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Perturbation method to calculate the density of states
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Monte Carlo switching moves (“perturbations”) are defined between two or more classical Hamiltonians
sharing a common ground-state energy. The ratio of the density of states (DOS) of one system to that of another
is related to the ensemble averages of the microcanonical acceptance probabilities of switching between these
Hamiltonians, analogously to the case of Bennett’s acceptance ratio method for the canonical ensemble [C. H.
Bennett, J. Comput. Phys. 22, 245 (1976)]. Thus, if the DOS of one of the systems is known, one obtains those of
the others and, hence, the partition functions. As a simple test case, the vapor pressure of an anharmonic Einstein
crystal is computed, using the harmonic Einstein crystal as the reference system in one dimension; an auxiliary
calculation is also performed in three dimensions. As a further example of the algorithm, the energy dependence of
the ratio of the DOS of the square-well and hard-sphere tetradecamers is determined, from which the temperature
dependence of the constant-volume heat capacity of the square-well system is calculated and compared with
canonical Metropolis Monte Carlo estimates. For these cases and reference systems, the perturbation calculations
exhibit a higher degree of convergence per Monte Carlo cycle than Wang-Landau (WL) sampling, although for
the one-dimensional oscillator the WL sampling is ultimately more efficient for long runs. Last, we calculate
the vapor pressure of liquid gold using an empirical Sutton-Chen many-body potential and the ideal gas as the
reference state. Although this proves the general applicability of the method, by its inherent perturbation approach
the algorithm is suitable for those particular cases where the properties of a related system are well known.
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I. INTRODUCTION

A complete description of an isolated system at energy E

is given by the phase space volume,

�(E) ≡ 1

N !h3N

∫
d �qd �p�(E − H (�q, �p)), (1)

where �q, �p are 3N -dimensional vectors stating the positions
and momenta, respectively, of the N particles, �(x) is the
Heaviside step function, h is Planck’s constant, and H (�q, �p) is
the Hamiltonian. Through this quantity—or the closely related
density of states (DOS) ω(E) = ∂�/∂E—the connection with
the entropy of classical thermodynamics is established as
one of S ∝ ln �(E) (Hertz definition) or S ∝ ln ω(E) (Planck
definition). These two definitions are not mathematically
equivalent and, as pointed out and discussed by Dunkel and
Hilbert (see Ref. [1] and references cited therein), there is
disagreement in the literature as to which one is correct.
However, these two definitions become numerically the same
for large systems. Indeed, if the system is great enough in
the number of its degrees of freedom, fluctuations in its
kinetic energy will be vanishingly small, the potential energy
distribution will be Boltzmannian, and the system can be
said to be at equilibrium at constant temperature, which is
a desirable situation as it can be reproduced more readily
in reality, for which the systems studied are generally large
in this sense. Unfortunately, the size of systems that can be
investigated by computer simulation may still be far from
adequately approaching this limit.

The most common solution to this problem of size is to
couple the system, in the mathematical sense, to an infinitely
large heat reservoir at constant temperature, thereby creating
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a formally infinite system. This system is governed by the
canonical partition function (CPF), which can be expressed as

Q = eU0/kT

∫ ∞

U0

dEω(E)e−E/kT , (2)

where U0 is the lowest possible energy, k is Boltzmann’s
constant, and T is the absolute temperature. This, or a math-
ematically equivalent, route to the CPF has been exploited in
numerical methods such as the reference system equilibration
(RSE) method [2], the histogramming [3,4] and multihis-
togram [5,6] methods, the histogram reweighting method
[7,8], the Wang-Landau (WL) sampling [9,10], multicanonical
methods [11–13], transition matrix methods [14,15], or the
nested sampling (NS) algorithm [16–19].

The CPF is directly related to the free energy by

A(T ,V ) = −kT ln Q(T ,V ), (3)

and thus knowledge of it enables one to compute the tempera-
ture or volume, V , dependence of any desired thermodynamic
property. Because the integrand ω(E)e−E/kT is a sharply
peaked function in E, it is numerically an easier task to
obtain the partition function at a specific temperature than to
obtain the complete DOS. If one is interested in free energies
only at one or a few specific temperatures, especially low
ones, direct methods [20–24] to the free energy, that is, the
CPF at predefined temperature, will always be more efficient,
simply because they have a smaller region of integration about
which to worry. The DOS approach, on the other hand, is
more powerful when a range of temperatures is of interest,
especially in systems or models where the CPF has no volume
dependence, for example, lattice models. The width of the
temperature interval of interest implicitly defines the width of
the corresponding energy interval [E−,E+] that one needs
to consider in a numerical search for ω(E). However, for
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continuous potentials, ω(E) approaches the known DOS of
the ideal gas at high E, as the kinetic energy contributions will
dominate the potential energy ones. In these cases, E+ can be
defined independently of any temperature.

In the WL method, originally developed for model lattice
systems but generalized to continuous Hamiltonians by later
authors [25–28], the DOS is computed through a random walk
subject to importance sampling whose weights are iteratively
adjusted in an attempt to make all energies equiprobable. The
weights that achieve this are reciprocal to the DOS. The preci-
sion by which the weights are adjusted is iteratively increased
until desired precision is reached. The main drawback of the
method is that the statistics to estimate the convergence of the
weight update factors needs to be gathered anew between each
update of the precision, leading in some sense to a “duplication
of efforts.” A great wealth of literature has sprung up around
the WL method, and its extensions [29–38], and so it is widely
known and recognized. Therefore, we make use of it for
comparison purposes with the perturbation calculations.

