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Early regimes of capillary filling
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In this paper we analyze the inviscid regime (for which viscosity is unimportant and the flow occurs due to the
balance between the capillary and the inertial effects) that invariably precedes the classical century-old Washburn
regime during capillary filling. We demonstrate that a new nondimensional number, namely, the product of the
Ohnesorge number and the ratio between the filling length (�) and the radius of the capillary (R), dictates the
occurrence of this regime and the other well-known regimes in a capillary filling problem. We also identify that
this inviscid regime occurs for the time that is of the order of the capillary time scale and, as has been quantified
before [Quere, Eur. Phys. Lett. 39, 533 (1997); Joly, J. Chem. Phys. 135, 214705 (2011)], is characterized by
the filling length being linearly proportional to the filling time. We establish the universality of this regime by
pinpointing the existence of this regime (showing appropriate dependencies of the capillary radii and density)
from existing experimental and Molecular Dynamics Simulation results that signify disparate ranges of length
and time scales.
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I. INTRODUCTION

Since the pioneering contributions of Lucas [1], Washburn
[2], and Bosanquet [3], efforts have been made to describe
the problem of capillary filling as a function of the balance
between the driving surface tension forces and resisting
viscous drag, resulting in the filling length (�) becoming
proportional to the square root of filling time (t) [2–9]. The
proposed derivation necessarily assumes � � R (R is the
capillary radius), so that one can consider the fully developed
pressure-driven Poisseuille flow profile for explicit calculation
of the viscous drag and thereby obtain the explicit form of
the � ∼ √

t variation [2,10]. One thing, however, remains
seriously undiscussed. This assumption of � � R is important
not to ensure that a fully developed velocity profile is attained;
rather it ascertains that the viscous drag (which is proportional
to �) becomes large enough to balance the capillary forces.
Accordingly, one key question about the capillary filling
problem remains unaddressed: What happens for � � R or
� ∼ R? Alternatively, the question can be posed as Why for
� � R or � ∼ R viscous forces are unimportant? On the other
hand, if we assume that the condition � � R is necessary for
the viscous forces to be able to balance the capillary forces, it
is intuitive that for � ∼ R, the capillary filling is driven by the
balance between the capillary and the inertial forces, and this is
the “inertial” or “inviscid” regime of capillary filling as pointed
out by Quere [11]. This regime, as we shall demonstrate later,
is applicable for t � τc or t ∼ τc (where τc ∼

√
ρR3/γ is

the capillary time scale, with ρ and γ being the density
and surface tension of the liquid). Typically τc for common
liquids is very small (e.g., for R ∼ 1 mm, we get τc ∼ 3 ms
for water) and has remained mostly unexplored. Therefore,
although several studies have mentioned about this “inertial”
or “inviscid” regime (and point out that in this regime � ∼ t)
at the beginning of the capillary filling process [3,11–16], to
the best of our knowledge this regime has not been properly
analyzed due to a lack of reasonable answers to questions
such as Which physical criteria demarcate this regime from
the Washburn regime (where � ∼ √

t)? What is the role of the
ratio �/R in dictating this demarcation? Can one associate any
characteristic time with this regime? etc.

In this paper, we categorically respond to these ques-
tions. There are in essence two important contributions of
this paper. First, we demonstrate that the demarcation of
this inviscid regime from the well-known Washburn regime
is governed by a dimensionless number, namely Oh(�/R)
(where Oh = η/

√
ργR is the Ohnesorge number, with η

being the dynamic viscosity of the liquid). For example,
for Oh(�/R) � 1, the viscous effects are negligible and we
encounter this “inviscid” regime, whereas for Oh(�/R) ∼ 1
the viscous and the capillary forces balance each other, and
we have the Washburn regime. Second, we demonstrate that
as an alternative to this dimensionless parameter Oh(�/R),
we can use τc to demarcate between this regime from the
Washburn regime: For t ∼ τc one encounters this “inviscid”
regime, whereas for t � τc, we get the Washburn regime.
Our analysis yields the well-documented [11,16] result that in
the “inviscid” regime, � ∼ t

√
γ /ρR. We recover this scaling

dependence from existing experimental [11] (in a mm radius
channel) and Molecular Dynamics Simulation (MDS) (in a
nm radius channel) results [16,17]. Therefore, in a problem
of capillary filling, we demonstrate the universality of this
“inviscid” regime, preceding the Washburn regime, for a
multitude of length and time scales.

