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Conservation-dissipation structure of chemical reaction systems

Wen-An Yong*

Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
(Received 31 August 2012; published 5 December 2012)

In this Brief Report, we show that balanced chemical reaction systems governed by the law of mass action
have an elegant conservation-dissipation structure. From this structure a number of important conclusions can
be easily deduced. In particular, with the help of this structure we can rigorously justify the classical partial
equilibrium approximation in chemical kinetics.
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Chemical reactions are fundamental for many natural
phenomena, ranging from the rusting of iron to cell cycling and
from photosynthesis to apoptosis. Since J. Wei [1] proposed a
set of axioms to characterize general chemical systems in 1962,
there have been huge efforts in seeking a unified mathematical
formulation of chemical reactions. Oster and Perelson [2], for
example, presented a geometric structure by casting much of
the classical theory of kinetics into the language of differential
geometry in 1974. Very recently in Ref. [3] van der Schaft
et al. derived a general graph-theoretic formulation, which
is basically already contained in the innovative paper by
Sontag [4]. Other general studies of the mathematical structure
of chemical systems include those of Aris [5–7], Bowen [8,9],
Coleman and Gurtin [10], Feinberg [11–13], Horn [14], Horn
and Jackson [15], Krambeck [16], Sellers [17], Shapiro and
Shapley [18], Wei [19], Wei and Prater [20], and so on. See
Refs. [21,22] for more references.

In this report, we present a conservation-dissipation struc-
ture of the chemical reaction equations. It will be seen that
this new structure is different from all those mentioned above.
Consider a reaction system with ns species participating in nr

reversible reactions

ν ′
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i2S2 + · · · + ν ′
ins
Sns

kif

⇀↽
kir
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for i = 1,2, . . . ,nr . Here Sk is the chemical symbol for the
kth species, the nonnegative integers ν ′

ik and ν ′′
ik are the

stoichiometric coefficients of the kth species in the ith reaction,
and kif and kir are the respective direct and reverse constants
of the ith reaction. The reversibility means that both kif and
kir are positive.

Denote by uk the concentration of the kth species Sk .
According to the law of mass action, the evolution of uk =
uk(t) obeys the ordinary differential equations (see, e.g.,
Ref. [22]):
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Set u = (u1,u2, . . . ,uns
)T with the superscript T for the

transpose. The free energy of the reaction system is defined as

F (u) =
ns∑

k=1

(uk ln uk − uk ln u∗
k − uk)

with u∗ = (u∗
1,u

∗
2, . . . ,u

∗
ns

)T a constant state to be specified
below. Clearly, the gradient of F = F (u) is

∂F

∂u
= (

ln u1 − ln u∗
1, ln u2 − ln u∗

2, . . . , ln uns
− ln u∗

ns

)T

(3)
and F (u) is convex with respect to u.

The aforesaid conservation-dissipation structure is given in
the following theorem, which will be proved at the end of this
report.

Theorem. Assume that the system described by Eq. (2)
satisfies the principle of detailed balance: there are ns positive
numbers, u∗

i > 0, such that

kif

ns∏
j=1

(u∗
j )ν

′
ij = kir

ns∏
j=1

(u∗
j )ν

′′
ij (4)

for i = 1,2, . . . ,nr . Then there is a symmetric and nonpositive
definite matrix, S = S(u), defined for u with ui > 0(i =
1,2, . . . ,ns), such that the kinetic Eq. (2) can be rewritten
as

du

dt
= S(u)

∂F

∂u
(5)

and the null space of S(u) is

span
{(

ν ′′
i1 − ν ′

i1,ν
′′
i2 − ν ′

i2, . . . ,ν
′′
ins

− ν ′
ins

)T
,i = 1,2, . . . ,nr

}⊥
,

which is independent of u with ui > 0(i = 1,2, . . . ,ns).
Remark that the constant state u∗ = (u∗

1,u
∗
2, . . . ,u

∗
ns

)T

needs not be unique and is often not unique. The symmetry
of S(u) is reminiscent of the celebrated Onsager reciprocal
relation [23], but it is different from that due to the dependence
of S(u) on u. The null space of S(u) is just the right null space
of the nr × ns-stoichiometric matrix⎛
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...
...