In the NS method, efficacy is achieved by having the
random walk subject to a weight function that acts on a
nonuniform distribution of energy segments, concentrating on
the low energy regions. The limits of each energy segment
are calculated “on the fly,” starting from high energies and
proceeding downwards by cutting the lower segments in two.
The limits are set from the condition that the probability of
encountering a configuration belonging to a given segment be
equal to a predetermined function of the depth of that segment
in the partitioning tree. Once a limit is found, it stays fixed and
is never subject to reevaluation. This removes the “duplication
of efforts” of the WL algorithm. The most problematic case
for this algorithm is for potentials that exhibit large regions
of infinite energy, as in, for instance, the square-well fluid,
because then the energy partitioning scheme cannot be gradual.
There is hence no benefit in using the simplification of the hard
molecular core with this method.

In the RSE method, on the other hand, the system is coupled
to a finite heat bath with which it is allowed to exchange energy.
The DOS of the heat bath is presumed to be known. The
combined system is evolved according to the microcanonical
probability distribution and the probability of the system
of having different energies E < Etot is histogrammatically
tracked and related, up to an Etot-dependent factor, to the
sought system DOS. The main drawback is that the factor
can be calculated precisely only for very low energy and
smooth potentials, and good statistics is only obtained in
a narrow range of E below Etot, meaning, in practice, that
several simulations at different Etot have to be run. By careful
considerations of the continuity of the DOS, the Etot-dependent
factor may be extrapolated to higher energies in the end.

In this paper, we investigate an alternative method: a route
to obtaining ω(E), assuming, like the RSE method, that the
DOS of a different system is known. Unlike the RSE method,
however, the idea is that the other system is also similar, and
thus knowledge of its DOS is able to speed up the calculation
by focusing on the difference between the two systems. This
lessens the need for importance sampling; in essence, the
one system is used to sample the important regions of the
other system, because these regions are supposedly shared to
a large extent because of systemic similarity. We develop the

method in the next section and, after that, examine some simple
numerical examples of its use.

II. DESCRIPTION OF THE ALGORITHM

Consider two systems, for simplicity labeled as 0 and 1,
for which the DOS are ω0(E) (known) and ω1(E) (sought).
Classical microcanonical sampling of either of these systems
can be carried out efficiently if the potential energy depends
on the configuration only. Under this restriction, one simulates
a Markov process in configuration space using the acceptance
probability [39–41],

PE(Ui,Uf ) = min

{
(E − Uf )MN/2−1

(E − Ui)MN/2−1
,1

}
, (4)

if E > Uf and zero otherwise, where Ui and Uf denote the
potential energies before and after, respectively, an unbiased
trial move in configuration space. This equation represents the
ratio between the densities of the kinetic energy states for a M-
dimensional configuration space with N molecules and is the
proper weight function to use for the microcanonical ensemble
where all accessible states are considered equiprobable.

Let us now suppose that systems 0 and 1 are “similar” in
the sense that they share the same configuration space. Then
system 1, differing only by its potential energy expression,
can be viewed as the result of a perturbation on system 0. For
instance, let us define the generalized Hamiltonian,

Hλ(�q, �p) = H0(�q, �p) + λU ′(�q), (5)

where U ′(�q) is the perturbation depending on �q only and λ

is an interpolating factor between the reference (λ = 0) and
the fully perturbed (λ = 1) system. Correspondingly, we may
define �λ(E) according to Eq. (1) after inserting Eq. (5). Let
us now consider the superensemble that includes λ as an extra
coordinate. Tentatively, we write its phase space volume as

�̂(Ê) ∝
∫

d �qd �pdλdζ�(Ê − H0(�q, �p) − λU ′(�q) − ζ 2/2η),

(6)

where η is a formal mass associated with the λ motion and ζ

is a dummy variable of integration for the formal momentum
of this motion. The total energy of this ensemble is Ê, which
is different from the regular total energy E because it also
contains a kinetic contribution ηλ̇2/2 in addition to that of
the regular coordinates. Therefore, we consider instead the
constrained superensemble, whose phase space volume is

�̂′(Ê) ∝
∫

d �qd �pdλ�(Ê − H0(�q, �p) − λU ′(�q))

=
∫

dλ�λ(E), (7)

for which ζ ≡ 0, and so Ê = E as required. We then take the
derivative with respect to E and obtain the constrained DOS
of the superensemble,

ω̂′(E) ∝
∫

dλωλ(E). (8)

Because the weighting factor of this integral is λ independent,
the acceptance probability of each state is still only propor-
tional to the density of its kinetic energy states, and we see
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that the random walk also along the λ coordinate should be
governed by an unmodified Eq. (4).

We now define an “equilibrium constant” Kij (E) as the
ratio between the number of cycles the Markov chain sampling
the constrained superensemble visits system λ = λj to the
number of cycles it visits system λ = λi . The existence of this
equilibrium constant is guaranteed by the detailed balance
condition that the Markov chain fulfills. From the direct
proportionality between the microcanonical probability and
the DOS, it follows that

Kij (E) = ωλj
(E)

ωλi
(E)

= 〈Pij (E)〉i
〈Pji(E)〉j , (9)

where Pij is the acceptance probability for changing from λ =
λi to λ = λj and 〈· · ·〉i denotes a microcanonical ensemble
average over the system λ = λi . The last equality follows
from the flux balance at equilibrium, to wit that the gross flux
between two states, given by the product of the acceptance
probability and the occupation probability, is equal but of
opposing sign in the reverse directions, that is,