II. SCALING ESTIMATES

The key to identify the parameter that dictates the different
regimes in a capillary filling problem is to obtain the ratio
between the resisting viscous forces Fv and the driving
capillary forces Fc. We always have Fc ∼ γR and Fv ∼
η(∂u/∂y)�R ∼ ηu0� (here y is the transverse coordinate or
the coordinate perpendicular to the capillary walls), so that
Fv/Fc ∼ ηu0�/γR. This ratio of the viscous to the capillary
forces (except the coefficients) can be obtained by comparing
the corresponding force expressions provided by Joly [16].
To use this expression for pinpointing the relative importance
of the two forces (viscous and capillary), we need to express
u0. Using u0 ∼ �/t , we get Fv/Fc ∼ η�2/γRt . To obtain the
time t appearing in the ratio, we invoke the idea that at any
instant the transport is caused by the capillary forces, so that
mdu/dt ∼ Fc ⇒ t ∼ �

√
ρR/γ (using m ∼ ρR2�). Note that
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Joly [16] obtains the same scaling of the time t when the
inertial and capillary effects balance each other. Also through
such balance, we introduce the density ρ in the ratio of the
viscous to the capillary forces. Hence using this expression for
t in the Fv/Fc ratio, we get

Fv/Fc ∼ η�

γR

√
γ

ρR
∼ η√

ργR

(
�

R

)
= Oh

(
�

R

)
. (1)

Thus for Oh(�/R) � 1 we have the “inviscid” regime, and
for Oh(�/R) ∼ 1 we have the viscosity-dependent Washburn
regime. This also dictates the role of the corresponding �/R

ratio in demarcating these two regimes. For example for
R ∼ 1 mm, Oh ∼ 10−2–10−3 for most of the common liquids.
Therefore, one needs � ∼ 0.1–1 m (i.e., �/R ∼ 102–103) to
ensure that one witnesses the Washburn regime. This regime
selection based on the stated values of Oh(�/R) is perfectly
valid for horizontal capillary filling. However, for vertical
capillary filling, the presence of gravity ensures that the
net driving force is lower than the capillary force, and the
Washburn regime is attained at a lesser value of �/R ratio [or
a value of Oh(�/R) much lesser than unity] [11] (in fact, in
vertical capillary filling, � cannot exceed the “Jurin” height
[11]). At the initial stages (i.e, when � ∼ R), however, gravity
can be neglected even for a vertical capillary (as illustrated
later), so that Oh(�/R) dictates the “inviscid” regime even for
the vertical capillary filling.

III. INERTIAL OR “INVISCID” REGIME

This is the regime where the viscous forces are negligible
in comparison to the capillary forces, i.e., Oh(�/R) � 1, and
the capillary filling is driven by a balance between the inertial
and the capillary forces:

γR ∼ d

dt
(ρ�R2u0). (2)

Therefore, we can obtain (using t ∼ �/u0), u0 ∼ √
γ /ρR, as

shown by Quere [11]. This straightaway leads us to the relevant
scaling law dictating the filling length � and filling time t as

� ∼ t
√

γ /ρR. (3)

In this regime, one can assume � ∼ R (as in the inertial regime,
the meniscus develops inside the tube, we have � ∼ R [11]),
so that using (3), we can obtain the corresponding time scale
(that characterizes this regime) as t ∼ �/u0 ∼

√
ρR3/γ = τc.

