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Almost exact boundary condition for one-dimensional Schrödinger equations
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An explicit local boundary condition is proposed for finite-domain simulations of the linear Schrödinger
equation on an unbounded domain. Based on an exact boundary condition in terms of the Bessel functions, it
takes a simple form with 16 neighboring grid points, and it involves no empirical parameter. While the computing
load is rather low, the proposed boundary condition is effective in reflection suppression, comparable to the
exact convolution treatments. An extension to nonlinear Schrödinger equations is also proposed. Numerical
comparisons clearly demonstrate the effectiveness of this ALmost EXact (ALEX) boundary condition for both
the linear and the cubic nonlinear Schrödinger equations.
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I. INTRODUCTION

The Schrödinger equation has long been one of the
central topics in computational physics due to its fundamental
importance. As is always proposed in the whole of unbounded
space, it challenges numerical simulations where only a finite
domain is resolved in a discrete manner. Artificial boundary
treatments are thus required at the numerical boundary in order
to avoid spurious wave reflections.

To be specific, we consider the rescaled Schrödinger
equation in one space dimension,

iψt = −ψxx + [V (x) + f (|ψ |2)]ψ. (1)

Here ψ is a wave function, V (x) is a potential, and f (|ψ |2)ψ
is a nonlinear term. We assume that the initial data ψ(x,0) =
ψ0(x) are uniformly zero away from a selected numerical
domain [−xM,xM ].

Exact boundary conditions have been derived by the
Laplace transform for the linear equation, namely with V (x) =
V a constant and f (|ψ |2) = 0. For instance, at the right
boundary xM , one has [1]

∂ψ

∂x
(xM,t) = − 1√

π

∂

∂t

∫ t

0

ei[V (τ−t)− π
4 ]

√
t − τ

ψ(xM,τ )dτ (2)

or [2]

ψ(xM,t) = − 1√
π

∫ t

0

ei[V (τ−t)− π
4 ]

√
t − τ

∂ψ

∂x
(xM,τ )dτ. (3)

Antoine et al. [3] and Schmidt et al. [4,5] further calibrated
these two conditions for a temporally semidiscretized problem
via the Z transform. The fully discretized problem in both
space and time was treated by Arnold et al. [6].

As an alternative, one may adopt the Fourier transform
in Eq. (1). Denoting the transformed frequency variable as
ω, many authors explored boundary conditions by rational
approximations of

√
iω under an additional assumption of

V = 0. The resulting boundary conditions are local in both
space and time, and they alleviate considerably the computing
load. For instance, Bruneau and Di Menza [7,8] performed a
rational function approximation by minimizing the L2 error,
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and then they recast this approximation into an ordinary
differential system at the boundary. Szeftel [9] minimized the
reflection coefficient instead. Zhang [10] adopted the Padé
approximation to obtain a concise local boundary condition.

Other local boundary conditions were also proposed. Zheng
[11] applied the perfectly matched layer method. Fevens [12],
Kuska [13], and Shibata [14] used operator multiplication to
improve absorption for general outgoing waves. Ruprecht [15]
and Schmidt [16] performed certain analytic expansions to
derive pole conditions.

However, exact boundary conditions are untractable in
general when nonlinearity is present, with an exception
being the integrable cubic nonlinear Schrödinger equation
[17]. As for approximate ones, Antoine and Besse [3]
proposed a class of NLABC conditions. Some of the above
local boundary conditions have nonlinear extensions [9–12].
A comprehensive survey of boundary treatments for lin-
ear and nonlinear Schrödinger equations may be found
in [18].