...
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nr 1 ν ′′
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nr 2 · · · ν ′′
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nrns

⎞
⎟⎟⎟⎠

and is just the orthogonal complement of the stoichiometric
subspace [13]. Its independence on u has a clear physical
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interpretation (see below) and seems crucial mathematically
[24]. We also notice that the null space contains nontrivial
vectors. In fact, let ne be the number of elements involved in
the system and denote by ekl the number of the lth element in
the kth species. We have the element conservation relations∑

k

ν ′
ikekl =

∑
k

ν ′′
ikekl (6)

for i = 1,2, . . . ,nr and l = 1,2, . . . ,ne. Namely,

(e1l ,e2l , . . . ,ens l) ⊥ (
ν ′′

i1 − ν ′
i1,ν

′′
i2 − ν ′

i2, . . . ,ν
′′
ins

− ν ′
ins

)
for i = 1,2, . . . ,nr and l = 1,2, . . . ,ne. Thus, the ne vectors
(e1l ,e2l , . . . ,ens l) are all in the null space of S(u).

Next, we deduce some important consequences from the
above theorem. For each constant vector v in the null space,
we have

d[vT u(t)]

dt
= vT S(u)

∂F

∂u
≡ 0.

Therefore, vT u(t) is a conservative quantity. Because the null
space is not empty, we have simply shown the existence of
such conserved quantities. This is a well-known fact. In the
language of Feinberg and collaborators [13], this is equivalent
to saying that there are distinct stoichiometric compatibility
classes that are invariant of the dynamics. On the other hand,
the u-independence of the null space simply reflects the fact
that the physical laws of conservation hold true no matter what
the state of the system is in. Moreover, since S(u) is symmetric
and nonpositive definite, it is immediate to see the well-known
fact

dF (u(t))
dt

=
(

∂F

∂u

)T
du(t)

dt
=

(
∂F

∂u

)T

S(u)
∂F

∂u
� 0.

Namely, F (u) is a Lyapunov function for the reaction system
(5). Because S(u) is not equal to the identical matrix, the
decease of F (u(t)) does not follow the steepest descending
path, generally, which was observed in Ref. [25].

In view of Öttinger’s general equation for nonequilibrium
reversible-irreversible coupling (GENERIC) framework [26],
our theorem indicates that the chemical reaction system with
detailed balance falls into the GENERIC framework, with
an irreversible part only but without any reversible part. In
contrast, the Hamiltonian mechanics [27] was regarded in
Ref. [26] as a typical example in the framework, with a
reversible part only but without any irreversible part. Let
us mention that there seems to be no discussion on the
u-independence of the null space of the friction matrix in
Ref. [26].

As an application of our theorem, we show the validity of
the classical partial equilibrium approximation (PEA) method
for model reduction in chemical kinetics (see, e.g., Ref. [28]).
For this purpose, we consider a chemical reaction system
(closed or open), containing the reactions in Eq. (1) as fast. In
this situation, the kinetics can be written as

duk

dt
= 1

ε
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ik)

(
kif

ns∏
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ij
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ij

j

)
+ pk(u),

(7)

where ε > 0 is a small parameter characterizing the fastness
and pk(u) stands for the contributions due to the slow reactions.
With the PEA method, this system of equations (7) can be
simplified by letting the fast part vanish, that is,

nr∑
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ik)

(
kif
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u
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ij

j − kir
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u
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ij

j

)
= 0. (8)

Indeed, from these ns nonlinear equations fast modes of u

may be algebraically expressed in terms of slow ones [24]
and the latter solve a system of ordinary differential equations.
Because the number of the latter is less than ns , the two-scale
system (7) is simplified.