Therefore, this τc quantifies the “initial” time, where the
viscous forces are subdominant, and the capillary filling is
governed by (2) and (3). Hence, we can infer that t ∼ τc is
a condition, alternative to the condition Oh(�/R) � 1, that
dictates the occurrence of the “inviscid” regime. We can
discuss the relevance of this time scale in the light of the full
analytical solution of the capillary filling (considering all the
three forces, i.e., inertial, capillary, and viscous) provided by
Joly [16]. For t � τv (where τv ∼ ρR2/η is the viscous time
scale), we get from Joly [16], � ∼ t

√
γ /ρR [18]. This is the

same expression that we obtain in (3), and Joly [16] proposes
for the case when viscous effects are negligible, which we
show to occur when Oh(�/R) � 1. Therefore, both conditions
Oh(�/R) � 1 or t ∼ τc (or t � τv) equivalently represent the
inertial regime and the crossover (from inertial to Washburn
regimes) occurs for Oh(�/R) ∼ 1 or t � τc (or t ∼ τv; this

is based on the condition that τc � τv for most liquids; see
Table I). Note that from the full analytical expression provided
in Joly [16], we get the exact quantification of the larger time
scale (τv), where � ∝ √

t ; however, we do not get the smaller
time scale (τc), where � ∝ t .

For vertical capillary filling, where gravity is important,
there will be a gravitational force Fg ∼ ρ�R2g (where g is the
acceleration due to gravity). Therefore, with t ∼ τc and � ∼ R,
we get FI/Fg ∼ γ /ρgR2, which for R � 1 mm, is always
much larger than unity for standard liquids (e.g., for water
with R ∼ 1 mm, we have FI/Fg ∼ 10). Therefore, we can
safely state that even for the vertical capillary filling, Eq. (3)
is the scaling law for the “inviscid” regime.

IV. INTERMEDIATE OR WASHBURN REGIME

In this regime the capillary flow is driven by the balance
of the viscous and the capillary forces. In effect, this implies
that � has become substantially large so that Oh(�/R) ∼ 1 (for
horizontal capillaries). Hence, one may write

Fv ∼ Fc ⇒ ηu0�/γR ∼ 1 ⇒ � ∼ √
t
√

γR/η, (4)

i.e., we recover the Washburn regime (� ∼ √
t), with appro-

priate dependence on system parameters [2]. We can obtain
the same form of scaling law [as (4)] by using the full-scale
solution of Joly [18]. Above, we have shown that the condition
t ∼ τc and Oh(�/R) � 1 are equivalent as both of them signify
that the filling is in the inertial regime. Using (4), we shall
demonstrate that the condition t � τc and Oh(�/R) ∼ 1 are
equivalent as both of them signify that the filling is in the
Washburn regime. Defining t̄ = t/τv , we can rewrite (4) as
Oh(�/R) ∼ t̄ . Hence for Oh(�/R) ∼ 1, we have t̄ ∼ 1, or
t ∼ τv , i.e., t � τc since we have shown above (both from our
analysis, and the full-scale solution of Joly [16]), when t � τv ,
t ∼ τc. For this case, if gravity becomes important (vertical
capillary filling) the condition Oh(�/R) ∼ 1 no longer dictates
the attainment of the Washburn regime. Rather, the net driving
force being much smaller (since there is the retarding gravita-
tional effect) than Fc ∼ γR, the Washburn regime is attained at
a much smaller Oh(�/R) or smaller �/R [e.g., in experiments
by Quere [11] with ethanol as the filling liquid, we observe
the onset of Washburn regime for Oh(�/R) ∼ 0.1]. The corre-
sponding � versus t variation can be obtained from the force
balance, which reads γ /R − ρg� ∼ ηu0�/R

2. Since � < �J

(where �J ∼ γ /ρgR is the Jurin height [11]), γ /R > ρg�, and
hence the force balance becomes approximately γ ∼ η�2/Rt

(using u0 ∼ �/t), yielding � ∼ √
t
√

γR/η, i.e., the same
scaling law [Eq. (4)]. Off course, how close � is to �J decides
the time up to which one can witness the Washburn regime.