It is well known that accuracy and numerical cost are the
two basic considerations in numerical simulations. Efficiency
may be formally expressed as the ratio of accuracy over nu-
merical cost. For the aforementioned boundary treatments, the
convolution-type ones attain a high accuracy yet at the cost of
heavy computing load and memory requirements for the time
history of ψ and ψx at the boundary. Moreover, because these
formulations rely heavily on linearity, extensions to nonlinear
equations are not available in general. In contrast, the local
boundary conditions are essentially free of these shortcomings,
whereas accuracy becomes a major concern. A good balance
between accuracy and cost is therefore crucial to efficient
simulations of the linear and nonlinear Schrödinger equations.
The main objective of this paper is to design a boundary treat-
ment that achieves a level of accuracy that is almost the same
as that of the exact convolution boundary conditions while
saving computing cost with locality in both space and time.
In fact, we propose an explicit boundary condition with 16
neighboring grid points and without any empirical parameter.
It performs very well in reflection suppression tests for linear
and nonlinear problems. The low numerical cost and simplicity
in formulation make it one of the most effective boundary
treatments for simulating the linear and nonlinear Schrödinger
equations.
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FIG. 1. Solid line for f60(t) and circles for
∑16

k=1 akf60−k(t) on
[0,4]. (a) Real part; (b) imaginary part.

II. FORMULATION OF ALMOST EXACT BOUNDARY
CONDITION

In this section, we assume that the initial data u(x,0) =
u0(x) are nonzero only in [−xL,xL], a subset of [−xM,xM ]
with xL = L�x and xM = M�x. Here �x is a given uniform
grid size.

The semidiscrete form of the linear Schrödinger equation
reads

iψ̇n = −ψn−1 − 2ψn + ψn+1

(�x)2
+ V ψn, (4)

ψn(0) = ψ0(n�x). (5)

To treat the right boundary, we consider the above system
for a semi-infinite grid n � L. Noticing ψn(0) = 0 for n > L,
we calculate by Laplace transform that

ψL+m(t) = fm(t) ∗ ψL(t), m > 0, (6)

with the kernel function

fm(t) = 1

t
mime−[2+V (�x)2]it Jm

(
2t

(�x)2

)
. (7)

Here Jm(t) is the mth-order Bessel function of the first kind.

Characterizing right-going wave propagation from a source
at xL, (6) serves as an exact boundary condition. However, as
mentioned above, evaluation of the time convolution can be
extremely costly for a long computation, whereas cutoff may
reduce the accuracy. Moreover, convolution-type boundary
conditions rely on the linearity over the whole simulation pe-
riod, hence they do not apply to nonlinear problems in general.

On the other hand, along the lines of designing concurrent
multiscale algorithms [19–21], it has been shown recently [22]
that a linear approximate equality holds for the Bessel func-
tions. More precisely, by matching the asymptotic expansions
of the Bessel functions in different zones, we obtain the
following result.

For a fixed K � 2, and any given ε > 0, if m is big enough,
there exist a set of real numbers ãp (1 � p � K), such that∣∣∣∣∣∣

K∑
p=1

ãpJm−p(t) − Jm(t)

∣∣∣∣∣∣ < ε. (8)

Consequently, if we take ap = mip

m−p
ãp, it holds that

∣∣∣∣∣∣
K∑

p=1

apfm−p(t) − fm(t)

∣∣∣∣∣∣ < ε. (9)

In particular, we take m = 60, K = 16, and a1 to a16 as
follows:

12.052110193235i, 70.177637000065,

−262.693855125265i, −708.598614518240,

1461.844046849774i, 2387.382683759241,

−3149.979100974855i, −3395.091578678526,

3000.639882589720i, 2168.648792241722,

−1268.957016689205i, −589.685213345064,

210.491232766998i, 54.442223074977,

−9.111658309311i, −0.742160906401.

It is worth mentioning that these coefficients do not depend on
�x or V , provided the space grid is uniform and the potential
is constant.

The approximation is illustrated in Fig. 1, with the real
part and the imaginary part in the left and right subplots,
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FIG. 2. Snapshots of the wave function: solid line denotes the exact solution and circles denote the numerical solution. (a) |ψ(x,1)|; (b)
|ψ(x,3)|.
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FIG. 3. (Color online) Evolution of the wave function log|ψ(x,t)|. (a) The exact solution; (b) the numerical solution with the ALEX
boundary condition.

respectively. There appears to be essentially no observable
difference between the exact kernel function f60(t) and its
linear approximation.

