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Multiple scattering of electromagnetic waves by an array of parallel gyrotropic rods
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We study multiple scattering of electromagnetic waves by an array of parallel gyrotropic circular rods and show
that such an array can exhibit fairly unusual scattering properties and provide, under certain conditions, a giant
enhancement of the scattered field. Among the scattering patterns of such an array at its resonant frequencies, the
most interesting is the distribution of the total field in the form of a perfect self-similar structure of chessboard
type. The scattering characteristics of the array are found to be essentially determined by the resonant properties
of its gyrotropic elements and cannot be realized for arrays of nongyrotropic rods. It is expected that the results
obtained can lead to a wide variety of practical applications.
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Multiple scattering of electromagnetic waves by periodi-
cally spaced elements demonstrates many intriguing features
that are of considerable practical and scientific importance
[1–10]. Despite significant progress in the analysis of multiple
scattering by arrays of nongyrotropic elements [3,11,12],
recent results obtained for arrays of gyrotropic scatterers
[4–10] have shown a variety of new interesting properties
which cannot be observed for periodic structures consisting
of isotropic elements. In particular, the gyrotropy of elements
of photonic crystals can significantly affect the reflection
and transmission of electromagnetic waves incident on such
structures [5–8]. Nonreciprocal properties demonstrated by
gyrotropic photonic crystals [8,9] inspire many potential
applications including the existence of a one-way transmission
regime [9]. It is important that the properties of the scattering
elements in the array can easily be controlled if they consist
of resonant gyrotropic materials, the parameters of which
in some frequency ranges turn out to be very sensitive to
even slight variations in an external dc magnetic field. This
possibility opens up new promising prospects for controlling
the scattering characteristics of an array of such elements. In
many works on the subject, some simplifying assumptions are
used when describing material properties of the gyrotropic
elements constituting the array. These simplifications may
include, e.g., the replacement of the periodic structure by
a continuous medium with an effective permittivity and
permeability [6], the use of frequency-independent material
parameters of the scattering elements [5,9] or taking the
values of these parameters at certain fixed frequencies [8],
etc. It is evident that such assumptions do not make it
possible to analyze in sufficient detail the role of individual
resonances of the elements of the array in the formation of
its scattering pattern. Moreover, one can reasonably expect
that the joint contribution of the individual and collective
resonance scattering mechanisms to the diffracted field of
an array containing frequency-dependent resonant gyrotropic
elements should lead to some interesting phenomena, the
features of which are yet to be determined. In this work, the
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scattering of a normally incident plane electromagnetic wave
by a two-dimensional array consisting of parallel resonant
gyrotropic circular rods is considered with allowance for the
frequency dispersion of the rod material, and the effects related
to the interaction of the individual and collective resonances
of the array are revealed and discussed.

Consider an equidistant array of identical parallel rods of
radius a (see Fig. 1). The rods are embedded in a uniform
background medium and aligned with an external dc magnetic
field which is parallel to the z axis of a Cartesian coordinate
system (x,y,z). The axes of the rods lie in the xz plane
and are specified by the relations x = jL and y = 0, where
L > 2a and j = 0, ±1, ±2, . . .. The medium inside each rod
is described by the permittivity tensor ε̂ which is typical of a
magnetoplasma and has the following nonzero elements: ερρ =
εφφ = ε0ε, ερφ = −εφρ = −iε0g, and εzz = ε0η. Here, ε0 is
the permittivity of free space, ε = 1 − ω2

p/(ω2 − ω2
H

), g =
ω2

pωH/[(ω2 − ω2
H

)ω], and η = 1 − ω2
p/ω2, where ωp and ωH

are the plasma frequency and the gyrofrequency of electrons,
respectively, and ω is the angular frequency. The medium
outside the rods is isotropic and has the dielectric permittivity
εout = ε0ε̃. Note that the described scattering structure can be
realized using, e.g., a set of parallel plasma-filled discharge
tubes aligned with an external dc magnetic field, such as those
applied in rf plasma sources.

The incident wave is assumed to be a monochromatic plane
H wave whose magnetic field is polarized in the z direction.
We will not consider the incidence of an E wave because its
scattering is unaffected by the gyrotropic properties of the rods
and similar to that in the case of isotropic rods. The wave vector
k of the incident wave has the components kx = −k cos θ , ky =
−k sin θ , and kz = 0, where k = k0ε̃

1/2 is the wave number in
the surrounding medium (k0 is the wave number in free space)
and θ is the angle between the positive direction of the x axis
and the direction from which the incident wave arrives.