PE(Ui,Uj )(E − Ui)
MN/2−1 = PE(Uj ,Ui)(E − Uj )MN/2−1,

(10)

where Ui and Uj denote the potential energies of two states
defined by any two arbitrary sets of the nonmomentum
coordinates of the Hamiltonian; in the argument to follow, we
restrict our attention to when i and j correspond to λi and λj ,
irrespective of �q. The quantity (E − U )MN/2−1 is proportional
to the kinetic energy DOS, and because the configuration space
is sampled subject to this bias, it is thus also proportional to
the probability of being in a state of potential energy U . The
probability of being in any spatial configuration with λ = λi

is proportional to ωi(E). Let us therefore divide Eq. (10) by
ωi(E)ωj (E) and integrate over the spatial dimensions,∫

d �q PE(Ui(�q),Uj (�q))(E − Ui(�q))MN/2−1

ωi(E)ωj (E)

=
∫

d �q PE(Uj (�q),Ui(�q))(E − Uj (�q))MN/2−1

ωi(E)ωj (E)
. (11)

We now identify the microcanonical ensemble average of PE

on each side as

〈Pij (E)〉i =
∫

d �q PE(Ui(�q),Uj (�q))(E − Ui(�q))MN/2−1

ωi(E)
(12)

and then obtain Eq. (9) after rearrangement. It is at this
point appropriate to stress that in the case when MN/2 = 1,
Eq. (9) does not hold and the algorithm, as here outlined, is
not applicable. Such is the case of a single particle (N = 1)
confined to two spatial dimensions (M = 2); it is never the case
in three spatial dimensions (M = 3). Excepting that special
case, we have that

K01(E) =
imax−1∏
i=0

Ki,i+1 = 〈P01(E)〉0

〈P10(E)〉1
= ω1(E)

ω0(E)
, (13)

and it is from this relation that ω1(E) may be extracted, if
ω0(E) is known, in addition to the ratio ω1(E)/ω0(E), which
is always obtained. The method outlined may be regarded
as a special case of Bennett’s method [42], but applied to

the microcanonical ensemble. Alternatively, if one does not
sample the transition probabilities, but instead propagates the
system between the two states, it may also be regarded as a
case of the expanded ensemble method [43] applied to the
microcanonical ensemble; this, however, is a line of attack
which we shall not pursue.

Implicit in the derivation so far is that the minimum value
of the potential energy expression is to be independent of
λ. In other words, the “potential energy” of a configuration
(�q,λ) is to be understood as the potential energy difference
with respect to the global potential minimum over �q keeping
λ constant. This follows from Eq. (10) (unless we make
PE explicitly λ dependent) and the following argument. In
Eq. (10), the quantity E − U is the kinetic energy. Let us
say that the maximum kinetic energy is E, obtained when
U = U0, the minimum potential energy. As the λ coordinate
does not affect the kinetic energy, the potential energy U = U0

should correspond to the maximum kinetic energy E regardless
of the value of λ. This does not restrict the method in any
formal sense but it may pose a practical hurdle for very
complicated Hamiltonians for which energy minimization is
difficult. This is especially true if several intermediate λ values
are considered over a chain of gradual perturbations, if these
affect the energy minimum in a nontrivial way.

A. Schematic of the algorithm

In the simplest case, one considers only two systems:
reference (system 0) and perturbed system (system λ, where
λ indicates the degree of perturbation). Given a starting
configuration {�qi} in the phase space of system 0 with the
potential energy Ui , the algorithm may be outlined as follows
when broken down into its elementary steps.

(1) Generate uniform random number a ∈ [0,1].
(2) If a � B, go to step (8).
(3) Generate random configuration {�qf } by random dis-

placement from {�qi}.
(4) Calculate the energy Uf of {�qf }.
(5) Generate uniform random number a′ ∈ [0,1].
(6) If a′ � PE(Ui,Uf ) by Eq. (4), let {�qi} → {�qf }.
(7) Iterate from step (1).
(8) Calculate the energy Uλ of a perturbed system in

configuration {�qi}.
(9) Calculate PE(Ui,Uλ) and accumulate average 〈P0λ〉0 ≡

〈PE(Ui,Uλ)〉0.
(10) Are averages converged? If not, iterate from step (1).

Here B ∈ [0,1] is an arbitrary constant that decides the
priority among the computer cycles for either propagating the
microcanonical system, to ensure that the average acceptance
probabilities sampled come from more or less uncorrelated
points, or sampling the actual averages, to ensure they get
sufficient statistics. In general, the same steps have to be carried
out also for system λ on system 0, but in some specific cases
(as we see below) this is not necessary, because Pλ0(E) ≡ 1 in
these cases. When one runs the algorithm on many systems, as
when one considers gradual perturbations, or for many discrete
E values, it is natural to run them in parallel for maximum
efficacy.

The convergence and accuracy of the proposed method
hinge on the accuracy in the ensemble averages 〈Pλ0〉λ
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and 〈P0λ〉0. Since obviously both limλ→0 P0λ(E) ≡ 1 and
limλ→0 Pλ0(E) ≡ 1 hold for all E and are thus without
statistical uncertainty in this limit, it is certain to state that
for any system sufficiently close to the reference system, the
perturbation calculations will always be superior to direct
methods. In this paper, for the most part convergence has
been deemed to have been achieved when 〈Pλ0〉λ/〈P0λ〉0

differs by less than an amount ε > 0 from its previous value
calculated a fixed number of cycles earlier. A more stringent
alternative that leaves less room for apparent convergence by
chance, and thus a more efficient simulation, would be to
require that the estimated standard error of each individual
average is below some threshold, but the simple convergence
criterion has proven satisfactory in the cases considered.