Combining the above results, we find an approxima-
tion ψM+1(t) ≈ ∑K

p=1 apψM+1−p(t), and accordingly a linear
boundary condition,

iψ̇M = − 1

(�x)2

⎛
⎝ψM−1(t) − 2ψM (t) +

K∑
p=1

apψM+1−p

⎞
⎠

+V ψM. (10)

Now we make a few remarks. First, this boundary condition
inherits the one-way wave propagation characteristics of
expression (6). Expressing ψ at the rightmost grid point of the
computing domain in terms of 16 interior grid points, it is local
in both space and time. Secondly, we assume M � L + K in
the above derivations. In practice, this requirement may be
relaxed. As demonstrated in numerical tests later, we apply this
boundary condition with M = L, and the spurious reflection is
still well suppressed. Thirdly, although the linear combination

coefficients are independent of the mesh size �x, numerical
experiments suggest that a proper mesh size is preferable to
resolve the major wave numbers of the initial data. Fourthly,
there are other forms for this class of boundary conditions
which involve different numbers of grid points. Here we only
present the one with 16 neighboring grid points because in
all of our numerical tests it achieves a good balance between
accuracy and numerical cost. Finally, this condition may be
extended to handle two-way wave propagation using a strategy
proposed in [21].

In consideration of its high accuracy, we refer to this local
boundary condition as an ALmost EXact (ALEX) boundary
condition. Following the idea in [10], we extend the ALEX
boundary condition for the general nonlinear Schrödinger
equation (1) through operator splitting as follows:

iψ̇M = − 1

(�x)2

⎛
⎝ψM−1 − 2ψM +

K∑
p=1

apψM+1−p

⎞
⎠

+ [V (xM ) + f (|ψM |2)]ψM. (11)
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FIG. 4. (Color online) Evolution of log|ψ(x,t)| by various boundary treatments. (a) Szeftel’s boundary treatment; (b) Arnold’s boundary
treatment.
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FIG. 5. (Color online) Soliton in the cubic nonlinear Schrödinger equation. (a) Antoine’s boundary condition LABC2; (b) ALEX boundary
condition.

III. BENCHMARK TESTS FOR THE LINEAR
SCHRÖDINGER EQUATION

We perform numerical computations to the linear
Schrödinger equation and make comparisons with several
existing boundary conditions. The benchmark problem is to
reproduce the following exact right-going wave solution of
(1) with V = 0 and f (|ψ |2) = 0:

ψex(x,t) =
√

i

−4t + i
exp

(−i(x − xc)2 − 5(x − xc) + 25t

−4t + i

)
.

(12)

Numerically, we compute over the interval [−12,3] with
initial data ψ0(x) = ψex(x,0) and xc = −6. We take �x =
0.15 and �t = 0.005. Snapshots of the numerical and exact
solutions are displayed in Fig. 2. Excellent agreement is
reached. Note that the axis scale changes along with time. It
is more illustrative to show the dynamics under a logarithmic
scaling in Fig. 3.
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FIG. 6. Numerical error ‖ (ψ − ψ ex)(·,t) ‖L∞ : circles denote the
ALEX boundary condition and crosses denote Zhang’s boundary
condition.

Now we compare our results with two representative
boundary treatments obtained in [18] with a finer grid �x =
0.01,�t = 0.001. In Fig. 4, the first subplot shows the result
of a local boundary condition proposed by Szeftel [9]. The
additional numerical cost for the boundary treatment is on
the order of O(nT ), which is the same as that of the ALEX
boundary condition. We observe some reflections, particularly
at the left boundary.

Another boundary condition, which was proposed by
Arnold et al. [6], is a nonlocal convolution one derived via
the Z transform. In its semicontinuous form, this condition
is exact and the numerical implementation suppressed the
spurious reflection very well. Careful comparison shows that
the numerical error of the ALEX boundary condition is slightly
bigger. However, because there is no time cutoff in Arnold’s
boundary treatment, the additional numerical cost is on the
order of O(n2

T ), where nT is the total number of time steps
for a simulation. This computing load may prohibit a long
simulation.