V. VISCOUS REGIME

Once � has become so large that Oh(�/R) � 1, the viscous
effects will overwhelm the capillary forces. Therefore, now
one will have the balance between the viscous and the inertial
forces:

d

dt
(ρR2�u) ∼ η

∂u

∂y
�R ⇒ t ∼ ρR2

η
= τv, (5)

where τv is the viscous time scale.
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To close the discussion on the different regimes in capillary
filling, it is worthwhile to mention here that there has been
a conjecture that at time scale t � τc (i.e., time preceding
the “inviscid” regime), we should have � ∼ t2 [4,11,15,19],
motivated by the requirement of continuity in velocity at
t = 0 [11]. We would like to emphasize here that such a
regime would indeed exist; however, � ∼ t2 is not mandatory;
rather, � ∼ tn (where n > 1) would satisfactorily fulfill the
requirement of velocity continuity at t = 0.

VI. RESULTS AND DISCUSSIONS

The key to identify the existence of the different regimes,
as illustrated above, is to estimate the value of Oh(�/R), or to
obtain τc and τv (see Table I). We find only for sufficiently large
capillary radius (R ∼ 1 mm) that we get τc � τv , and τc is in
the measurable range (τc ∼ 1–10 ms). For smaller capillary
radii, either τv ∼ τc (e.g., R ∼ 100 nm) or τc > τv but τc is
too small to measure (e.g., for water in R ∼ 10 μm capillary,
τc ∼ 1 μs). In fact, the time resolution of most of the classical
capillary filling experiments (with R ∼ 0.1–1 mm) [20,21]
is ∼ 0.1–1 s, so that one never encounters this otherwise
universal linear regime. One of the rare exceptions is the study
by Quere [11], where results are provided for t ∼ τc (for his
experiments τc ∼ 4 ms and τv ∼ 300 ms). In Fig. 1 we validate
our scaling law for the linear regime with the experiments
of Quere [11]. We obtain an excellent match, and the linear
regime is witnessed for t ∼ 10 ms, i.e., t ∼ τc. Please note that
the experiment by Quere is on a vertical capillary where the
gravity effects are important. However, as we have discussed,
our scaling law [see Eq. (3)] for the “inviscid” regime remains
unaffected by the gravity (for the case studied by Quere, we
have FI/Fg ∼ 6). In Fig. 1, we also validate the scaling law
for the Washburn regime. As gravity is important, this regime
is witnessed at t < τv .

The other spectrum of capillary filling problems, which deal
with much smaller time scales (picoseconds to nanoseconds)
are the MDS studies on capillary imbibition [13,16,17,22]. In
these studies R ∼ 1 nm and u0 ∼ 100 m/s [16,17] (attributed
to large slip lengths [23–25]). Alternatively, without consid-
ering any slip, one must consider an equivalent reduction
in the viscosity [26,27] by four-to-five orders (it increases
the viscous time scale by the same order). The key reason

TABLE I. Capillary and viscous time scales for different fluids.
We have exponents a = 9, 6, 3 and b = 9, 5, 1 for R = 100 nm,

10 μm,1 mm. We take the standard liquid properties at 20 ◦C.

Fluid τc × 10a (s) τv × 10b (s)

Benzene 5.5 13.3
Carbon tetrachloride 7.7 16.6
Chloroform 7.4 26.3
Ethanol 6 6.9
Hexane 6 20.1
Isopropanol 6.1 3.3
Methanol 5.5 13.3
Water 3.7 10
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FIG. 1. (Color online) Match of the scaling laws for the “inviscid”
(or linear) and the Washburn (or intermediate) regimes with the
experimental results of Quere [11]. For the linear regime our scaling
law is expressed as � = M1t

√
γ /ρR, where M1 is a constant, which

is obtained by matching one experimental data with the scaling law
(expressed above). For the present case the liquid is ethanol (γ =
21.6 mN/m, ρ = 780 kg/m3, η = 1.17 mPas) and R = 689 μm, so
that we get M1 = 0.8774 [using (�)t=2.16 ms = 0.38 mm]. For the
Washburn (intermediate) regime, our scaling law is expressed as
� = M2

√
t
√

γR/η (the effect of gravity is accounted for in the
constant M2). With the stated parameters, we get M2 = 7.1348 (using
(�)t=50.11 ms = 5.7 mm). We depict the experimental results by markers
(blue circles) and scaling predictions by lines (red dashed for the
inertial regime and green bold line for the Washburn regime). M1 and
M2 dictate the slopes of the � vs t and � vs