Omitting a time factor of exp(iωt), the total magnetic field
normalized to the incident-wave amplitude can be sought in
the form

Hz = e−ik·r +
∞∑

j=−∞

∞∑
m=−∞

Dj,mH (2)
m (kρj )e−imφj , (1)
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FIG. 1. (Color online) Geometry of the problem.

where m is the azimuthal index (m = 0, ±1, ±2, . . .), Dj,m is
the multipole coefficient characterizing the scattering by the
j th rod to the mth azimuthal harmonic of the field, H (2)

m is
the Hankel function of the second kind of order m, ρj is the
distance from the axis of the j th rod to the observation point
in the incidence plane, and φj = arcsin(y/ρj ). In Eq. (1), the
first term represents the field of the incident wave, while the
other terms account for the scattered field.

The magnetic field Hz;j,m of the mth azimuthal harmonic
inside the j th rod is written as

Hz;j,m = Bj,mJm(k0qρj ), (2)

where the multipole coefficient Bj,m characterizes the field of
the corresponding harmonic, q = [(ε2 − g2)/ε]1/2, and Jm is
the Bessel function of the first kind of order m.

Satisfying the boundary conditions for the tangential field
components Hz;j,m and Eφ;j,m on the surface of the j th rod
and using the standard technique based on the scattering matrix
method [1,13], we can exclude the coefficients Bj,m and obtain
a system of equations for the scattering coefficients Dj,m in
the form

S−1
m Dj,m =

∞∑
n=−∞

[ ∑
l<j

Dl,−n(−1)m+nH
(2)
m−n(kL|j − l|)

+
∑
l>j

Dl,−nH
(2)
m−n(kL|j − l|)

]

+ imei(mθ+kLj cos θ), (3)

where Sm is the single-rod scattering coefficient for a cylindri-
cal wave:

Sm = − J ′
m(Q̃)Jm(Q) − ε̃1/2Jm(Q̃)Em

H
(2)′
m (Q̃)Jm(Q) − ε̃1/2H

(2)
m (Q̃)Em

. (4)

Here, Em = (ε2 − g2)−1[εqJ ′
m(Q) + mg(k0a)−1Jm(Q)],Q =

k0qa, Q̃ = k0ε̃
1/2a, and the prime denotes the derivative with

respect to the argument.
The translational symmetry of the problem makes it

possible to use the discrete Fourier transform (with respect
to j ) and its inverse:

Dm(h) =
∞∑

j=−∞
Dj,me−ihLj ,

(5)

Dj,m = L

2π

∫ π/L

−π/L

Dm(h)eihLjdh.

The Fourier transform of the incident-wave field comprises
the Dirac function δ(hL − kL cos θ ). Therefore, we will seek

Dm(h) in the form Dm(h) = D̂mδ(hL − kL cos θ ). As a result,
we arrive at the following system of equations for D̂m:

S−1
m D̂m = imeimθ +

∞∑
n=−∞

D̂−nGm−n, (6)

where

Gm =
∞∑
l=1

H (2)
m (kLl)[eikLl cos θ + (−1)me−ikLl cos θ ]. (7)

If the rods are electrically small such that ka � 1, we can
restrict ourselves to the dipole approximation and retain only
the terms with m = ±1 and n = ±1 in Eq. (6). Then from
Eq. (6) we have

D̂±1 = ±i

[(
S−1

∓1 − G2
)
e±iθ − G0e

∓iθ
]

(
S−1

−1 − G2
)
(S−1

1 − G2) − G2
0

. (8)

The array factors G0 and G2 in Eq. (8) have infinite peaks
in the cases kL cos θ = 2πν for |θ | < π/2 and kL = 2πν for
|θ | = π/2, where ν = 1,2, . . .. The frequencies corresponding
to these peaks, which can be attributed to the Rayleigh-Wood
diffraction anomalies of a regular array, will be denoted by ων .
Figure 2 shows the frequency dependences of the quantities in
Eq. (8) for θ = π/2. It is seen in Figs. 2(a) and 2(b) that G0 and
G2 are discontinuous functions of kL. When approaching the
value of kL for ω = ων from the side of larger kL, the real and
imaginary parts of Gm tend to infinity and certain finite values,
respectively. But if the same value of kL is approached from
the side of smaller kL, then the real and imaginary parts of
Gm tend to some finite values and infinity, respectively. Such
behavior no longer takes place if the array is nonequidistant,
the number of rods in the array is finite, or the surrounding
medium is lossy.

