (q − 1)(p2

x + p2
y)] and integral for-

mula (14); then substituting Eq. (23) into Eq. (22), according
to the same method, we can calculate the integral over pz.
Finally Eq. (22) becomes

fq (px) = Lq

q

√
2πn0

mvT

[
1 − (q − 1)

p2
x

2m2v2
T

] 1
q−1 +1

. (24)

Obviously, the marginal distribution [Eqs. (21) and (24)]
is different from the 1D distribution in the context of
nonextensive statistics [9]

fq (px) = Bq

√
2πn0

mvT

[
1 − (q − 1)

p2
x

2m2v2
T

] 1
q−1

(25)

in which

Bq =
�

(
1

1−q

)
(

1
1−q

)1/2
�

(
1

1−q
− 1

2

) , −1 < q � 1, (26)

and

Bq = 1 + q

2

(
1

q−1

)−1/2
�

(
1

q−1 + 1
2

)
�

(
1

q−1

) , q � 1, (27)

unlike the classical B-G statistics. On physical grounds,
obviously, using the marginal distribution (18) to calculate
the permittivity [formula (17)] accords with the demands
of plasma physics and the results are valid; otherwise the
calculations will be problematic. It is the reason why the results
obtained by Lima et al. are not appropriate.

Substituting the marginal distribution Eqs. (21) and (24)
into the dielectric function Eq. (17), we obtain

εl
k = 1 + ω2

pe

k2v2
T

[
3q − 1

2
− Zq (x)

]
, (28)

where ωpe =
√

4πn0e2/m is the plasma frequency and x is
the dimensionless parameter, namely, x = ω/

√
2kvT . Zq (x)

is the generalized plasma dispersion function in the context of
Tsallis statistics,

Zq (x) = Lq

x√
π

∫
1

x − ξ + iδ
[1 − (q − 1)ξ 2]

1
q−1 dξ, (29)

where ξ = vx/
√

2vT ; in the limit q → 1, it is reduced to the
standard form in B-G statistics [11]

Zq=1(x) = x√
π

∫
1

x − ξ + iδ
exp(−ξ 2)dξ. (30)

Using the Plemelj formula [11],

1

z ± i0
= ℘

1

z
∓ iπδ(z), (31)

where ℘ denotes the principal value, then the generalized
plasma dispersion function [Eq. (29)] can be written as

Zq(x) = Lq

x√
π

℘

∫
1

x − ξ

[
1 − (q − 1) ξ 2

] 1
q−1 dξ

− iLq

√
πx[1 − (q − 1)x2]

1
q−1 . (32)

When ω 	 kvT , namely, x 	 1, the real part of Eq. (32)
becomes

Lq

x√
π

℘

∫
1

x − ξ
[1 − (q − 1) ξ 2]

1
q−1 dξ

= Lq√
π

℘

∫
[1 − (q − 1) ξ 2]

1
q−1

(
1 + ξ

x
+ ξ 2

x2
+ · · ·

)
dξ,

(33)

thus Eq. (32) can be expressed as

Zq(x) ≈ 3q − 1

2
+ 1

2x2
+ 2

5q − 3

3

4x4

− iLq

√
πx[1 − (q − 1)x2]

1
q−1 . (34)

When ω � kvT , namely, x � 1, introducing the transfor-
mation ξ = η + x, then the real part of Eq. (32) can be written
as

Lq

x√
π

℘

∫
1

x − ξ
[1 − (q − 1) ξ 2]

1
q−1 dξ,

= Lq

x√
π

℘

∫
[1 − (q − 1)(η2 + 2ηx + x2)]

1
q−1

dη

−η

≈ −Lq

x√
π

℘

∫
[1 − (q − 1)η2]

1
q−1

dη

η
= 0; (35)

then Eq. (32) can be expressed as

Zq (x) ≈ −iLq

√
πx[1 − (q − 1)x2]

1
q−1 , (36)

which can be used in investigating the low-frequency wave,
such as the ion acoustic waves. It should be noted that the
process is not pinpoint in Eq. (35); the real part should be
a very small quantity, which may be obtained by numerical
method. However, the small quantity can be neglected when
Eq. (32) is substituted into the dielectric function Eq. (28).

Substituting Eq. (34) into the dielectric function Eq. (28),
according to the longitudinal dispersion relation Reεl

k = 0,
thus the generalized dispersion relation of Langmuir wave is
obtained,

ω2 = ω2
pe + 2

5q − 3
3k2v2

T

= ω2
pe + 3k2v2

T q, (37)

where vT q = √
kBTq/m is the physical thermal speed and Tq

is the physical temperature defined in Sec. II. As expected, in
the limit q → 1, Eq. (37) reduces to

ω2 = ω2
pe + 3k2v2

T , (38)

being the standard result in B-G statistics [11]. Thus the
dispersion relation of a Langmuir wave obtained by Lima
et al. [8],

ω2 = ω2
pe + 2

3q − 1
3k2v2

T ,

is inappropriate. According to Fig. 1 in their paper, we can see
that the dispersion relation for a Tsallis formalism presents a
good fit to the experimental data of Ref. [7] when 0.7 < q <

0.85; obviously, it should be 0.82 < q < 0.91 based on the
correct result.
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Next we will derive the expression of Landau damping. The
Landau damping rate can be written as [11]

γ l
k = − Imεl

k

∂
∂ω

Reεl
k

∣∣∣∣
ω=ωl

; (39)

according to Eqs. (37), (28), and (34), we have that ω ≈ ωpe,
Reεl

k ≈ 1 − ω2
pe/ω

2, (∂/∂ω)Reεl
k = 2/ωpe, Imεl

k = Lq

√
π/2

(ωω2
pe)/(kvT )3 · [1 − (q − 1)ω2/(2k2v2

T )]1/(q−1). Combined
with Eq. (39), we obtain the generalized Landau damping
as

γ l
k = −Lq

√
π

8
ωpe

(
kd

k

)3

,

(40)[
1 − (q − 1)

(
k2
d

2k2
+ 3

5q − 3

)] 1
q−1

,

where kd = ωpe/vT is the electronic Debye wave number. In
the limit q → 1, Eq. (40) reduces to

γ l
k = −

√
π

8
ωpe

(
kd

k

)3

exp

(
− k2

d

2k2
− 3

2

)
, (41)

which is the classical Landau expression for the damping
decrement in the framework of B-G statistics [11].

IV. SUMMARY

In this comment, we have discussed the dispersion property
and Landau damping of a Langmuir wave in an unmagnetized,
collisionless, 3D isotropic plasma with the nonextensive
distribution in Tsallis statistics. The correct generalized dis-
persion relation and Landau damping are obtained. In the
limiting case (q → 1) the classical results based on the B-G
statistics are recovered. It is our hope that the discussion
here will serve as a useful introduction to the field of plasma
physics.
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