√
t variations, respectively

for a given fluid in a capillary of a given radius.

for such a viscosity reduction is the presence of depletion
layers adjacent to the channel walls [28,29]. For water with
R ∼ 1 nm, this reduction increases τv from 0.1 ps to 1–10 ns.
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FIG. 2. (Color online) Match of the scaling law for the “inviscid”
(or linear) regime with the MDS results [17] of carbon nanotube
capillary imbibition, showing the effect of density. Our scaling law
is expressed as � = M1t

√
γ /ρR, so that we can express ln (�̄) =

ln (t̄) − ln (ρ̄)/2 + ln (C), where �̄ = �/�0, t̄ = t/t0, ρ̄ = ρ/ρ0, and
C = (M1t0/�0)

√
γ /ρ0R. Here �0, t0, and ρ0 are the length, time,

and density scales. Procedure to obtain C is illustrated in Ref. [30].
We depict the experimental results by markers (blue circles for ρ̄ =
0.11, red squares for ρ̄ = 0.21, and green triangles for ρ̄ = 0.32) and
scaling predictions by lines (blue bold lines for ρ̄ = 0.11, red dashed
line for ρ̄ = 0.21, and green dash-dot line for ρ̄ = 0.32).
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FIG. 3. (Color online) Match of the scaling law for the “inertial”
regime with the MDS results [16], showing the effect of capillary
radii. Our scaling law is expressed as � = A1t

√
γ /ρR, where A1

is a constant [physically, the role played by A1 is identical to that
played by M1 (see Fig. 1)] when � and R are expressed in nm
and t is expressed in ns. This scaling law can be expressed as
� = C1(t/

√
R), where C1 = A1

√
γ /ρ. Procedure to obtain C1 is

illustrated in Ref. [31]. In Ref. [32], we also compare and discuss
the values of A1 and M1, both of which represent the numerical
prefactor to the scaling law [see Eq. (3)]. We depict the experimental
results by markers (blue circles for R = 0.514 nm and red squares
for R = 1.87 nm) and scaling predictions by lines (green dashed for
R = 0.514 nm and black bold line for R = 1.87 nm).

On the contrary for the same capillary, τc ∼ 10 ps. Therefore,
when t ∼ 10–100 ps (as witnessed in MDS results [16,17]),
we would expect a � ∼ t variation as predicted in Eq. (3).
Figure 2 compares our scaling hypothesis with MDS results
(for capillary imbibition in a carbon nanotube with R ∼ 1 nm)
in this time range [17], showing a clear � ∼ t variation with the
proposed dependence on ρ [for this study, we have τc ∼ 7 ps

and τv ∼ 10 ns (with a reduction in viscosity by four orders)].
In Fig. 3 we provide comparison with results of another
MDS study [16] of capillary imbibition in carbon nanotubes,
showing the proposed dependence on capillary radii [for this
study, we have τc ∼ 5 ps and τv ∼ 50 ns (with a reduction
in viscosity by four orders)]. The excellent match of our
scaling laws with the MDS results in both Figs. 2 and 3
establish that our proposed scaling remains valid even for
MDS time scales. Also the fact that τv ∼ 1–10 ns indicates
that the viscosity-dependent (or Washburn) regime will be
observed over this time scale (which is much larger than the
time scales accessed in Refs. [16,17]), as indicated by other
MDS results [13,22,33,34].

VII. CONCLUSIONS

In this paper we analyze the well-known “inviscid” regime
(characterized by linear variation of the filling length � with the
filling time t [11,16]) that invariably precedes the celebrated
Washburn regime in capillary filling process. We identify
experiments [11] and MDS results [16,17] that establish
the universality of this “inviscid” regime spanning across
a multitude of length and time scales. We show that this
regime is demarcated from the classical Washburn regime by
a dimensionless number, namely, Oh(�/R). Alternatively, as a
more practical measure one can consider τc (or the capillary
time scale) as the relevant time scale over which one can
witness this regime.
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