III. NUMERICAL EXAMPLES

In principle, any two Hamiltonians for which we can
calculate the requisite ensemble averages 〈P01〉0 and 〈P10〉1

can be used in this method. The algorithm hence does not
pose any greater programming challenges than that of regular
Metropolis Monte Carlo techniques. Here we shall consider
two primary cases, the square-well fluid and a class of
anharmonic Einstein crystals, and one secondary example, the
vapor pressure of liquid gold. The simplicity of the Einstein
crystal is motivated by a desire to keep the computational
demands low as repeated comparisons with other methods
quickly become prohibitively expensive otherwise; the gen-
eralization to more degrees of freedom is trivial in all other
respects. The square-well fluid, on the other hand, presents
an interesting test case in that appreciable regions of its
configuration space are of infinite potential energy. Last but not
least, the simplicity of the primary numerical examples makes
it easier to gauge the correct behavior to be exhibited by the
calculation. Nevertheless, the example calculation of the vapor
pressure of gold illustrates the general applicability of the
method.

Except for the calculations on gold (see Sec. III C), all of the
numerical examples to be presented have been compiled using
the GNU C compiler (version 4.4.3) with its intrinsic random
number generator and executed on a single 2-GHz core of the
author’s Intel Core 2 Duo laptop computer. Memory demands
of the calculations are all insignificant.

A. Anharmonic Einstein crystal

We investigate in this section some simple numerical
test cases on a class of anharmonic Einstein crystals. By
this we mean three-dimensional crystals for which the CPF
of N molecules can be written Q(T ) = q(T )3N/M , where
q(T ) is the partition function of a single M-dimensional
oscillator with M = 1,2,3 being the spatial (not the phase
space) dimensionality. The anharmonic systems studied were
governed by the potential energy expression

uλ(x) = x2 + λx4, (14)

where the term λx4 is the perturbation and x the displacement
from equilibrium.

Let us first consider the case when M = 1, because it
is the simplest. The natural reference system to use when
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FIG. 1. Logarithm of the DOS of oscillators subject to the
potential energy of Eq. (14) for λ = 0.1,0.2,0.5 given with respect to
the λ = 0.0 reference DOS in one spatial dimension.

approaching the anharmonic Einstein crystal is that of the
harmonic Einstein crystal since q(T ) for an harmonic oscillator
is known analytically: Its (classical) DOS,

ω0(E) = 2π

h

√
m

kf

, (15)

is independent of energy. In this equation, m is the mass and
kf the force constant. Visual inspection (Fig. 1) reveals that
the logarithms of the resulting DOS are quasilinear in energy
with a constant of proportionality directly proportional to λ.
The vapor is assumed to be ideal, so that the vapor pressure is
given by (assuming one-dimensional q),

pvap(T ) = kT

(�q)3
, (16)

where � is the thermal de Broglie wavelength. This equation
is derived from the equality between the chemical potentials
of the gas and crystal phases in the limit of N → ∞. The
results of these calculations are shown in Fig. 2 plotted
against temperature. They are useful as a “yardstick” of how
large the perturbations considered here are in relation to real
systems.

Let us now briefly consider the case when M = 3. The DOS
of the reference system is then E dependent,

ω0(E) = 4

(
π

h

√
m

kf

)3

E2. (17)

The calculated DOS as a function of energy are shown in
Fig. 3. The most striking thing about this calculation is the
much quicker convergence times for M = 3 than for M = 1.
The reason is that only one ensemble average has to be sampled
in this case, namely 〈P01(E)〉0, 〈P10(E)〉1 being unity for all E

and this holds also for M > 3. Not only does this bring about
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FIG. 2. Deviation of the vapor pressure of the anharmonic
Einstein crystal from the harmonic reference.

a twofold speed increase because of the reduced workload,
but also the statistical uncertainty in the ratio between the two
averages is reduced, both because only one average now has
statistical uncertainty and also because the individual terms of
this average are all nonzero, whereas in the one-dimensional
case some terms in the averaging were strictly zero, leading to
very oscillatory terms. The net effect is a quicker convergence
and will be quantitatively assessed below.
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FIG. 3. Logarithm of the DOS of oscillators subject to the
potential energy of Eq. (14) for λ = 0.1,0.2,0.5 (arbitrary units) in
three spatial dimensions.

1. Comparison of efficacy

We now turn to a comparison with the WL algorithm in
terms of accuracy and speed of convergence. In the discussion
to follow, the DOS has been restricted to 17 energy grid
points, spaced 0.1u0(1) units apart. The maximum random
displacement in x was 1.5 for both the WL sampling and
perturbation calculations for M = 1 and 1.0 for M = 3. For
the WL sampling, also the random walk in momentum space
used this maximum displacement with the mass taken to be
unity. To combat boundary artifacts in the WL simulations,
the update rule of Schulz et al. [44] was employed. The
perturbation calculations do not suffer from any boundary
artifacts.