Now we show the reasonableness of this simplification pro-
cess by using the above theorem and the singular perturbation
theory [29]. If the principle of detailed balance is verified for
the fast part only, Eq. (7) can be rewritten as

du

dt
= 1

ε
S(u)

∂F

∂u
+ [

p1(u),p2(u), . . . ,pns
(u)

]T
. (9)

In order to apply the singular perturbation theory to this two-
scale system, we compute the Jacobian of the fast part at a
state ue, satisfying S(ue) ∂F

∂u
(ue) = 0, which needs not be u∗:

∂

∂u

[
S(u)

∂F

∂u

]∣∣∣∣∣
u=ue

= S(ue)
∂2F

∂u∂u
(ue) + ∂

∂u

[
S(u)

∂F

∂u
(ue)

]∣∣∣∣∣
u=ue

= S(ue)
∂2F

∂u∂u
(ue).

For the second equality we have used that S(ue) ∂F
∂u

(ue) = 0. In
fact, by the definition ∂F

∂u
(ue) is in the null space of S(ue) and,

thereby, in the null space of S(u), for the null space of S(u) is
the same as that of S(ue). Therefore, we have S(u) ∂F

∂u
(ue) ≡ 0.

Since F (u) is strictly convex, its Hessian Fuu(ue) is positive-
definite. Recall that S(u) is symmetric and nonpositive definite.
It is elementary that the Jacobian matrix S(ue)Fuu(ue) is similar
to a real diagonal matrix with nonpositive elements. Thus,
we have verified the stability condition in Ref. [29] (see also
Ref. [24]). According to the singular perturbation theory, the
solution to an initial-value problem of the two-scale system
(9) uniformly converges, in any bounded-time interval away
from t = 0, as ε goes to zero and the limit solves the algebraic
Eq. (8) and the corresponding simplified system. In this way,
we have justified the classical PEA method.

The main points of this report are summarized in the
abstract. We conclude our discussion with a complete proof of
the theorem.

Proof. Since kif , kir and u∗
i are all positive, we see that

ln kif − ln kir = −
ns∑

j=1

(ν ′
ij − ν ′′

ij ) ln u∗
j

from the principle of detailed balance [Eq. (4)] and

kif

ns∏
j=1

u
ν ′
ij

j = exp

(
ln kif +

ns∑
j=1

ν ′
ij ln uj

)

for uj > 0. Thus, we deduce by using the mean-value theorem
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that
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where σi(u) is between (ln kif + ∑ns

j=1 ν ′
ij ln uj ) and (ln kir + ∑ns

j=1 ν ′′
ij ln uj ). Set

S(u) = −
nr∑

i=1

eσi (u)Si

with

Si = [(ν ′′
ik − ν ′

ik)(ν ′′
ij − ν ′

ij )]

a symmetric ns × ns matrix. Obviously, this S(u) is symmetric and nonpositive definite. Moreover, it follows from Eq. (3) that
the kinetic Eq. (2) can be rewritten in the form of Eq. (5).

In order to determine the null space of S(u), we recall the elementary fact that the null space of a symmetric and nonpositive
definite matrix coincides with the set of vectors at which its quadratic form vanishes. Thus, we compute the quadratic form

ξT S(u)ξ = −
nr∑

i=1

eσi (u)ξT Siξ = −
nr∑

i=1

eσi (u)
∣∣(ν ′′
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′′
i2 − ν ′

i2, . . . ,ν
′′
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)
ξ
∣∣2

for ns vector (column) ξ . This quadratic form vanishes if and only if ξ is perpendicular to all (ν ′′
i1 − ν ′

i1,ν
′′
i2 − ν ′

i2, . . . ,ν
′′
ins

− ν ′
ins

)T

for i = 1,2, . . . ,nr . Namely, the set of zeros, and thereby the null space of S(u), is

span
{(

ν ′′
i1 − ν ′

i1,ν
′′
i2 − ν ′

i2, . . . ,ν
′′
ins

− ν ′
ins

)T
,i = 1,2, . . . ,nr

}⊥
.

This completes the proof.
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