We make a further comparison with another simple and
efficient boundary treatment proposed by Zhang et al. [10]
for the same benchmark problem, yet with a choice of the
computing domain as [−5,5] and xc = 0. Their boundary
condition may be formulated as follows:

3iω0

π

∂ψ

∂x
− 2

∂2ψ

∂2x
±

⎛
⎝

√
ω3

0

π
ψ + 6i

√
ω0

∂ψ

∂t

⎞
⎠ = 0. (13)

They chose ω0 = 16 in the implementation, which actually
optimizes the performance for this particular test. The errors
are displayed in Fig. 5. Our numerical error is less than one-
tenth of theirs. Moreover, when the major reflection appears at
around t = 1, our numerical error is less than 1% of theirs.

We also mention that in [15], the spatial-temporal Laplace
transform was applied on [xM,∞) to get the exact solution,
which was then expanded in the form of

∑∞
n=0 ãn(s)q̃n with

q̃(q) = q+q0

q−q0
. Besides being relatively more complex, the effect

in reflection suppression depends on the specific form of the
equation and the empirical choice of the analytic function
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FIG. 7. Relative L2 errors. (a) Antione’s boundary condition; (b) ALEX boundary condition and Zhang’s boundary condition.

q0(s). This boundary treatment has not been extended to
nonlinear problems. The above-mentioned benchmark com-
parisons clearly demonstrate the nice features of high accuracy
and low cost for the proposed ALEX boundary condition.

IV. NUMERICAL TESTS FOR THE NONLINEAR
SCHRÖDINGER EQUATION

We take the cubic nonlinear Schrödinger equation as an
example,

iψt = −ψxx − |ψ |2ψ. (14)

We first reproduce numerically a soliton over a computing
domain [−10,10],

ψex(x,t) = sech[
√

2(x − 15t)]

× exp

[
15i

2
(x − 15t) + i

(
2 + 225

4

)
t

]
, (15)

with �x = 0.05 and �t = 0.001. The total simulation time
is 2. Comparison is made with Antoine’s boundary condition

LABC2, which was formulated through a pseudodifferential
operator approach and calculated by convolution [3].

The numerical results with both boundary conditions
are displayed side by side in Fig. 6. While the proposed
ALEX boundary condition is less costly as no convolution is
performed, it produces less reflection near the right boundary
x = 10.

To quantify the comparison, we compute the relative errors,

‖ (ψex − ψ)(·,t) ‖L2

‖ ψex(·,0) ‖L2
. (16)

As shown in Fig. 7, the ALEX boundary condition produces
an almost exact solution, except for a time around 0.7 when
the soliton hits the right boundary. The errors are smaller than
all of Antoine’s boundary conditions.

Numerical error with Zhang’s boundary condition in [10]
is also presented in Fig. 7. For certain choices of ω0 = k2 in
(13), the reflection is weaker than LABC yet stronger than all
NLABC’s.

FIG. 8. (Color online) Soliton interactions. (a) Antoine’s boundary condition; (b) ALEX boundary condition.
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Now we simulate the soliton interactions and compare the
ALEX boundary condition with Antoine’s boundary condition.
As seen from Fig. 8, essentially no reflection is observed at
the boundary with the ALEX boundary condition, whereas
Antoine’s boundary condition does produce a small yet
observable reflection.

The above simulations and comparisons demonstrate the
high fidelity and efficiency of the proposed ALEX boundary
condition for treating the cubic nonlinear Schrödinger equa-
tion. We remark that Zheng [17] proposed a method that is
much more accurate than all the above-mentioned treatments.
However, it seems overwhelmingly complex, applies only to
integrable systems, and requires reformulation for different
nonlinearity and potentials.

V. CONCLUSION

In this work, we proposed a convolution-type boundary
condition. The kernel functions are expressed in terms of
the Bessel functions. Drawing upon previous work on the
approximate linear relations among these special functions,

we then proposed an explicit local boundary condition with
16 neighboring grid points. Extensions to the nonlinear
Schrödinger equation are straightforward using an operator
splitting approach. Numerical results and comparisons with
existing boundary treatments demonstrate excellent reflection
suppression capability for the proposed boundary condition.
The accuracy is comparable to the convolution-type boundary
conditions, whereas the computing load is among the lowest.
As a result, it has been given the term the ALEX (ALmost
EXact) boundary condition. Moreover, when we apply it to
the cubic nonlinear Schrödinger equation, it captures very well
both the soliton propagation and the soliton interaction.
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