As an objective measure of the convergence, we calculate
the mean deviation of the numerical energy derivative d ln ω(E)

dE

from that of the “exact” DOS. When calculating the error of
the WL sampling, the “exact” DOS used for reference has been
calculated by long runs of the perturbation method; likewise,
when calculating the error of the perturbation method, the
comparison is made with respect to the DOS that has been
calculated by long runs of the WL sampling. Running shorter
simulations with either the perturbation or WL method allows
these partially converged results to be compared against the
reference curve produced by the other method and used as an
indication of the level of convergence attained. The results of
these comparisons are given in Figs. 4, 5, and 6. The absolute
values of ln ωλ(E) cannot be compared directly as the WL
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FIG. 4. Estimated errors (〈| d ln ωest.
dE

− d ln ωexact
dE

|〉) as a function of
number of Monte Carlo cycles (normalized per number of energy grid
points) from runs of the one-dimensional anharmonic oscillator with
λ = 0.1 and 17 energy grid points. In the graph, the number of Monte
Carlo cycles reported for the perturbation calculations is the actual
number times two to correct for that in each cycle two ensemble
averages are sampled. Error bars represent standard deviations from
three independent runs.
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initialized from the reciprocal DOS of the reference state or a “blank
slate.” The apparent limiting error reflects the disagreement in the
second decimal place about what the limiting average of d ln ω

dE
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according to the two methods. See text for details.

sampling does only provide ωλ(E) up to an undetermined
multiplicative constant that is unique to each run.
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FIG. 6. Same as Fig. 5 but for λ = 0.5.

As a check, the results of these two methods have been
found to agree roughly up to the second decimal place in
d ln ωλ

dE
on average for M = 3, but for M = 1, a higher degree

of agreement between the two methods is not a problem. To
analyze the source of this discrepancy—which on the face of
it would seem to indicate that at least one of the algorithms ex-
hibits convergence difficulties to the exact result—we note that
whereas the perturbation calculation yields ω(E) at discrete
energy grid points {Ei}, the WL sampling rather calculates
the average 〈ω(E)〉 over intervals �E = 0.1u0(1) centered on
each Ei . The numerical, finite-difference derivatives do hence
not agree between the two methods, unless ω(E) happens to
be a linear or nearly linear function. In any case, this level of
accuracy is sufficient for our purposes as it clearly allows us
to judge which method is faster.

For the perturbation method, there is, in principle, the
question of what the optimal distribution of labor is between
sampling the averages required to calculate the ratio of the
DOS, and how often one propagates the microcanonical
Markov chains. No claim is made that the division, of (80%
probability) propagating the microcanonical Markov chain
and (20% probability) sampling averages, employed in this
comparison is optimal. It is outside the scope of this work to
provide a detailed analysis of this optimum, or of the influence
of step size, acceptance rates and so on. We note that similar
issues are also present for the WL algorithm as, indeed, the
rate and reliability of convergence of the WL algorithm has
been the subject of much discussion in the literature. In fact,
the measure of convergence as originally proposed may lead to
convergence difficulties [45–47]. Indeed, for the case M = 1,
when run using the requirement that the histogram should be
“flat,” the WL algorithm is noticeably slower and does not
achieve a smooth curve as reliably as the perturbation method
(data not shown).

However, if one instead employs the convergence criterion
for the WL sampling that was suggested by Morozov and
Lin [48,49] where, rather than enforce strict “flatness” of the
sampled histogram, we require a minimum number of “visits”
for each histogram entry before updating the WL precision
factor, the WL sampling—still for M = 1—is quicker than
the perturbation method. The convergence according to this
criterion was tested every 105-th cycle and the required
minimum number of visits was

Hi = ln 2

2 ln fi

(18)

for the ith iteration of the WL sampling. In this equation fi is
the multiplicative precision factor used by the WL algorithm
in adjusting the estimate of the DOS. In this implementation,
it is given by fi = √

fi−1, with f0 = e. In this comparison
the WL algorithm was initiated from the flat DOS of the
harmonic oscillator and so benefits to the exact same extent as
the perturbation method from the similarity between the two
systems.

Let us now comment on the case when M = 3. In this
case, we find the opposite results as compared to the one-
dimensional case in terms of the rate of convergence, namely
that the perturbation method is quicker than the WL algorithm,
even in the long run. For a perfectly fair comparison, the
convergence of the WL sampling has also been investigated
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when the algorithm is initialized from the reciprocal of
Eq. (17), instead of from a “blank slate.” As can be seen
in Figs. 5 and 6, the effect is small, within the error bars and
mainly confined to the early cycles. This means that initializing
the WL sampling from the DOS of the reference system is not
a viable alternative to the actual perturbation method.

B. Square-well fluid tetradecamer

In this numerical example, we consider the square-well
fluid as a perturbation of its hard-sphere analog. The DOS of
the hard-sphere gas obeys the form ω(E) = ξ (N,V )E3N/2−1,
where ξ (N,V ) is an unknown function of the number of
particles and volume. Our ignorance of the precise form of
this constant of proportionality means that it will be possible
to provide completely only the ratio between the DOS. This,
in turn, means that we cannot compute, for instance, the
phase diagram of the square-well fluid, but only properties
at constant N and V . A prime example of such a property
is the constant-volume heat capacity. The unit of energy and
temperature that we use for the remainder of this section is the
magnitude of the pair potential at unit distance and λ = 1. The
unit of length is the hard-core diameter.

To be precise, the reference system interacts through the
pair potential

u0(r) =
{∞ r < 1,

0 r � 1,
(19)

where r denotes the intermolecular separation. The perturba-
tion we introduce is

u′(r) =
{−1 r < σ,

0 r � σ,
(20)

so that the total pair interaction is written

uλ(r) = u0(r) + λu′(r). (21)

For our chosen combination of systems, with the common
energy zero level, transitions from the perturbed system to the
reference are always accepted, which means that 〈P10(E)〉1 ≡
1 and so there is, unlike in the previous section, no need to
consider two ensembles explicitly. Thus, only configurations
of the reference hard-sphere system have to be generated,
and furthermore, these configurations are independent of E

so that all averages 〈P01(E)〉0 can be sampled simultaneously
for a given density. In the calculations to follow, a random
95% of the Monte Carlo cycles consisted of propagating
the microcanonical Markov chain and the remaining 5% of
accumulating averages.