In the case where ka � 1 and k0|q|a � 1, the single-
rod scattering coefficients S−1 and S1 [see Figs. 2(c) and
2(d)] have the resonant frequencies ωI and ωII, respectively,
which are located on different sides of the surface plasmon
resonant frequency ωr of an isotropic plasma column [14].
The frequencies ωI and ωII are approximately determined by
the equation (ε+gχ∓)[1 − (k0a)2ε̃/4] = −ε̃, where χ∓ = ±1
for m = ∓1. It can be shown from this equation that under the
additional condition ε̃ = 1, one obtains ωr = ωp/

√
2, ωp/2 <

ωI < ωp/
√

2, and ωII > ωp/
√

2. With decreasing external
magnetic field (ωH → 0), the resonant frequencies ωI and ωII

tend to ωp/
√

2. With increasing external magnetic field (for
ωH � ωp), ωI → ωp/2 and ωII → ωH .

Interaction of the individual and collective mechanisms of
scattering can lead to both an increase and decrease in the
scattering from the array compared with the scattering by a
single rod. To demonstrate this fact, Figs. 2(e) and 2(f) show the
frequency dependences of D̂±1 in the case where the frequency
ω3 of the ν = 3 collective resonance of the array coincides with
the resonant frequency ωII of a single gyrotropic rod. In this
case, the coefficient D̂−1 has the most pronounced resonance
peak at a frequency that is very close to, but slightly lower than,
the frequency ωI, along with much less pronounced peaks at
ωII and ων . At the same time, the coefficient D̂1 has minor
peaks near ωI and ων . However, the behavior of D̂1 in the
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FIG. 2. (Color online) Frequency dependences of the real and
imaginary parts (solid and dashed curves, respectively) of the array
factors (a) G0 and (b) G2, the single-rod scattering coefficients (c) S−1

and (d) S1, and the coefficients (e) D̂−1 and (f) D̂1. The peaks of G0,2

are labeled in order of increasing frequency. The resonances of S−1

and S1 at the frequencies ωI and ωII and the corresponding resonances
of D̂−1 and D̂1 are denoted as I and II, respectively. The values
of the parameters are chosen to be ωp/ωH = 6.47, ωpa/c = 0.18,
L/a = 132.8, ε̃ = 1, and θ = π/2.

vicinity of ωII differs significantly from that of D̂−1 near ωI. An
important feature of the coefficients D̂±1 is that they decrease
and become comparable, so that the scattering occurs as in the
case of isotropic rods, if the frequency ω tends to any of the
quantities ων from the side of the higher frequencies. In this
limit, the coefficients D̂±1 turn out to be very small and the
array becomes almost transparent for the incident radiation.

Generally, the field scattered by an array of gyrotropic
rods differs significantly from that in the case where an array
consist of isotropic cylindrical scatterers. Before proceeding
to a comparison of these two cases, we turn to the fields
scattered by a single rod when θ = π/2. Figures 3(a) and
3(b) show snapshots of the scattered-field component H sc

z at
the frequencies ωI and ωII in the case of a single gyrotropic rod.
Each of the presented fields has a pronounced helical structure
and differs significantly from the field scattered by an isotropic
rod at the resonant frequency ω = ωr [see Fig. 3(c)]. It is seen
that an isotropic rod scatters the incident wave rather weakly in
the direction perpendicular to the wave vector of the incident
wave, whereas the scattering pattern of a gyrotropic rod is
much more uniform. Far from the rod, this pattern resembles
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FIG. 3. (Color online) Snapshots of the scattered field H sc
z in the

cases where a plane wave is incident at an angle θ = π/2 on a single
gyrotropic rod (j = 0) at the frequencies (a) ω = ωI 	 4ωH and
(b) ω = ωII 	 5ωH and (c) on an isotropic rod at the frequency
ω = ωr . (d) Snapshot of the m = 0 azimuthal harmonic of the field
scattered by an isotropic rod at ω = ωr . The parameters ωp/ωH ,
ωpa/c, and ε̃ are the same as in Fig. 2.

the spatial structure of the m = 0 azimuthal harmonic of the
field scattered by an isotropic rod [see Fig. 3(d)].