We let σ = √
2, an arbitrary choice based purely on

aesthetic appeal: It is the lattice constant of the close-packed
cubic crystal. For this system, the energy minimum is −52λ for
14 molecules. Thus, we consider the total energy expression,

Uλ({rij }) = 52λ +
14∑

i>j=1

uλ(rij ), (22)

whose zero-level is independent of λ. In the preceding
equation, {rij } is the ordered set of all pairwise distances
between the 14 molecules. To satisfy the requirements of
the microcanonical ensemble, we introduce the constraint that

the cluster is confined to a fixed spherical volume, arbitrarily
chosen to be either 500π/3, that is, corresponding to a radius
of 5 and a volume fraction of 1.4% (“low density”), 108π/3,
corresponding to a radius of 3 and a volume fraction of 7/108
(“low-medium density”), or 9π/2, corresponding to a radius
of 3/2 and a volume fraction of 14/27 (“high density”).

For the propagation of the hard-core Markov chain, one
molecule was moved at a time. At the volume fraction of
1.4%, the displacement step was 3.0; at the volume fraction
of 7/108, it was 1.0; and at the volume fraction of 14/27,
it was 0.15. These displacements led to acceptance rates of
51%, 54%, and 52%, respectively. The DOS was sampled in
energy intervals of 1.4, starting at E = 32 for the low-medium
density and covering the higher energies in batches of 60 grid
points. The calculations proceeded for at least 2 × 108 cycles,
which on the author’s machine took a little less than 3 min
of real time for all 60 energy points sampled at once on a
single processor core, but considerably longer runs were found
necessary to achieve the same level of high convergence in the
lowest energy regions, where up to 20 min could be necessary.
A refined attack would distribute the energy grid unequally
over the energy range.

One interesting aspect of the way we have defined the
perturbation in λ is the self-similarity that arises. Consider
ωa(E), where a is any point along the λ axis. This quantity is
given by

ωa(E) = ω0(E)〈P0a(E)〉0, (23)

because 〈Pa0(E)〉λ ≡ 1 in this system. However,

〈P0a(E)〉0 =
〈
E/a − U

E/a

〉
0

= 〈P01(E/a)〉0. (24)

Therefore, we have the self-similarity relation [50]

ωa(E)

ω0(E)
= ω1(E/a)

ω0(E/a)
. (25)

We see through this formula when we take the limit a → 0
that ω1(E) → ω0(E), when E → ∞. An indication that the
computer code is well and working is that the DOS for the
square-well tetradecamer (given on the logarithmic scale with
respect to the reference system in Fig. 7) actually shows this
mathematically proven convergence on that of the hard-sphere
tetradecamer at high energies. The algorithm also runs quicker
until convergence in those cases. The interesting part, where
convergence is also a bit more problematic, is for the low-
energy regions where the DOS of the square-well tetradecamer
exhibits a clear deviation from its hard-sphere counterpart. The
depth of this “dip” in the curve is decreased when the density
is increased. It is easy to see why this should be by considering
the close-packed density where the molecules have no liberty
of movement left, conditions under which the hard-sphere and
the square-well fluid are indistinguishable.

In Fig. 8 is shown the temperature dependence of the
constant-volume heat capacity of the coupled system at the
“low-medium” density corresponding to the volume fraction of
7/108. The heat capacity was calculated through the statistical
mechanical relation

Cv = 2kT
∂ ln Q

∂T
+ kT 2 ∂2 ln Q

∂T 2
. (26)
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The broad peak in this function at around T ≈ 0.9 is charac-
teristic of a first-order phase transition far from the thermody-
namic limit [51], in contradistinction with the singularity that
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FIG. 8. Constant-volume heat capacity of the square-well tetrade-
camer as a function of temperature at a volume fraction of 7/108.
The broad peak in the heat capacity is indicative of a first-order phase
transition of a finite-sized system. The dashed line is the translational
equipartition heat capacity of 21, as well as the heat capacity of
the hard-sphere reference system. Squares denote heat capacities
calculated from canonical Monte Carlo simulations according to
Eq. (27).

one obtains for the infinite system, even if, contrary to the case
of Ref. [51], it is clear from the density in this case that it is a
question of a gas-liquid rather than a liquid-solid transition. At
high temperatures, we expect the translational equipartition
value of Cv = 3N/2 = 21 to hold, and this is borne out by
the graph. Moreover, this is also the limiting heat capacity at
low temperatures, since the law of Dulong and Petit does not
hold for the square-well fluid. This is because the potential is
not analytical, and so there is no first-order quadratic potential
energy term to contribute to the heat capacity. This gives rise to
a largely symmetric peak in the heat capacity. For comparison,
the heat capacity calculated from regular constant-volume
Monte Carlo simulations and the fluctuation formula,

Cv = 3Nk

2
+ 〈U 2〉 − 〈U 〉2

kT 2
, (27)

are also shown in Fig. 8. It is to be noted that these simulations
are very difficult to converge in the low-temperature regime,
not the least because of the numerical instability that arises
from the T 2 denominator for small T .

1. Comparison of efficacy

In Fig. 9, we see the level of convergence attained as a
function of the Monte Carlo cycles for both the perturbation
calculations and the WL sampling for the “low-medium”
density. The implementation of the WL sampling is essentially
the same as for the oscillators discussed earlier. The maximum
displacement in the random walk was the same as for the
perturbation calculations, 1.0 units in the configurational space
and the same in momentum space (the mass being taken as
unity). Like then, the error was estimated by comparing the
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FIG. 9. Average error (〈| ln ωest.
1 (E) − ln ωexact

1 (E)|〉) as a function
of total Monte Carlo cycles in the energy interval E ∈ [50.4,133]
(with respect to the ground-state energy). Each point is the average
of three independent runs.
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slope of the partially converged ln ω(E) of one method, to that
of the converged ln ω(E) of the other method. Because ln ω(E)
is not a linear function in E, and for the reasons discussed ear-
lier, perfect agreement between the two converged derivatives
is not attained with the numerical differentiation. The apparent
limiting error is about 0.03 for the average unsigned difference
between the two calculated slopes, which is sufficient for the
comparison.

As in the case of the oscillators, it is clear that the
perturbation calculations exhibit a greater degree of conver-
gence already after a small number of cycles than the WL
sampling. When the two algorithms are close to maximum
convergence, they become more difficult to distinguish. We
also note that although not apparent in this calculation—
because the calculation of the energy of the square-well fluid
is computationally trivial—the number of energy evaluations
for the perturbation calculations only constitute 1/20th of
the total number of cycles (this is because 95% of the
cycles are arbitrarily dedicated to propagating the hard-sphere
Markov chain). This will have an important speed impact
when considering more demanding interaction potentials, for
example, many-body potentials. One of the most efficient
cases for the perturbation method would thus seem to be the
calculation of the DOS of many-body potentials with hard
cores (so that the hard-sphere reference system can be used
with benefit).

C. Liquid gold

So far, we have only considered systems of low dimen-
sionality and simple Hamiltonians. This has allowed us to
compare the speed and accuracy with the WL algorithm and
the calculation of heat capacity with canonical Monte Carlo
simulations at no excessive numerical demands. However,
the method is also applicable to higher dimensions and
more demanding Hamiltonians, provided there is a suitable
higher-dimensional reference system to use. When there is, the
full benefits of the method are realized. However, the method
may always be applied using the ideal gas as the reference
system. Although the full power of the method relative to
other approaches is not realized (because the overlap between
the system of interest and the reference is small), it is always
possible, in principle, to carry out the calculation. To illustrate
this, our final example is the calculation of the vapor pressure
of liquid gold. We consider a N = 108-particle system with
periodic boundary conditions.

1. Numerical protocol

For completeness, we note that the normalized DOS of the
reference ideal gas system is given by

ω0(E) = (2πm)3N/2V N

h3NN !�(3N/2)
E3N/2−1, (28)

where V is the volume, m is the particle mass, and �(x) denotes
the Euler � function. Here we have included the center-of-mass
motion as one of the degrees of freedom. This is the natural
result of our Monte Carlo approach. In molecular dynamics
implementations, that would not be the case, and consequently
the reference DOS would be slightly different [52–54]. This
needs to be kept in mind if a potentially more efficient

molecular dynamics sampling is to be attempted. Since ω0(E)
is known completely, we make use of it in conjunction with
Eq. (25) to obtain ω1(E) at any E from simulations over
different λ at a single E.

The gold metal was described by the many-body Sutton-
Chen (SC)-type potential [55],

Utot =
N∑

i=1

[
N∑

j>i

ε

(
a

rij

)n

− cε

√√√√ N∑
j =i

(
a

rij

)m
]
, (29)

where the parameters n, m, a, ε, and c are taken from the
empirical parametrization of Çagin et al. [56] intended for
classical simulations. The values for Au are n = 11, m =
8, ε = 7.8863 × 10−3 eV, a = 4.0651 Å, and c = 53.082.
Because of the much extra numerical work required for the
N = 108 system and the many-body potential, the calculations
to be reported have been obtained from eight independent Intel
Xeon E5520 2.27-GHz processor cores on a parallel computer
architecture [57]. A single (E,λ) point took about 2 h of
processor time when run for 107 Monte Carlo cycles, and this
was deemed acceptable accuracy. The λ parameter was scaled
from 1.0 to 0.05 in steps of �λ = 0.05 at E = 20 eV and from
thereon in successive halvings until λ = 0.000 024 414 062 5;
the last point at λ = 0.0 was calculated by extrapolation
(vide infra). All simulations were carried out at a density
of 17.29 g/cm3, corresponding according to Paradis and
co-workers [58] to the average liquid density in the temperature
range 1337 K–1500 K for their recent density measurements,
for which the thermal volume expansion is about 1% over the
same temperature interval. Therefore, a further simplification
we make is that the thermal expansion coefficient of our
system is taken to be zero. Considering the simple (in relation
to the “real world”) interaction potential, this approximation
seems justifiable. The energy minimum was taken as the
single-point energy of the fcc symmetry at this density and
was U0 = −399.08 eV. It is generally not crucial to have an
exact value of the potential energy minimum because an error
in this quantity will primarily affect the DOS at the low end of
the energy range, which translates to low temperatures in the
partition function, corresponding to the crystalline state.

2. Results

The short-range repulsion of the interatomic potential is
very steep and resilient to the linear λ scaling. Connecting with
the point at λ = 0 furthermore would seem to require unbiased
random sampling, as the states of the ideal gas are completely
random. This step is analogous to the first energy partitioning
window in the NS method, which is also obtained by random
sampling. Random sampling is inefficient. However, when λ

is scaled in exponential fashion in the region close to zero, a
clear trend is visible (Fig. 10) which allows us to extrapolate to
λ = 0 by the geometric series. The resulting curve of ln ωλ(E)
as a function of λ is shown in Fig. 11. The extrapolated part
represents about 5% of the cumulative total value.