The above-mentioned features directly affect the multiple
scattering by an array of cylindrical rods. For example, the
absolute value of the total field Hz shown in Fig. 4(a) for
the case of scattering of a plane wave at the frequency
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FIG. 4. (Color online) Absolute value of the total magnetic field
Hz for the arrays of (a) gyrotropic and (b) isotropic rods at ω = ωII

and ω = ωr , respectively, if kL/2π = 4.999, L/a = 219.565, and
θ = π/2. The absolute value of the scattered magnetic field H sc

z for
the arrays of (c) gyrotropic and (d) isotropic rods at the respective
frequencies indicated above. The parameters ωp/ωH , ωpa/c, and ε̃

are the same as in Fig. 2.
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FIG. 5. (Color online) Snapshots of the total magnetic field Hz

for the array of gyrotropic rods at ω = 0.998ωI (ωI = 4.0645ωH ),
kL/2π = 4.0296, L/a = 220.2705, and θ = π/2. The parameters
ωp/ωH , ωpa/c, and ε̃ are the same as in Fig. 2.

ω = ωII 	 ω5 by the array of gyrotropic rods has a periodic
structure in the form of a chessboard. The absolute value of
the total field in the case of scattering by the array of isotropic
rods at ω = ωr 	 ω5 does not possess such a spatial structure
[see Fig. 4(b)]. To better clarify the difference between the two
cases, it is instructive to compare the corresponding scattered
fields, which are shown in Figs. 4(c) and 4(d). The absolute
value of the field scattered by the array of gyrotropic rods is
periodic along the x axis and slowly varies in the direction of
the y axis. This is related to an almost axisymmetric far-field
scattering pattern of each of the gyrotropic rods forming such
an array. If the field scattered by an array of isotropic rods were
dominated by the m = 0 azimuthal harmonic, then this field
would be very similar to that shown in Fig. 4(c). However, such
a spatial structure cannot by observed for the array consisting
of isotropic rods, because their individual scattered fields
are of dipole nature and form another pattern, presented in
Fig. 4(d).

Under certain conditions, one of the coefficients D̂−1 and
D̂1 can increase extremely greatly, so that the total field
is predominantly determined by the scattered field. This
situation is depicted in Fig. 5 and takes place when both
the real and imaginary parts of the denominator in Eq. (8)
simultaneously tend to zero. Such a giant enhancement of the
scattered field is observed in the case of a small mismatch
between any of the frequencies ων of the array and one of
the single-rod resonant frequencies (ωI or ωII), provided that
ω is close to the corresponding frequency ων . For the plot of
Fig. 5, ω 	 ωI 	 ω4 and |D̂−1| � |D̂1|. In this case, strong
enhancement of the total field in certain spatial regions is due
to constructive interference of many large-amplitude waves
that appear as a result of resonance scattering from the array
rods. We emphasize that such a regime is possible only if one
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FIG. 6. (Color online) Snapshots of the scattered field H sc
z in the

cases of oblique incidence for (a) θ = 3π/7 and (b) θ = π/7, when
kL/2π = 1.0002. The values of the other parameters are the same as
in Fig. 2.

allows for the frequency dispersion of the gyrotropic material
of the rods.

In the case of oblique incidence where |θ | 
= π/2, the
scattering demonstrates other interesting features, in addition
to those discussed above. Figures 6(a) and 6(b) show the
field distributions for incidence at the angles θ = 3π/7 and
θ = π/7, respectively, if ω = ωI 	 ω1. The arrows in the
figures show the energy flow directions in the incident wave
and in the reflected and transmitted far-zone fields. It is
found that for θ = 3π/7 [see Fig. 6(a)], the reflected and
transmitted rays demonstrate behavior which is essentially
different from the more habitual situation depicted in Fig. 6(b)
for θ = π/7. Note that Fig. 6(a) resembles the pattern observed
during the resonance excitation of a negative-order spatial
harmonic in the case of wave scattering by isotropic periodic
structures [15,16].

In conclusion, we note that the results obtained can be
useful in creating media with two-dimensional distributed
feedback [17], developing promising photolithography meth-
ods [18], operating multitube helicon plasma sources [19],
and understanding the features of wave scattering by periodic
magnetic-field-aligned plasma density irregularities in the
ionosphere [20,21].
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