The vapor pressure was calculated according to

pvap(T ) = kT

�3

eU0/NkT +1

(2πN )1/2NQ
1/N

Au

, (30)
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where QAu is the partition function of the gold metal. This
equation is derived in the Appendix. We see in Fig. 12
the calculated vapor pressure as a function of temperature,
compared with experimental estimates [59]. When judging
the quality of the results, it must be kept in mind that the
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SC potential model is a very simple representation, and the
parametrization employed has been derived from properties
of the crystalline, and not the liquid, metal. The potential is
clearly not perfect as, for instance, the relative error in the
predicted surface tension well exceeds 50% [56]. It should
come as no surprise, then, that the absolute value of the
predicted vapor pressure is off by roughly a factor of 3.8–4.2
over the temperature interval considered, with the slightly
better agreement at the high end of the range. The variation in
this factor of around 10% is smaller than the absolute error,
and if the results are interpreted physically in terms of the
Clausius-Clapeyron equation,

ln
pvap

p0
= −�vapH

kT
+ �vapS

k
, (31)

where p0 is the pressure of some reference state (its definition
is arbitrary but affects the value of �vapS), we see that
this accuracy of the slope translates into a good estimate of
the molecular enthalpy of vaporization, �vapH . It is hence
primarily the molecular entropy of vaporization, �vapS, which
is underestimated by this parametrization of the SC potential. It
is not surprising that the accuracy in �vapH is higher because it
is related to the average well-depth of the interatomic potential
and has been explicitly fitted for the crystal. �vapS, on the other
hand, is related to the shape of the interatomic potential and is
a much more difficult quantity to parametrize.

IV. CONCLUSION

In this paper, it has been shown that calculating the
CPF through the DOS by a perturbation method is a viable
alternative to other techniques if the DOS of a related system
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is known. The present alternative was found to be faster than
the WL method for the three-dimensional anharmonic Einstein
crystal, and for the square-well tetradecamer. Technically, the
algorithm amounts to sampling (at most) two microcanonical
ensemble averages and so must be considered very simple.
Indeed, one would only need to add a couple of lines of code
to preexisting molecular dynamics programs, for instance,
to implement this algorithm, and it would require also only
very modest modifications to most Monte Carlo programs to
implement the microcanonical average. The greatest obstacle
to a pain-free implementation of this method is that the
potential energy minimum value has to be independent of λ,
requiring at the very least that efficient energy minimization
can be carried out on the systems of interest. However, a
poor determination of the energy minimum will affect the
low-energy region of the DOS disproportionally, and so a
very precise determination might not be necessary if one is
interested in the high-energy end. Another mitigating factor is
the obvious fact that for any method or algorithm to calculate
the low-energy DOS, such energy minimization must be
carried out implicitly. Systems for which energy minimization
is difficult, for whatever reason, are thus inherently difficult
cases for which to calculate the complete DOS by any method.
Incidentally, we note that efficient energy minimization is
also a prerequisite of the WL-like algorithm of Soudan
et al. [37].

The foremost advantage of the method is that to calculate
the DOS of a system similar to one for which this quantity is
already known, the least possible extra numerical expenditure
should be necessary. However, the greatest drawback of the
method is that prior knowledge of the DOS is generally very
scarce. This limits the optimal applicability of this method
because the repertoire of systems with known DOS does not
necessarily include those that are related to the system of study.
It is therefore foreseeable that this algorithm will be most
useful in conjunction with another method to calculate the
DOS. Like this, once obtained for one system, a whole series
of related systems will be amenable to structured investigation.
Such a combination of methods could be, for instance, “WL
plus perturbation” or a similar recipe. The cost of acquiring the
DOS of the reference system, by whatever suitable method,

is then offset by the ease of calculation of the DOS of the
related systems. Also, unless the absolute DOS is needed (to
compute, for instance, a phase diagram) in some situations
entropic differences may suffice.

However, one additional advantage of the perturbation
method is its ability to calculate ω(E) at any E value,
independently of the E range one ultimately considers, which
means that the DOS can be gradually accrued from completely
separate simulations without needing to decide on a dis-
cretization scheme beforehand. This means that the algorithm
is trivially parallelizable and also opens up a vast array of
possibilities for further improvement. For instance, a “smart,”
for example, automatic and nonuniform, discretization of
the energy levels when calculating the DOS, so that those
regions where the DOS varies most rapidly are sampled most
thoroughly, is a natural extension, somewhat analogous to the
energy segment partitioning of the NS method.
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APPENDIX: DERIVATION OF THE GOLD VAPOR
PRESSURE EQUATION

In the one-component system that we consider, the chem-
ical potential of the liquid is related to the Helmholtz
free energy AAu = U0 − kT ln QAu through μAu = (AAu +
pvapV )/N . Experimentally, the product pvapV/N is around
10−30 J, whereas the calculated AAu/N is around 10−18 J.
The second term may therefore safely be neglected in view
of the other approximations involved. The chemical potential
of the vapor is μvap = −kT ∂ ln Qvap/∂N . Setting μAu = μvap,
neglecting the pressure-volume term, and substituting Qvap =
V N/(�3NN !), one arrives at the result quoted in the text after
applying Stirling’s approximation, N ! ≈ √

2πNNNe−N .
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